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Abstract 
 
This study addresses the challenges of low efficiency and limited scalability in traditional post-earthquake building damage 
assessment methods by proposing an automated assessment framework. The approach combines an improved Segformer model, a 
grid-based quantitative statistical method, and LLM-driven report generation for scalable and accurate structural damage assessment 
from high-resolution satellite imagery. First, an improved Segformer model is developed to extract and compare pre- and post-
earthquake building footprints, with optimized feature fusion and training strategies tailored for post-disaster scenarios. The model 
effectively detects changes in building footprints under complex conditions. Second, the study introduces a grid-based quantitative 
statistical method that divides the affected area into uniform cells, within which damage is classified into four severity categories.To 
further streamline the process, the workflow is integrated into Dify, allowing for automated processing, interpretation, and report 
generation via LLMs. This integration enables quick and consistent delivery of actionable insights to decision-makers, reducing the 
need for human intervention. The method was validated using data from the 2025 Shigatse earthquake, where the model achieved a 
MIOU over 86% for building footprint extraction, and the damage classification showed strong alignment with ground-truth 
data.This study provides an efficient and scalable solution for post-earthquake building damage assessment, significantly enhancing 
disaster response capabilities and urban resilience planning. 
 
 

1. Introduction 

Earthquakes cause widespread destruction to buildings and 
infrastructure, posing significant challenges for urban resilience 
and disaster recovery. Prompt and accurate post-disaster 
damage assessment is critical to guide emergency response 
efforts, prioritize resources, and inform reconstruction plans. 
However, traditional field surveys, while highly accurate, are 
time consuming, labor intensive, and often impractical for 
large-scale or inaccessible areas (Wu et al., 2021; Ma et al., 
2019; Nex et al., 2019). 
 
As a result, remote sensing technologies, particularly high-
resolution optical satellite imagery, have become powerful tools 
for post-earthquake damage analysis. In recent years, deep 
learning techniques, especially convolutional neural networks 
(CNNs), have been widely applied to building extraction and 
change detection tasks using remote sensing imagery (Kalantar 
et al., 2020; Wu et al., 2021). These models can identify 
building footprint changes by comparing pre- and post-disaster 
images. However, CNN-based approaches often struggle under 
complex post-disaster conditions due to their limited ability to 
capture long-range dependencies and contextual information 
(Ma et al., 2019; Xu et al., 2019). 
 
Transformer-based architectures, such as SegFormer, have 
shown promising results by incorporating global attention 
mechanisms and multi-scale feature fusion, which enhance 
performance in complex scenarios (Xie et al., 2021). Other 
recent approaches, including DamFormer and Siamese 
Transformer frameworks, have demonstrated improved 
accuracy for multi-temporal change detection and damage 
assessment (Chen et al., 2022; Bandara and Patel, 2022; 
Mohammadian and Ghaderi, 2022). However, there remains a 
lack of research specifically optimizing these models for 

detecting building footprint changes before and after 
earthquakes. 
 
Another limitation of current methods is their focus on image 
segmentation or damage localization without embedding results 
into a structured and quantitative framework suitable for large-
scale assessment. While many models can detect changes, they 
often do not generate interpretable or actionable insights for 
disaster management. Moreover, the reporting process in most 
existing systems remains manual, resulting in delays and 
inefficiencies during emergency response. 
 
To address these challenges, this study proposes a novel end-to-
end framework that integrates an improved SegFormer model 
for detecting building footprint changes, a grid-based approach 
for quantitative damage classification, and automated reporting 
through large language models (LLMs). The improved 
SegFormer model is optimized for post-disaster conditions, 
enabling accurate change detection. The grid-based approach 
allows scalable and interpretable classification of affected areas, 
and the LLM-driven reporting module converts evaluation 
outputs into structured disaster assessment reports. This 
integrated system enhances both the technical robustness and 
operational efficiency of post-earthquake building damage 
assessment, contributing practical value to emergency decision-
making and urban recovery planning. 
 
2. Building Footprint Change and Quantitative Evaluation 

Method 

2.1 Improved SegFormer for Building Change Detection 

Detecting building footprint changes in post-earthquake 
scenarios is crucial for accurate damage assessment and 
effective recovery planning. Traditional methods and CNN-
based approaches often underperform in complex settings—
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such as scenes with debris accumulation and variable lighting—
because they lack the capacity to model long-range spatial 
dependencies and contextual variation (Chen et al., 2023; Yan 
et al., 2022). Transformer-based architectures like SegFormer, 
which integrate global attention and multi‑scale feature fusion, 
have demonstrated superior ability to detect building footprint 
changes under such challenging conditions (Xie et al., 2021). 
Other transformer-driven models—such as Fully Transformer 
Network (FTN), SiamixFormer, and attention-based multiscale 
detector frameworks—have achieved state-of-the-art results in 
remote sensing change detection (Wan et al., 2022; 
Mohammadian and Ghaderi, 2022; Yan et al., 2022). However, 
few studies have focused explicitly on applying these 
architectures to building footprint change detection in real post-
disaster earthquake contexts, indicating a need for more 
specialized adaptation within this domain. 
 
2.1.1 Multi-Head Mixed Convolution (MHMC): A major 
challenge in traditional transformer models is their difficulty in 
effectively capturing fine-grained local features while 
processing large, high-resolution images. In the early stages of 
the SegFormer architecture, self-attention mechanisms are 
typically used, but they may struggle with capturing the 
necessary local details for accurate footprint change detection, 
especially in cluttered post-disaster imagery. 
 

( ))(,),()( 111 kkk xnDSCnxnDSCnConcatXMHMC ×⋅⋅⋅×= ,     (1) 
 
where  X = Input vector of MHMC layer 
 Concat = Connection of network tensors 
 DSC = Depthwise Separable Convolution 
 x = Input features, [x1, x2, …, xk] 
 ni = Convolution kernel size, ni∈{3,5,…,N} 
 
To address this, the proposed model incorporates Multi-Head 
Mixed Convolution (MHMC) into the early layers of the 
encoder. Unlike traditional self-attention, which primarily 
focuses on long-range dependencies across the entire image, 
MHMC allows the model to prioritize the extraction of local 
features. This is crucial for post-earthquake scenes where fine 
details, such as changes in the outline of buildings or the 
presence of debris, are significant indicators of damage. 
 
MHMC works by using depthwise separable convolutions for 
multiple convolutional heads, each capturing features at 
different scales. For example, one head might capture small-
scale changes at the pixel level, such as the displacement of 
building boundaries due to partial collapse, while another head 
might focus on broader, large-scale changes, like the formation 
of new gaps or the collapse of entire structures. The outputs 
from each head are concatenated and passed to the next stage, 
allowing the model to leverage multi-scale features without 
incurring the computational overhead typically associated with 
multi-scale processing. This approach enhances the model’s 
ability to detect changes across a variety of scales, ensuring that 
both small and large changes are captured with high accuracy. 
 
2.1.2 Scale-Aware Aggregation (SAA): While MHMC 
improves the local feature extraction capabilities of the network, 
it is equally important to integrate these local features across 
different scales to capture the full context of the building 
footprint changes. To achieve this, Scale-Aware Aggregation 
(SAA) is introduced as an improvement to the network's feature 
fusion process. The specific structure of SAA is shown in 
Figure 1. 
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Figure 1. SAA module. 

 
SAA aggregates features from multiple convolutional heads 
with varying receptive fields to improve the interaction between 
different scales of features. This helps the network better 
understand the spatial relationships between local and global 
changes in the building footprints. For example, changes at the 
local level need to be integrated with larger-scale information 
(e.g., the overall destruction or collapse of a building) to form a 
complete assessment of the damage. 
 
The SAA method works by grouping features from different 
heads and performing intra-group and inter-group feature fusion. 
This process enables the model to combine fine-grained details 
from lower-level features with more global, contextual 
information from higher-level features. The SAA module uses a 
lightweight aggregation structure, where the features from 
different groups are fused through a reverse bottleneck structure, 
allowing for efficient computation while ensuring rich 
contextual information is preserved. 
 
This feature fusion mechanism improves the model's ability to 
deal with complex post-disaster images by preserving both local 
details and global context, making it more robust to the 
challenges posed by debris, partial collapse, and other post-
earthquake conditions. 
 
Together, the MHMC and SAA improvements significantly 
enhance SegFormer’s ability to detect building footprint 
changes in challenging post-earthquake scenarios. These 
innovations allow the model to efficiently capture both local 
and global features, ensuring high accuracy and computational 
efficiency even in complex, cluttered environments. This makes 
the model particularly effective for large-scale, real-time 
damage assessment in disaster-stricken areas. 
 
2.2 Grid-based Quantitative Evaluation Method 

To accurately assess the extent of building damage in post-
earthquake scenarios, adopting a grid-based quantitative 
evaluation method has become increasingly prevalent. Such 
approaches divide the affected region into uniform spatial units, 
aggregating building footprint changes within each grid cell to 
support systematic and scalable damage assessment (Duarte et 
al., 2018; Corbane et al., 2011). Recent studies have 
demonstrated that grid-based frameworks, particularly when 
combined with change detection outputs, can effectively 
visualize damage distribution across urban areas and enable 
automated statistical summarization (Tu et al., 2016; Adriano et 
al., 2020). Within each grid cell, calculated building footprint 
change metrics are used to classify damage severity—such as 
area loss—providing interpretable data for resource allocation 
and recovery planning. Such quantification supports both spatial 
visualization and facility-level decision support. 
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2.2.1 Grid Division and Area Calculation: The first step in 
the grid-based evaluation method is to divide the earthquake-
affected area into regular, uniformly-sized grids. The grid size is 
chosen based on the resolution of the satellite imagery and the 
scale of damage to ensure that each grid can capture relevant 
changes in building footprints. The size of each grid is selected 
to ensure that it corresponds to an appropriate area, neither too 
small to lose contextual information nor too large to miss 
smaller-scale changes. 
 
Once the grid division is complete, the change in building 
footprint for each grid is calculated by comparing the pre- and 
post-earthquake satellite images. This comparison is facilitated 
by the improved SegFormer model, which accurately detects 
changes in building boundaries, including the displacement of 
buildings or areas of collapse. The area of change is quantified 
by measuring the difference in building footprint size before 
and after the earthquake. 
 
In addition to simple area change detection, Weighted Area 
Change is introduced to enhance the accuracy and 
representativeness of the damage assessment. Instead of treating 
the overall grid area equally, the weighted area change method 
gives more significance to the proportion of the building 
footprint that has been altered. For instance, if only a small part 
of a building within a grid has been damaged (e.g., a corner or a 
small section of a wall), the total area change for that grid may 
be relatively small, but the damage could still be significant in 
terms of its impact on the structure. Therefore, grids with a 
higher proportion of the building footprint changed are 
weighted more heavily in the damage classification. 
 
To implement this, the weighted area change is calculated by 
determining the ratio of the damaged building area within the 
grid to the total area of the building footprint in that grid. This 
ratio is then used to assign a weighted value to the grid's overall 
damage level. For example, a grid where 70% of the building 
area has been damaged would be weighted higher than a grid 
where only 10% of the building footprint has been affected. 
This ensures that grids with significant structural changes are 
given more importance in the overall damage assessment, 
providing a more accurate reflection of the extent of destruction. 
 
2.2.2 Damage Classification and Quantification: After the 
area change within each grid is calculated, the grids are 
classified into four damage categories based on the magnitude 
of the weighted area change. The categories are as follows: 
 
1.Severely Damaged: Grids where a significant portion of the 
building footprint has been altered, indicating complete collapse 
or destruction. 
 
2.Moderately Damaged: Grids where the building footprint has 
been partially altered, but not entirely destroyed. 
 
3.Slightly Damaged: Grids where only minor changes to the 
building footprint have occurred. 
 
4.Unchanged: Grids where no noticeable change has occurred in 
the building footprint. 
 
These classifications provide a quantitative distribution of 
damage across the affected area, helping to visualize and 
understand the extent of damage in various regions. By 
aggregating the grid statistics, the system generates a clear 

report of the total area affected by each level of damage, along 
with the number of grids in each category. 
 
2.2.3 Visualization and Reporting: The grid-based 
quantitative evaluation system not only provides detailed 
statistical data but also facilitates visualization of the damage 
across the affected region. The damage distribution can be 
represented on color-coded maps, making it easier for decision-
makers to understand the extent of destruction.  
 
In addition to visual representations, the system generates 
quantitative reports, summarizing the total area affected and the 
severity of the damage in each grid. These reports can be used 
for resource allocation, recovery planning, and further analysis 
of the disaster’s impact. 
 

3. Automated Framework for Post-Earthquake Building 
Damage Assessment 

To meet the urgent demand for timely, standardized, and 
scalable post-earthquake damage assessment, this study 
proposes a fully automated assessment framework built upon 
Dify, a large language model (LLM)-driven workflow 
orchestration platform. The framework is designed to streamline 
the entire process—from disaster input and satellite image 
acquisition to building footprint change detection, grid-based 
quantitative analysis, and automatic report generation—by 
integrating advanced deep learning techniques and remote 
sensing knowledge with intelligent task coordination and 
natural language generation. This end-to-end automation 
significantly reduces the reliance on manual interpretation and 
enables consistent disaster analysis that is both fast and scalable, 
even in vast or inaccessible regions. The overall process is 
shown in Figure 2. 
 

Disaster Information Input LLM Intent Recognition Data Acquisition

Data PreprocessingBuilding Change DetectionBackground Task 
Management

Quantitative Evaluation and 
Visualization LLM Report Generation Disaster assessment and 

decision support  
Figure 2. Automated damage assessment process. 

 
The proposed system consists of eight tightly integrated stages 
that operate sequentially through a Dify-controlled pipeline. (1) 
Disaster Information Input begins the process, where users 
submit key parameters such as the earthquake’s location, 
magnitude, and affected area. (2) In LLM Intent Recognition, 
the LLM parses this input to determine the appropriate data 
sources, analytical models, and spatial scopes required for 
processing. Based on the parsed intent, (3) Satellite Data 
Acquisition is triggered automatically. The system queries high-
resolution pre- and post-event satellite images through APIs 
such as Google Earth Engine or Sentinel Hub, applying filters 
based on cloud cover and acquisition time to ensure suitable 
imagery. Once the data is collected, (4) Data Preprocessing 
follows, which includes atmospheric correction to normalize 
reflectance values, precise image co-registration to ensure 
spatial alignment, and clipping to the specified area of interest. 
These steps prepare the imagery for pixel-level comparison by 
minimizing radiometric and geometric distortions. 
 
The core analysis takes place in stage (5), Building Footprint 
Change Detection, where the improved SegFormer model is 
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invoked. This transformer-based semantic segmentation model 
has been optimized to detect building footprint changes under 
complex post-disaster conditions, such as debris coverage, 
structural collapse, and lighting inconsistency. By leveraging 
multi-head mixed convolution (MHMC) and scale-aware 
aggregation (SAA), the model extracts robust multi-scale 
features that accurately capture differences in building shapes, 
sizes, and boundaries between the two time phases. The model 
outputs binary masks of changed vs. unchanged buildings, 
which serve as the basis for quantitative evaluation. Task 
execution across the pipeline is managed by (6) Celery, a 
distributed task queue framework integrated with Dify, which 
enables real-time monitoring, parallel computation, and fault-
tolerant scheduling of long-running processes such as model 
inference and data processing. 
 
In stage (7), Grid-Based Quantitative Evaluation and 
Visualization, the extracted change masks are spatially 
aggregated into uniform grids that segment the disaster area into 
fixed spatial units. Within each grid, the total changed building 
area is calculated and further refined using a weighted area 
change ratio, defined as the proportion of the changed footprint 
relative to the original building area. This approach avoids 
overestimation in sparsely built grids and allows for more 
representative classification of structural impact. Based on 
predefined thresholds, each grid is assigned one of four severity 
levels—severe, moderate, slight, or unchanged—forming the 
basis for damage heatmaps and statistical summaries. Finally, (8) 
LLM-Generated Damage Assessment Report is executed, where 
the LLM interprets both the statistical data and annotated 
imagery, referencing a curated remote sensing knowledge base. 
The output is a natural language report that includes damage 
summaries, quantitative tables, and spatial visualizations, 
formatted for direct use by emergency managers, government 
agencies, and urban planners. 
 
The framework offers multiple advantages over traditional or 
semi-automated approaches. It eliminates subjective variability 
in damage interpretation, accelerates processing from hours to 
minutes, and ensures repeatable assessment results across 
different disaster events. Moreover, the LLM’s integration with 
domain knowledge allows it not only to summarize results but 
also to highlight patterns, identify high-impact zones, and 
generate narrative insights previously dependent on expert 
intervention. The modular design also ensures extensibility: the 
workflow can be adapted to different disaster types (e.g., floods, 
landslides) or alternate data sources by substituting specific 
modules without changing the overall architecture. In 
conclusion, this automated framework demonstrates a practical 
and intelligent solution for post-earthquake damage assessment, 
bridging advanced remote sensing analytics with AI-driven 
decision support to enable efficient, informed, and large-scale 
disaster response.. 
 

4. Experiment 

4.1 Experimental Environment 

This study's experiments were conducted on a high-performance 
deep learning workstation using the PyTorch 2.1.0 framework. 
The workstation is equipped with two NVIDIA RTX A6000 
GPUs, each providing 48GB of video memory, enabling the 
training of transformer-based models with high-resolution 
satellite imagery. All experiments were executed under the 
CUDA 11.8 platform to ensure computational efficiency and 
stability. 
 

4.2 Study Area and Data Sources 

This study uses the earthquake event that struck Dingri County, 
Shigatse, Tibet on January 7, 2025, as a case study to evaluate 
the performance of the proposed automated building damage 
assessment framework. The selected experimental area is a local 
urban region within Dingri County, bounded by coordinates 
(87.43°, 28.53°) in the northwest and (87.48°, 28.48°) in the 
southeast. This area was chosen due to its relatively high 
building density and visible post-disaster damage signals. 
 
Two high-resolution (approximately 0.8m) GF-2 optical 
satellite images were used: one acquired before the earthquake 
on December 24, 2024, and the other after the earthquake on 
January 8, 2025. As shown in Figure 3 and Figure 4. The 
images were obtained from the national remote sensing data 
platform. Prior to analysis, the imagery underwent standard 
remote sensing preprocessing, including radiometric calibration, 
atmospheric correction, and orthorectification, to ensure 
accurate spatial and spectral consistency between the two 
datasets. 
 

 
Figure 3. Pre-earthquake satellite image. 

 

 
Figure 4. Post-earthquake satellite image. 

 
4.3 Experimental Procedure 

The processed imagery was used as input to the improved 
SegFormer model, which was configured to perform building 
footprint extraction for both time points. The model outputs 
binary segmentation maps representing detected building 
regions in each image. Subsequently, a pixel-wise comparison 
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of pre- and post-event building footprints was performed to 
determine areas of change, indicating possible building damage, 
collapse, or removal. 
 
To evaluate the accuracy of the model, a reference dataset was 
manually constructed. Experts performed detailed digitization 
of pre- and post-earthquake building outlines within the study 
area using visual interpretation. These manually annotated 
vector maps were then used to generate three reference 
categories: increased, decreased, and unchanged building areas. 
As shown in Figure 5. The automatic footprint change detection 
results were compared to this ground-truth dataset to verify 
consistency and reliability. 
 

 
Figure 5. Plotting results of building changes. 

 
In addition to pixel-level validation, the study also implemented 
grid-based quantitative analysis. The entire study area was 
divided into uniform spatial units using a grid resolution of 
0.0003° × 0.0003° (longitude × latitude). Within each grid, the 
total building footprint area loss was computed, and a weighted 
area change ratio was applied to account for the relative 
magnitude of structural loss with respect to pre-disaster building 
coverage. This method enabled a more representative 
classification of damage severity, particularly in mixed or low-
density construction zones. Each grid was then classified into 
one of four categories: severely damaged, moderately damaged, 
slightly damaged, or unchanged. 
 
The final phase of the workflow was conducted via the Dify-
based orchestration platform, which automatically invoked each 
module in sequence, monitored task status via Celery, and 
triggered the LLM-based report generation component. The 
large language model synthesized statistical indicators and 
change maps into a natural language report, complete with 
embedded tables, summary descriptions, and thematic 
visualizations. The entire process, from data input to report 
output, was executed without manual intervention, 
demonstrating the viability of full automation in real disaster 
assessment scenarios. 
 
4.4 Accuracy Evaluation 

To verify the consistency between the extracted results and the 
manually annotated ground truth, three evaluation metrics were 
employed: Overall Accuracy (OA), Intersection over Union 
(IOU), and Mean Intersection over Union (MIOU). 
 
Overall Accuracy (OA) refers to the ratio of correctly classified 
pixels to the total number of pixels. It serves as a global 
indicator for evaluating the overall performance of the 
classification task. 
Intersection over Union (IOU) is defined as the ratio of the 
intersection to the union between the predicted segmentation 
and the ground truth for a given class. It can be used to assess 

the segmentation accuracy of individual categories, such as 
increased area, decreased area, and unchanged area. 
Mean Intersection over Union (MIOU) is the average of the 
IOU values computed for each class, and it reflects the overall 
segmentation accuracy of the model across all categories. 
 
The formulas for these evaluation metrics are defined as follows: 
 

TNFNFPTP
TNTPOA

+++
+

= ,                       (2) 

 

FNFPTP
TPIOU

++
= ,                    (3) 

 

3
unchangeddecreasedincreased IOUIOUIOU

MIOU
++

= ,         (4) 

 
where  TP,FP = true positive and false positive 
 TN,FN = true negative and false negative 
 
4.5 Results and Analysis 

The framework produced accurate and reliable results. To 
maintain the clarity of the diagram, some key areas are 
intercepted for visual display. Compared with manually 
annotated ground truth, the model achieved an Overall 
Accuracy (OA) of 93.16% and a mean Intersection over Union 
(MIOU) of 86%. The IOU scores for each class were 83.13% 
for increased areas, 84.63% for decreased areas, and 90.24% for 
unchanged areas. As shown in the following figure, Figure 6 
shows the real results, and Figure 7 shows the automatic 
extraction results, which maintain a high degree of consistency, 
in which the red area reveals the key areas of concern for 
disaster research and judgment. These results confirm the 
effectiveness of the improved SegFormer model in detecting 
building footprint changes under complex post-earthquake 
conditions. 
 

 
Figure 6. Plotted real results. 

 

 
Figure 7. Automatic extraction results. 

 
Quantitatively, the total building footprint in the study area 
decreased from 230,071.74 m² (pre-event) to 212,419.85 m² 
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(post-event), indicating a net loss of 17,651.89 m², which 
reflects the extent of physical damage. The grid-based 
classification yielded the following results: 238 grids were 
classified as severely damaged, 202 as moderately damaged, 
and 867 as slightly damaged. These results were visualized in a 
series of maps showing the spatial distribution of damage 
intensity across the region. The pre-earthquake building overlay 
map (Figure 8) and the post-earthquake building overlay map 
(Figure 9) illustrate the effectiveness of the improved Segformer 
in capturing structural changes. The building damage heatmap 
(Figure 10) clearly highlights severely affected zones, which 
closely align with field observations and government-reported 
impact areas. The overlaid change maps and damage heatmaps, 
along with extracted statistical charts, were integrated into a 
structured LLM-generated disaster assessment report. 
 

 
Figure 8. Pre-earthquake building overlay map. 

 

 
Figure 9. Post-earthquake building overlay map. 

 

 
Figure 10. Heatmap of building damage severity. 

 
It is important to note that all results are confined to the selected 
test region and based on satellite observations. The findings are 
intended for scientific research purposes only and should not be 
interpreted as official disaster loss statistics. Nonetheless, the 
high degree of automation, spatial consistency, and accuracy 
demonstrated by the proposed method confirms its potential as a 
valuable tool for emergency response and post-disaster 
decision-making. 
 
Overall, this experiment validates the framework's capacity to 
deliver fast, scalable, and reliable building damage assessments, 
combining deep learning segmentation, grid-based spatial 
analytics, and LLM-driven interpretation. The integration of 
satellite data, transformer-based detection models, and 
language-driven reporting offers a practical solution with strong 
potential for deployment in future disaster scenarios across 
diverse geographic regions. 
 

5. Conclusion 

This study proposed a fully automated framework for post-
earthquake building damage assessment by integrating high-
resolution satellite imagery, an improved SegFormer-based 
footprint change detection model, grid-based quantitative 
evaluation, and large language model (LLM)-driven reporting. 
The framework addresses key limitations in traditional 
assessment workflows by enabling end-to-end automation—
from data acquisition and preprocessing to damage 
classification and report generation—within a Dify-based 
orchestration environment. The improved SegFormer model 
incorporates multi-head mixed convolution and scale-aware 
aggregation mechanisms, significantly enhancing its ability to 
extract building footprint changes under complex post-disaster 
conditions. 
 
A case study using the 2025 Shigatse earthquake demonstrated 
the framework’s effectiveness. The proposed method achieved 
an overall accuracy of 93.16% and a MIOU of 86% when 
validated against manually annotated data. Grid-based damage 
classification, based on weighted area change, revealed clear 
spatial patterns of structural impact, supporting visual 
interpretation and statistical analysis. The automatically 
generated LLM report provided comprehensive summaries and 
intuitive visualizations, enabling direct support for decision-
making. 
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Overall, the framework offers a scalable, interpretable, and 
operationally practical solution for post-earthquake building 
damage assessment. By integrating advanced deep learning and 
natural language generation technologies, it contributes to the 
development of intelligent remote sensing systems and provides 
valuable support for rapid disaster response and recovery 
planning. 
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