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Abstract 

 

Geographic knowledge graph (KG) reasoning enables the inference of missing entities and relations, a fundamental step toward 

constructing comprehensive geospatial knowledge systems. However, prevailing approaches often struggle with the accurate 

modeling of complex spatio-temporal dependencies, particularly in the context of large-scale data, and frequently lack interpretability. 

To address this issue, we present GC-GAT, a hybrid framework that integrates grid-based spatial encoding with a graph attention 

network to enhance geographic KG reasoning. We benchmark GC-GAT against other 9 models, including TransE, DistMult, ConvE, 

ComplEx, R-GCN, TANGO-DistMult, RE-NET, CyGNet, and RE-GCN. Our evaluation is conducted on the ICEWS14s dataset. Our 

framework significantly enhances the performance of the baseline on the spatio-temporal entity reasoning, achieving MRR of 46.11. 

Our results show that GC-GAT achieves superior accuracy and training efficiency, benefitting from the multiscale spatial 

aggregation properties of GeoSOT. These findings demonstrate the robustness and scalability of GC-GAT for reasoning over 

geographic knowledge graphs. 

 

 

1. Introduction 

Knowledge graphs offer a structured and scalable framework 

for representing information, enabling efficient integration and 

utilization in advanced computational applications (Chen et al., 

2020; Abu-Salih, 2021). Actually, there are two basic elements 

in knowledge graph: entity and relation (Wang et al., 2019; 

Zhang  et al., 2008). Considering that real geographical scenes 

are very complex and change in real time, it is difficult to obtain 

all spatio-temporal information (Pan et al., 2021). Geographic 

knowledge graph (KG) reasoning can predict missing entities 

and relations, which is crucial for building a complete 

geospatial knowledge system (Wang et al., 2019; Chen et al., 

2020). However, most existing KG reasoning models have low 

accuracy in solving complex spatio-temporal relationships and 

large-scale data (Zhang et al., 2020; Han et al., 2025). 

Improving the accuracy and interpretability of KG reasoning 

models remains challenging.  

 

Recently, many KG reasoning models have been proposed 

including knowledge reasoning methods based on logic rules, 

representation learning, and neural networks (Tian et al., 2022). 

Owing to its powerful representation learning capabilities for 

graph-structured data, Graph Neural Networks (GNNs) are 

widely adopted for knowledge graph construction. (Sun et al., 

2023) 。 Knowledge graphs represent data through graph-

structured node-edge architectures. Graph Neural Networks 

(GNNs) demonstrate superior capability in integrating both 

structural and attribute features of knowledge graphs (Cai et al., 

2018). Through neighborhood information aggregation and 

node state updating mechanisms, GNNs leverage their 

exceptional message-passing capacity to capture inter-node 

semantic relationships and latent patterns (Tian et al., 2022), 

thereby enabling comprehensive learning of node-level 

representations, relational dependencies, and global topological 

characteristics. The precise acquisition of semantically 

meaningful structural information constitutes a fundamental 

prerequisite for knowledge graph reasoning (Cao et al., 2015). 

This explains GNNs' predominant advantages across knowledge 

graph processing pipelines, particularly in reasoning tasks. The 

Graph Convolutional Network (GCN) framework proposed by 

Kipf & Welling (2016) employs Chebyshev polynomial-

approximated spectral filters to encode local graph substructures, 

establishing itself as a third-generation graph convolutional 

architecture with demonstrated efficacy in semi-supervised 

learning scenarios. For instance, the structure aware 

convolutional network (SACN) (Shang et al., 2019) utilizes one 

weighted GCN as an encoder and a convolution network Conv-

TransE as a decoder.  

 

In 2017, Veličković et al. introduced the Graph Attention 

Network (GAT), a spatially-based graph neural architecture that 

employs attention mechanisms to dynamically determine edge 

weight coefficients during neighborhood feature aggregation 

(Veličković et al., 2017). This innovation extends beyond 

conventional Graph Convolutional Networks (GCNs) by 

incorporating adaptive edge weighting (Vaswani et al., 2017), 

enabling context-aware modulation of neighbor contributions. 

The GAT framework fundamentally enhances message-passing 

paradigms through differentiable attention coefficients that 

assign node-specific propagation weights (Wu et al., 2021; Orji 

et al., 2025). Subsequent advancements include Zhang et al.'s 

hierarchical attention-based relational GNN encoder-decoder 

architecture for knowledge graph completion tasks (Zhang et al., 

2020). Notably, Kang et al. developed the Heterogeneous 

Information Network Embedding framework via Graph 

Attention Network (HE-GAN), which utilizes stacked GAT 

layers to capture high-order proximity features of entities, 

thereby achieving comprehensive semantic representation of 

knowledge graphs (Kang et al., 2021; Tian et al., 2021). 

 

GeoSOT (Geographic Coordinate Subdividing Grid with One 

Dimension Integral Coding on 2n Tree), a representative 

implementation of Discrete Global Grid Systems (DGGS), has 

exhibited high computational efficiency and strong spatial-

temporal organizational capabilities across a range of geospatial 

applications (Cheng et al., 2012). GeoSOT is a spatial 

subdivision and encoding system that discretizes the Earth's 
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surface using a recursive quadtree structure based on the 

geographic coordinate system of latitude and longitude (Figure 

1) (Cheng et al., 2016). Centered at the intersection of the prime 

meridian and the equator, GeoSOT recursively partitions the 

Earth's surface into a hierarchical grid system that is continuous, 

gapless, and non-overlapping. To construct a precise multiscale 

spatial grid, the Earth's coordinate system is first expanded to a 

512° × 512° space. Each degree (1°) is then subdivided into 64′, 

and each arcminute (1′) is further divided into 64″. This 

hierarchical scheme enables the construction of a complete and 

non-overlapping quadtree structure, ranging from the global 

scale (level 0) down to centimeter-level resolution (level 32)(Li 

et al., 2022). GeoSOT is highly suitable for real-world spatio-

temporal computing tasks due to its hierarchical structure and 

efficient spatial indexing capabilities (Zhu et al., 2023). 

GeoSOT grids can enhance both the training accuracy and 

computational efficiency of the spatio-temporal knowledge 

graph reasoning model. For example, the GN-GCN model 

leverages the multi-scale aggregation capabilities of GeoSOT to 

improve both the training accuracy and computational 

efficiency of the model (Han et al., 2025).  

 

Contemporary knowledge graph (KG) reasoning systems 

exhibit significant limitations in processing complex 

spatiotemporal dependencies and scaling to voluminous datasets. 

While graph attention networks (GATs) demonstrate enhanced 

capability for comprehensive semantic representation in KGs 

and improved reasoning accuracy/efficiency, their intrinsic 

architecture remains fundamentally constrained in 

spatiotemporal relational organization. Therefore, we proposed 

an integrated approach combining grid calculation and graph 

attention network (GC-GAT) to enhance geographic KG 

reasoning. 

 

The main contributions of this study are as followed: (1) The 

GC-GAT hybrid model, integrating spatial-temporal 

organizational capabilities of GeoSOT and feature prioritization 

strengths of GAT. (2) Empirical evaluations show that GC-GAT 

achieves state-of-the-art performance on geographic KG 

reasoning benchmarks. 

 

 
 

 
 

Figure 1. The GeoSOT discrete grid model. (a) GeoSOT 

subdivision grid. (b) GeoSOT quadtree structure for binary code. 

 

2. Methods 

The GC-GAT for spatio-temporal KG reasoning consists of 

three components including a static GAT module, a 

neighborhood grid calculation (NGC) module, and a time 

evolution unit (TEU).  

 

2.1 GAT module 

In this study, we use graph attention network (GAT), a novel 

class of neural architectures designed for graph-structured data, 

which employ masked self-attention mechanisms to overcome 

the limitations of traditional graph convolutional approaches 

and their approximations (Veličković et al., 2017). 

 

 

Figure 2. The GAT module (Veličković et al., 2017). 

 

2.2 NGC module 

The NGC module is based on the GeoSOT Grid map, which can 

build a spatial neighbourhood learning network. The 

architecture of the NGC module is presented in Figure 3. The 
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architecture of NGC has been described in a previous study 

(Han et al., 2025). 

 

Figure 3. The NGC module. 

 

2.3 TEU module 

The TEU module is a type of gated recurrent unit method, 

which can achieve spatiotemporal KG reasoning. The spatio-

temporal entity prediction architecture of the TEU module is 

presented in Figure 4. The architecture of TEU has been 

described in a previous study (Han et al., 2025). 

 

Figure 4. Architecture of the TEU module (Han et al., 2025). 

 

3. Experiments and Results 

3.1 Datasets 

In this paper, our evaluation is conducted on the universal 

temporal benchmark dataset: ICEWS14 (García-Durán et al., 

2018), sourced from the Integrated Crisis Early Warning 

System. Detailed statistics of the three datasets are shown in 

Tables 1. 

 

Datasets  ICEWS14  

Train 74,845 

Valid 8,514 

Test 7,371 

Time gap 24 hours 

Table 1. The statistics of ICEWS14 dataset.  

 

3.2 Experimental Setup 

In this study, we carried out the experiments in a high 

performance computing environment. We selected the 

hyperparameters used in the model, with details provided in 

Table 2. 

 

Parameter Value  

Epoch   100 

Attention heads   1 

Dropout   0.2 

Batch-size 1 

Learning rate 0.001 

Table 2. Description of model parameters.  

 

We benchmark GC-GAT against 9 other models, including 

TransE (Bordes et al., 2013), DisMult (Yang, 2014), ConvE 

(Dettmers et al., 2018), ComplEx (Trouillon et al., 2016), R-

GCN (Schlichtkrull et al., 2018), TANGO-DistMult (García-

Dur´an et al., 2018), RE-NET (Jin et al., 2019), CyGNet (Zhu 

et al., 2021) and RE-GCN (Li et al., 2021). 

 

For each dataset, we used 80% of the sequences as the training 

set, 10% as the test set, and 10% as the valid set. To evaluate 

the results on these datasets, we used the mean reciprocal rank 

(MRR) and Hits@{1, 3, 10} (the proportions of correct 

predictions ranked within the top 1/3/10) as evaluation metrics.  

 

MRR and Hits@{1, 3, 10} are two commonly used 

performance evaluation indicators in knowledge graph 

embedding models, mainly used to measure the accuracy of link 

prediction tasks. MRR is the average of the reciprocal rankings 

of correct facts, reflecting the model's ability to rank correct 

facts in the top positions. The larger the MRR value, the better 

the model performance. Hits@n refers to the average proportion 

of triples ranked less than n in link prediction. Generally, n is 

taken to be 1, 3 or 10. The larger the indicator, the better. For 

example, Hits@3 refers to the proportion of triples predicted to 

rank in the top 3 to the actual correct triples. If there are 100 

triples, 50 of which rank in the top 3 in the prediction, then 

Hits@3 is 50%. The larger the indicator, the higher the 

proportion of correct predictions of the model in the top three.  

 

We conducted two types of spatiot-emporal reasoning 

comparison experiments, namely spatio-temporal entity 

reasoning and spatio-temporal relation reasoning. 

 
3.3 Experimental results 

Spatio-temporal knowledge graph (KG) reasoning involves 

predicting missing elements in quadruples within spatio-

temporal contexts. This task extends traditional semantic 

reasoning by incorporating both temporal and spatial 

dimensions, thereby enhancing the expressiveness and 

generalizability of the model. 

 

We evaluate the performance of GC-GAT by comparing it 

against nine representative KG reasoning models: TransE, 

DistMult, ConvE, ComplEx, R-GCN, TANGO-DistMult, RE-

NET, CyGNet, and RE-GCN. All baseline models are 

implemented using their recommended configurations. It is 

important to note that most of these models are designed 

primarily for semantic reasoning and have not been specifically 

adapted for spatio-temporal scenarios. Therefore, the 

comparison highlights GC-GAT’s ability to handle spatio-
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temporal reasoning, supplemented by representative results 

from traditional semantic models. 

 

3.3.1 Spatio-temporal entity reasoning: Spatio-temporal 

entity prediction results are presented in Figure 5 and Table 3. 

Figure 5 demonstrates that GC-GAT consistently outperforms 

the baselines on the ICEWS14s+* dataset. In the entity 

prediction based on the ICEWS14s+* dataset, the MRR values 

of TransE, DistMult, ConvE, ComplEx, R-GCN, TANGO-

DistMult, RE-NET, CyGNet, RE-GCN and GC-GAT are 10.49, 

18.78, 28.55, 23.64, 28.42, 25.41, 45.63, 35.35, 40.35, 46.11, 

respectively. The Hits@1 values of TransE, DistMult, ConvE, 

ComplEx, R-GCN, TANGO-DistMult, RE-NET, CyGNet, RE-

GCN and GC-GAT are 6.10, 10.10, 16.83, 13.73, 20.01, 16.22, 

34.42, 26.42, 29.80, 35.72, respectively. The Hits@3values of 

TransE, DistMult, ConvE, ComplEx, R-GCN, TANGO-

DistMult, RE-NET, CyGNet, RE-GCN and GC-GAT are 13.98, 

22.99, 28.92, 27.99, 31.89, 30.86, 49.10, 36.83, 45.20, 51.22, 

respectively. The Hits@10 values of TransE, DistMult, ConvE, 

ComplEx, R-GCN, TANGO-DistMult, RE-NET, CyGNet, RE-

GCN and GC-GAT are 32.34, 44.75, 42.68, 43.61, 44.51, 46.36, 

58.47, 53.05, 60.98, 66.18, respectively. 

 

Static embedding models such as TransE, DistMult, ConvE and 

ComplEx perform poorly due to their limited capacity to 

capture complex entity and relation structures. Specifically, 

TransE, DistMult, and ConvE struggle with datasets 

characterized by a large number of relation types and high 

sparsity. DistMult, a simplified version of RESCAL, is limited 

to modeling symmetric relations. Although TANGO-DistMult 

integrates features from both TANGO and DistMult, its 

inference performance remains suboptimal. R-GCN performs 

relatively well among static semantic models but fails to 

effectively capture temporal and spatial dependencies, resulting 

in a mean reciprocal rank (MRR) below state-of-the-art (SOTA) 

levels. 

 

Several temporal reasoning models demonstrate competitive 

performance. For instance, RE-NET performs well on the 

ICEWS14s dataset; however, its effectiveness diminishes on 

other datasets, likely due to the limited number of entities and 

relations in ICEWS14s. RE-GCN incorporates a time-gating 

mechanism that enhances its ability to model temporal 

neighborhoods, but it lacks the capacity to analyze spatial 

neighborhoods in an interpretable manner. CyGNet, inspired by 

the replication mechanism in natural language generation, 

suffers from long training times and delivers inferior predictive 

performance compared to other temporal models. 

 

Overall, GC-GAT achieves superior spatio-temporal reasoning 

performance compared to all baseline models, particularly in 

terms of mean reciprocal rank (MRR). It demonstrates the 

largest performance gains and effectively captures more precise 

and comprehensive spatio-temporal dependencies. The entity 

prediction experiments confirm the high accuracy and 

robustness of GC-GAT in spatio-temporal settings. 

 

Model MRR  Hits@1  Hits@3  Hits@10 

TransE 10.49  6.10  13.98  32.34 

DisMult 18.78  10.10  22.99  44.75 

ConvE 28.55  16.83  28.92  42.68 

ComplEx 23.64  13.73  27.99  43.61 

R-GCN 28.42  20.01  31.89  44.51 

TANGO-

DistMult 

25.41  16.22  30.86  46.36 

RE-NET 45.63  34.42  49.10  58.47 

CyGNet 35.35  26.42  36.83  53.05 

RE-GCN 40.35  29.80  45.20  60.98 

GC-GAT 46.11 35.72 51.22 66.18 

 

Table 3. Results of spatio-temporal entity prediction 

experiments conducted on  ICEWS14s+* dataset. 
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Figure 5. Results of spatio-temporal entity prediction 

experiments conducted on ICEWS14s+* dataset.  

 

3.3.2 Spatio-temporal relation reasoning: We also 

evaluate spatio-temporal relation prediction, with the results 

presented in Table 4. Since not all models support relation 

prediction, a subset of representative models is selected as 

baselines. In the relation prediction based on the ICEWS14s+* 

dataset, the MRR values of TransE, ConvE, R-GCN, RE-GCN 

and GC-GAT are 32.66, 34.88, 40.44, 46.69, 52.72, respectively. 

 

As shown in Table 4 and Figure 6, static embedding models 

such as TransE and ConvE perform poorly on spatio-

temporal relation prediction tasks. In contrast, R-GCN and 

RE-GCN highlight the strengths of graph convolutional 

networks (GCNs) in modeling temporal relations. However, 

when spatial relations are introduced, both models tend to 

treat them as standard semantic relations, limiting their 

effectiveness. In comparison, GC-GAT achieves the best 

performance among all models, demonstrating superior 

capability in capturing and reasoning over spatio-temporal 

relations. 

 

Model  ICEWS14s+

* dataset   

TransE 32.66 

ConvE 34.88 

R-GCN 40.44 

RE-GCN 46.69 

GC-GAT 52.72 

Table 4. MRR scores produced for the spatio-temporal relation 

prediction results obtained on three spatio-temporal datasets.  

 

 

Figure 6. Results of spatio-temporal relation prediction 

experiments conducted on ICEWS14s+* dataset.  

 

4. Conclusions and Future Works 

Geographic knowledge graph (KG) reasoning facilitates the 

inference of missing entities and relations, serving as a 

foundational step in building comprehensive geospatial 

knowledge systems. However, existing methods often struggle 

to model complex spatio-temporal dependencies effectively, 

especially at large scales, and typically lack interpretability. In 

this work, we propose GC-GAT, a hybrid framework that 

combines grid-based spatial encoding with a graph attention 

network to improve geographic KG reasoning. We evaluate 

GC-GAT against several baseline models using a widely 

adopted temporal benchmark dataset. Compared with state-of-

the-art methods, our method achieves superior accuracy and 

training efficiency, owing to the multiscale spatial aggregation 

capabilities of the GeoSOT-based encoding. These findings 

underscore the robustness and scalability of GC-GAT in 

geographic knowledge graph reasoning tasks. 
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