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Abstract

This study addresses the challenges of low efficiency and limited scalability in traditional post-earthquake building damage
assessment methods by proposing an automated assessment framework. The approach combines an improved Segformer model, a
grid-based quantitative statistical method, and LLM-driven report generation for scalable and accurate structural damage assessment
from high-resolution satellite imagery. First, an improved Segformer model is developed to extract and compare pre- and post-
earthquake building footprints, with optimized feature fusion and training strategies tailored for post-disaster scenarios. The model
effectively detects changes in building footprints under complex conditions. Second, the study introduces a grid-based quantitative
statistical method that divides the affected area into uniform cells, within which damage is classified into four severity categories.To
further streamline the process, the workflow is integrated into Dify, allowing for automated processing, interpretation, and report
generation via LLMs. This integration enables quick and consistent delivery of actionable insights to decision-makers, reducing the
need for human intervention. The method was validated using data from the 2025 Shigatse earthquake, where the model achieved a
MIOU over 86% for building footprint extraction, and the damage classification showed strong alignment with ground-truth
data.This study provides an efficient and scalable solution for post-earthquake building damage assessment, significantly enhancing

disaster response capabilities and urban resilience planning.

1. Introduction

Earthquakes cause widespread destruction to buildings and
infrastructure, posing significant challenges for urban resilience
and disaster recovery. Prompt and accurate post-disaster
damage assessment is critical to guide emergency response
efforts, prioritize resources, and inform reconstruction plans.
However, traditional field surveys, while highly accurate, are
time consuming, labor intensive, and often impractical for
large-scale or inaccessible areas (Wu et al., 2021; Ma et al.,
2019; Nex et al., 2019).

As a result, remote sensing technologies, particularly high-
resolution optical satellite imagery, have become powerful tools
for post-earthquake damage analysis. In recent years, deep
learning techniques, especially convolutional neural networks
(CNNs), have been widely applied to building extraction and
change detection tasks using remote sensing imagery (Kalantar
et al.,, 2020; Wu et al., 2021). These models can identify
building footprint changes by comparing pre- and post-disaster
images. However, CNN-based approaches often struggle under
complex post-disaster conditions due to their limited ability to
capture long-range dependencies and contextual information
(Ma et al., 2019; Xu et al., 2019).

Transformer-based architectures, such as SegFormer, have
shown promising results by incorporating global attention
mechanisms and multi-scale feature fusion, which enhance
performance in complex scenarios (Xie et al., 2021). Other
recent approaches, including DamFormer and Siamese
Transformer frameworks, have demonstrated improved
accuracy for multi-temporal change detection and damage
assessment (Chen et al., 2022; Bandara and Patel, 2022;
Mohammadian and Ghaderi, 2022). However, there remains a
lack of research specifically optimizing these models for

detecting building footprint before and after

earthquakes.

changes

Another limitation of current methods is their focus on image
segmentation or damage localization without embedding results
into a structured and quantitative framework suitable for large-
scale assessment. While many models can detect changes, they
often do not generate interpretable or actionable insights for
disaster management. Moreover, the reporting process in most
existing systems remains manual, resulting in delays and
inefficiencies during emergency response.

To address these challenges, this study proposes a novel end-to-
end framework that integrates an improved SegFormer model
for detecting building footprint changes, a grid-based approach
for quantitative damage classification, and automated reporting
through large language models (LLMs). The improved
SegFormer model is optimized for post-disaster conditions,
enabling accurate change detection. The grid-based approach
allows scalable and interpretable classification of affected areas,
and the LLM-driven reporting module converts evaluation
outputs into structured disaster assessment reports. This
integrated system enhances both the technical robustness and
operational efficiency of post-earthquake building damage
assessment, contributing practical value to emergency decision-
making and urban recovery planning.

2. Building Footprint Change and Quantitative Evaluation
Method

2.1 Improved SegFormer for Building Change Detection

Detecting building footprint changes in post-earthquake
scenarios is crucial for accurate damage assessment and
effective recovery planning. Traditional methods and CNN-
based approaches often underperform in complex settings—
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such as scenes with debris accumulation and variable lighting—
because they lack the capacity to model long-range spatial
dependencies and contextual variation (Chen et al., 2023; Yan
et al., 2022). Transformer-based architectures like SegFormer,
which integrate global attention and multi-scale feature fusion,
have demonstrated superior ability to detect building footprint
changes under such challenging conditions (Xie et al., 2021).
Other transformer-driven models—such as Fully Transformer
Network (FTN), SiamixFormer, and attention-based multiscale
detector frameworks—have achieved state-of-the-art results in
remote sensing change detection (Wan et al, 2022;
Mohammadian and Ghaderi, 2022; Yan et al., 2022). However,
few studies have focused explicitly on applying these
architectures to building footprint change detection in real post-
disaster earthquake contexts, indicating a need for more
specialized adaptation within this domain.

2.1.1 Multi-Head Mixed Convolution (MHMC): A major
challenge in traditional transformer models is their difficulty in
effectively capturing fine-grained local features while
processing large, high-resolution images. In the early stages of
the SegFormer architecture, self-attention mechanisms are
typically used, but they may struggle with capturing the
necessary local details for accurate footprint change detection,
especially in cluttered post-disaster imagery.

MHMC(X) = Concat(DSCn, x n,(x,),--,DSCn, xn,(x,))s (1)

where X = Input vector of MHMC layer

Concat = Connection of network tensors
DSC = Depthwise Separable Convolution
x = Input features, [x1, x2, ..., Xk]

n; = Convolution kernel size, n: € {3,5,...,N}

To address this, the proposed model incorporates Multi-Head
Mixed Convolution (MHMC) into the early layers of the
encoder. Unlike traditional self-attention, which primarily
focuses on long-range dependencies across the entire image,
MHMC allows the model to prioritize the extraction of local
features. This is crucial for post-earthquake scenes where fine
details, such as changes in the outline of buildings or the
presence of debris, are significant indicators of damage.

MHMC works by using depthwise separable convolutions for
multiple convolutional heads, each capturing features at
different scales. For example, one head might capture small-
scale changes at the pixel level, such as the displacement of
building boundaries due to partial collapse, while another head
might focus on broader, large-scale changes, like the formation
of new gaps or the collapse of entire structures. The outputs
from each head are concatenated and passed to the next stage,
allowing the model to leverage multi-scale features without
incurring the computational overhead typically associated with
multi-scale processing. This approach enhances the model’s
ability to detect changes across a variety of scales, ensuring that
both small and large changes are captured with high accuracy.

2.1.2  Scale-Aware Aggregation (SAA): While MHMC
improves the local feature extraction capabilities of the network,
it is equally important to integrate these local features across
different scales to capture the full context of the building
footprint changes. To achieve this, Scale-Aware Aggregation
(SAA) is introduced as an improvement to the network's feature
fusion process. The specific structure of SAA is shown in
Figure 1.
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Figure 1. SAA module.

SAA aggregates features from multiple convolutional heads
with varying receptive fields to improve the interaction between
different scales of features. This helps the network better
understand the spatial relationships between local and global
changes in the building footprints. For example, changes at the
local level need to be integrated with larger-scale information
(e.g., the overall destruction or collapse of a building) to form a
complete assessment of the damage.

The SAA method works by grouping features from different
heads and performing intra-group and inter-group feature fusion.
This process enables the model to combine fine-grained details
from lower-level features with more global, contextual
information from higher-level features. The SAA module uses a
lightweight aggregation structure, where the features from
different groups are fused through a reverse bottleneck structure,
allowing for efficient computation while ensuring rich
contextual information is preserved.

This feature fusion mechanism improves the model's ability to
deal with complex post-disaster images by preserving both local
details and global context, making it more robust to the
challenges posed by debris, partial collapse, and other post-
earthquake conditions.

Together, the MHMC and SAA improvements significantly
enhance SegFormer’s ability to detect building footprint
changes in challenging post-earthquake scenarios. These
innovations allow the model to efficiently capture both local
and global features, ensuring high accuracy and computational
efficiency even in complex, cluttered environments. This makes
the model particularly effective for large-scale, real-time
damage assessment in disaster-stricken areas.

2.2 Grid-based Quantitative Evaluation Method

To accurately assess the extent of building damage in post-
earthquake scenarios, adopting a grid-based quantitative
evaluation method has become increasingly prevalent. Such
approaches divide the affected region into uniform spatial units,
aggregating building footprint changes within each grid cell to
support systematic and scalable damage assessment (Duarte et
al., 2018; Corbane et al., 2011). Recent studies have
demonstrated that grid-based frameworks, particularly when
combined with change detection outputs, can effectively
visualize damage distribution across urban areas and enable
automated statistical summarization (Tu et al., 2016; Adriano et
al., 2020). Within each grid cell, calculated building footprint
change metrics are used to classify damage severity—such as
area loss—providing interpretable data for resource allocation
and recovery planning. Such quantification supports both spatial
visualization and facility-level decision support.
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2.2.1  Grid Division and Area Calculation: The first step in
the grid-based evaluation method is to divide the earthquake-
affected area into regular, uniformly-sized grids. The grid size is
chosen based on the resolution of the satellite imagery and the
scale of damage to ensure that each grid can capture relevant
changes in building footprints. The size of each grid is selected
to ensure that it corresponds to an appropriate area, neither too
small to lose contextual information nor too large to miss
smaller-scale changes.

Once the grid division is complete, the change in building
footprint for each grid is calculated by comparing the pre- and
post-earthquake satellite images. This comparison is facilitated
by the improved SegFormer model, which accurately detects
changes in building boundaries, including the displacement of
buildings or areas of collapse. The area of change is quantified
by measuring the difference in building footprint size before
and after the earthquake.

In addition to simple area change detection, Weighted Area
Change is introduced to enhance the accuracy and
representativeness of the damage assessment. Instead of treating
the overall grid area equally, the weighted area change method
gives more significance to the proportion of the building
footprint that has been altered. For instance, if only a small part
of a building within a grid has been damaged (e.g., a corner or a
small section of a wall), the total area change for that grid may
be relatively small, but the damage could still be significant in
terms of its impact on the structure. Therefore, grids with a
higher proportion of the building footprint changed are
weighted more heavily in the damage classification.

To implement this, the weighted area change is calculated by
determining the ratio of the damaged building area within the
grid to the total area of the building footprint in that grid. This
ratio is then used to assign a weighted value to the grid's overall
damage level. For example, a grid where 70% of the building
area has been damaged would be weighted higher than a grid
where only 10% of the building footprint has been affected.
This ensures that grids with significant structural changes are
given more importance in the overall damage assessment,
providing a more accurate reflection of the extent of destruction.

2.2.2 Damage Classification and Quantification: After the
area change within each grid is calculated, the grids are
classified into four damage categories based on the magnitude
of the weighted area change. The categories are as follows:

1.Severely Damaged: Grids where a significant portion of the
building footprint has been altered, indicating complete collapse
or destruction.

2.Moderately Damaged: Grids where the building footprint has
been partially altered, but not entirely destroyed.

3.Slightly Damaged: Grids where only minor changes to the
building footprint have occurred.

4.Unchanged: Grids where no noticeable change has occurred in
the building footprint.

These classifications provide a quantitative distribution of
damage across the affected area, helping to visualize and
understand the extent of damage in various regions. By
aggregating the grid statistics, the system generates a clear

report of the total area affected by each level of damage, along
with the number of grids in each category.

2.2.3 Visualization and Reporting: The grid-based
quantitative evaluation system not only provides detailed
statistical data but also facilitates visualization of the damage
across the affected region. The damage distribution can be
represented on color-coded maps, making it easier for decision-
makers to understand the extent of destruction.

In addition to visual representations, the system generates
quantitative reports, summarizing the total area affected and the
severity of the damage in each grid. These reports can be used
for resource allocation, recovery planning, and further analysis
of the disaster’s impact.

3. Automated Framework for Post-Earthquake Building
Damage Assessment

To meet the urgent demand for timely, standardized, and
scalable post-earthquake damage assessment, this study
proposes a fully automated assessment framework built upon
Dify, a large language model (LLM)-driven workflow
orchestration platform. The framework is designed to streamline
the entire process—from disaster input and satellite image
acquisition to building footprint change detection, grid-based
quantitative analysis, and automatic report generation—by
integrating advanced deep learning techniques and remote
sensing knowledge with intelligent task coordination and
natural language generation. This end-to-end automation
significantly reduces the reliance on manual interpretation and
enables consistent disaster analysis that is both fast and scalable,
even in vast or inaccessible regions. The overall process is
shown in Figure 2.

Disaster Information Input LLM Intent Recognition
Building Change Detection Data Preprocessing
Qllalltlﬂt.lve E:Val}lﬂtloll and LLM Report Generation Dlsaster ?ssusment and
Visualization decision support

Figure 2. Automated damage assessment process.
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The proposed system consists of eight tightly integrated stages
that operate sequentially through a Dify-controlled pipeline. (1)
Disaster Information Input begins the process, where users
submit key parameters such as the earthquake’s location,
magnitude, and affected area. (2) In LLM Intent Recognition,
the LLM parses this input to determine the appropriate data
sources, analytical models, and spatial scopes required for
processing. Based on the parsed intent, (3) Satellite Data
Acquisition is triggered automatically. The system queries high-
resolution pre- and post-event satellite images through APIs
such as Google Earth Engine or Sentinel Hub, applying filters
based on cloud cover and acquisition time to ensure suitable
imagery. Once the data is collected, (4) Data Preprocessing
follows, which includes atmospheric correction to normalize
reflectance values, precise image co-registration to ensure
spatial alignment, and clipping to the specified area of interest.
These steps prepare the imagery for pixel-level comparison by
minimizing radiometric and geometric distortions.

The core analysis takes place in stage (5), Building Footprint
Change Detection, where the improved SegFormer model is
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invoked. This transformer-based semantic segmentation model
has been optimized to detect building footprint changes under
complex post-disaster conditions, such as debris coverage,
structural collapse, and lighting inconsistency. By leveraging
multi-head mixed convolution (MHMC) and scale-aware
aggregation (SAA), the model extracts robust multi-scale
features that accurately capture differences in building shapes,
sizes, and boundaries between the two time phases. The model
outputs binary masks of changed vs. unchanged buildings,
which serve as the basis for quantitative evaluation. Task
execution across the pipeline is managed by (6) Celery, a
distributed task queue framework integrated with Dify, which
enables real-time monitoring, parallel computation, and fault-
tolerant scheduling of long-running processes such as model
inference and data processing.

In stage (7), Grid-Based Quantitative Evaluation and
Visualization, the extracted change masks are spatially
aggregated into uniform grids that segment the disaster area into
fixed spatial units. Within each grid, the total changed building
area is calculated and further refined using a weighted area
change ratio, defined as the proportion of the changed footprint
relative to the original building area. This approach avoids
overestimation in sparsely built grids and allows for more
representative classification of structural impact. Based on
predefined thresholds, each grid is assigned one of four severity
levels—severe, moderate, slight, or unchanged—forming the
basis for damage heatmaps and statistical summaries. Finally, (8)
LLM-Generated Damage Assessment Report is executed, where
the LLM interprets both the statistical data and annotated
imagery, referencing a curated remote sensing knowledge base.
The output is a natural language report that includes damage
summaries, quantitative tables, and spatial visualizations,
formatted for direct use by emergency managers, government
agencies, and urban planners.

The framework offers multiple advantages over traditional or
semi-automated approaches. It eliminates subjective variability
in damage interpretation, accelerates processing from hours to
minutes, and ensures repeatable assessment results across
different disaster events. Moreover, the LLM’s integration with
domain knowledge allows it not only to summarize results but
also to highlight patterns, identify high-impact zones, and
generate narrative insights previously dependent on expert
intervention. The modular design also ensures extensibility: the
workflow can be adapted to different disaster types (e.g., floods,
landslides) or alternate data sources by substituting specific
modules without changing the overall architecture. In
conclusion, this automated framework demonstrates a practical
and intelligent solution for post-earthquake damage assessment,
bridging advanced remote sensing analytics with Al-driven
decision support to enable efficient, informed, and large-scale
disaster response..

4. Experiment
4.1 Experimental Environment

This study's experiments were conducted on a high-performance
deep learning workstation using the PyTorch 2.1.0 framework.
The workstation is equipped with two NVIDIA RTX A6000
GPUs, each providing 48GB of video memory, enabling the
training of transformer-based models with high-resolution
satellite imagery. All experiments were executed under the
CUDA 11.8 platform to ensure computational efficiency and
stability.

4.2 Study Area and Data Sources

This study uses the earthquake event that struck Dingri County,
Shigatse, Tibet on January 7, 2025, as a case study to evaluate
the performance of the proposed automated building damage
assessment framework. The selected experimental area is a local
urban region within Dingri County, bounded by coordinates
(87.43°, 28.53°) in the northwest and (87.48°, 28.48°) in the
southeast. This area was chosen due to its relatively high
building density and visible post-disaster damage signals.

Two high-resolution (approximately 0.8m) GF-2 optical
satellite images were used: one acquired before the earthquake
on December 24, 2024, and the other after the earthquake on
January 8, 2025. As shown in Figure 3 and Figure 4. The
images were obtained from the national remote sensing data
platform. Prior to analysis, the imagery underwent standard
remote sensing preprocessing, including radiometric calibration,
atmospheric correction, and orthorectification, to ensure
accurate spatial and spectral consistency between the two
datasets.
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Figure 4. Post-earthquake satellite image.

4.3 Experimental Procedure

The processed imagery was used as input to the improved
SegFormer model, which was configured to perform building
footprint extraction for both time points. The model outputs
binary segmentation maps representing detected building
regions in each image. Subsequently, a pixel-wise comparison
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of pre- and post-event building footprints was performed to
determine areas of change, indicating possible building damage,
collapse, or removal.

To evaluate the accuracy of the model, a reference dataset was
manually constructed. Experts performed detailed digitization
of pre- and post-earthquake building outlines within the study
area using visual interpretation. These manually annotated
vector maps were then used to generate three reference
categories: increased, decreased, and unchanged building areas.
As shown in Figure 5. The automatic footprint change detection
results were compared to this ground-truth dataset to verify
consistency and reliability.

b v

R N4 : i
Figure 5. Plotting results of building changes.

In addition to pixel-level validation, the study also implemented
grid-based quantitative analysis. The entire study area was
divided into uniform spatial units using a grid resolution of
0.0003° x 0.0003° (longitude x latitude). Within each grid, the
total building footprint area loss was computed, and a weighted
area change ratio was applied to account for the relative
magnitude of structural loss with respect to pre-disaster building
coverage. This method enabled a more representative
classification of damage severity, particularly in mixed or low-
density construction zones. Each grid was then classified into
one of four categories: severely damaged, moderately damaged,
slightly damaged, or unchanged.

The final phase of the workflow was conducted via the Dify-
based orchestration platform, which automatically invoked each
module in sequence, monitored task status via Celery, and
triggered the LLM-based report generation component. The
large language model synthesized statistical indicators and
change maps into a natural language report, complete with
embedded tables, summary descriptions, and thematic
visualizations. The entire process, from data input to report
output, was executed without manual intervention,
demonstrating the viability of full automation in real disaster
assessment scenarios.

4.4 Accuracy Evaluation

To verify the consistency between the extracted results and the
manually annotated ground truth, three evaluation metrics were
employed: Overall Accuracy (OA), Intersection over Union
(IOU), and Mean Intersection over Union (MIOU).

Overall Accuracy (OA) refers to the ratio of correctly classified
pixels to the total number of pixels. It serves as a global
indicator for evaluating the overall performance of the
classification task.

Intersection over Union (IOU) is defined as the ratio of the
intersection to the union between the predicted segmentation
and the ground truth for a given class. It can be used to assess

the segmentation accuracy of individual categories, such as
increased area, decreased area, and unchanged area.

Mean Intersection over Union (MIOU) is the average of the
10U values computed for each class, and it reflects the overall
segmentation accuracy of the model across all categories.

The formulas for these evaluation metrics are defined as follows:

_ TP +TN N 2)
TP+ FP+ FN +TN
ov-—1 . )
TP+ FP+ FN
MIOU = 10U, oyqsea + 11 OUd;creasEd + 10U ihangea 4)

where TP,FP = true positive and false positive

TN,FN = true negative and false negative
4.5 Results and Analysis

The framework produced accurate and reliable results. To
maintain the clarity of the diagram, some key areas are
intercepted for visual display. Compared with manually
annotated ground truth, the model achieved an Overall
Accuracy (OA) of 93.16% and a mean Intersection over Union
(MIOU) of 86%. The IOU scores for each class were 83.13%
for increased areas, 84.63% for decreased areas, and 90.24% for
unchanged areas. As shown in the following figure, Figure 6
shows the real results, and Figure 7 shows the automatic
extraction results, which maintain a high degree of consistency,
in which the red area reveals the key areas of concern for
disaster research and judgment. These results confirm the
effectiveness of the improved SegFormer model in detecting
building footprint changes under complex post-earthquake
conditions.

Quantitatively, the total building footprint in the study area
decreased from 230,071.74 m? (pre-event) to 212,419.85 m?
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(post-event), indicating a net loss of 17,651.89 m?2, which
reflects the extent of physical damage. The grid-based
classification yielded the following results: 238 grids were
classified as severely damaged, 202 as moderately damaged,
and 867 as slightly damaged. These results were visualized in a
series of maps showing the spatial distribution of damage
intensity across the region. The pre-earthquake building overlay
map (Figure 8) and the post-earthquake building overlay map
(Figure 9) illustrate the effectiveness of the improved Segformer
in capturing structural changes. The building damage heatmap
(Figure 10) clearly highlights severely affected zones, which
closely align with field observations and government-reported
impact areas. The overlaid change maps and damage heatmaps,
along with extracted statistical charts, were integrated into a
structured LLM-generated disaster assessment report.
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Figure 8. Pre-earthquake building overlay map.
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Figure 9. Post-earthquake building overlay map.
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Figure 10. Heatmap of building damage severity.

It is important to note that all results are confined to the selected
test region and based on satellite observations. The findings are
intended for scientific research purposes only and should not be
interpreted as official disaster loss statistics. Nonetheless, the
high degree of automation, spatial consistency, and accuracy
demonstrated by the proposed method confirms its potential as a
valuable tool for emergency response and post-disaster
decision-making.

Overall, this experiment validates the framework's capacity to
deliver fast, scalable, and reliable building damage assessments,
combining deep learning segmentation, grid-based spatial
analytics, and LLM-driven interpretation. The integration of
satellite data, transformer-based detection models, and
language-driven reporting offers a practical solution with strong
potential for deployment in future disaster scenarios across
diverse geographic regions.

5. Conclusion

This study proposed a fully automated framework for post-
earthquake building damage assessment by integrating high-
resolution satellite imagery, an improved SegFormer-based
footprint change detection model, grid-based quantitative
evaluation, and large language model (LLM)-driven reporting.
The framework addresses key limitations in traditional
assessment workflows by enabling end-to-end automation—
from data acquisition and preprocessing to damage
classification and report generation—within a Dify-based
orchestration environment. The improved SegFormer model
incorporates multi-head mixed convolution and scale-aware
aggregation mechanisms, significantly enhancing its ability to
extract building footprint changes under complex post-disaster
conditions.

A case study using the 2025 Shigatse earthquake demonstrated
the framework’s effectiveness. The proposed method achieved
an overall accuracy of 93.16% and a MIOU of 86% when
validated against manually annotated data. Grid-based damage
classification, based on weighted area change, revealed clear
spatial patterns of structural impact, supporting visual
interpretation and statistical analysis. The automatically
generated LLM report provided comprehensive summaries and
intuitive visualizations, enabling direct support for decision-
making.
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Overall, the framework offers a scalable, interpretable, and
operationally practical solution for post-earthquake building
damage assessment. By integrating advanced deep learning and
natural language generation technologies, it contributes to the
development of intelligent remote sensing systems and provides
valuable support for rapid disaster response and recovery
planning.
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