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Abstract

Geographic knowledge graph (KG) reasoning enables the inference of missing entities and relations, a fundamental step toward
constructing comprehensive geospatial knowledge systems. However, prevailing approaches often struggle with the accurate
modeling of complex spatio-temporal dependencies, particularly in the context of large-scale data, and frequently lack interpretability.
To address this issue, we present GC-GAT, a hybrid framework that integrates grid-based spatial encoding with a graph attention
network to enhance geographic KG reasoning. We benchmark GC-GAT against other 9 models, including Transkg, DistMult, ConvE,
ComplEx, R-GCN, TANGO-DistMult, RE-NET, CyGNet, and RE-GCN. Our evaluation is conducted on the ICEWS14s dataset. Our
framework significantly enhances the performance of the baseline on the spatio-temporal entity reasoning, achieving MRR of 46.11.
Our results show that GC-GAT achieves superior accuracy and training efficiency, benefitting from the multiscale spatial
aggregation properties of GeoSOT. These findings demonstrate the robustness and scalability of GC-GAT for reasoning over

geographic knowledge graphs.

1. Introduction

Knowledge graphs offer a structured and scalable framework
for representing information, enabling efficient integration and
utilization in advanced computational applications (Chen et al.,
2020; Abu-Salih, 2021). Actually, there are two basic elements
in knowledge graph: entity and relation (Wang et al., 2019;
Zhang et al., 2008). Considering that real geographical scenes
are very complex and change in real time, it is difficult to obtain
all spatio-temporal information (Pan et al., 2021). Geographic
knowledge graph (KG) reasoning can predict missing entities
and relations, which is crucial for building a complete
geospatial knowledge system (Wang et al., 2019; Chen et al.,
2020). However, most existing KG reasoning models have low
accuracy in solving complex spatio-temporal relationships and
large-scale data (Zhang et al., 2020; Han et al., 2025).
Improving the accuracy and interpretability of KG reasoning
models remains challenging.

Recently, many KG reasoning models have been proposed
including knowledge reasoning methods based on logic rules,
representation learning, and neural networks (Tian et al., 2022).
Owing to its powerful representation learning capabilities for
graph-structured data, Graph Neural Networks (GNNs) are
widely adopted for knowledge graph construction. (Sun et al.,
2023) . Knowledge graphs represent data through graph-
structured node-edge architectures. Graph Neural Networks
(GNNSs) demonstrate superior capability in integrating both
structural and attribute features of knowledge graphs (Cai et al.,
2018). Through neighborhood information aggregation and
node state updating mechanisms, GNNs leverage their
exceptional message-passing capacity to capture inter-node
semantic relationships and latent patterns (Tian et al., 2022),
thereby enabling comprehensive learning of node-level
representations, relational dependencies, and global topological
characteristics. The precise acquisition of semantically
meaningful structural information constitutes a fundamental
prerequisite for knowledge graph reasoning (Cao et al., 2015).
This explains GNNs' predominant advantages across knowledge

graph processing pipelines, particularly in reasoning tasks. The
Graph Convolutional Network (GCN) framework proposed by
Kipf & Welling (2016) employs Chebyshev polynomial-
approximated spectral filters to encode local graph substructures,
establishing itself as a third-generation graph convolutional
architecture with demonstrated efficacy in semi-supervised
learning scenarios. For instance, the structure aware
convolutional network (SACN) (Shang et al., 2019) utilizes one
weighted GCN as an encoder and a convolution network Conv-
TransE as a decoder.

In 2017, Velickovi¢ et al. introduced the Graph Attention
Network (GAT), a spatially-based graph neural architecture that
employs attention mechanisms to dynamically determine edge
weight coefficients during neighborhood feature aggregation
(Velickovi¢ et al.,, 2017). This innovation extends beyond
conventional Graph Convolutional Networks (GCNs) by
incorporating adaptive edge weighting (Vaswani et al., 2017),
enabling context-aware modulation of neighbor contributions.
The GAT framework fundamentally enhances message-passing
paradigms through differentiable attention coefficients that
assign node-specific propagation weights (Wu et al., 2021; Orji
et al., 2025). Subsequent advancements include Zhang et al.'s
hierarchical attention-based relational GNN encoder-decoder
architecture for knowledge graph completion tasks (Zhang et al.,
2020). Notably, Kang et al. developed the Heterogeneous
Information Network Embedding framework via Graph
Attention Network (HE-GAN), which utilizes stacked GAT
layers to capture high-order proximity features of entities,
thereby achieving comprehensive semantic representation of
knowledge graphs (Kang et al., 2021; Tian et al., 2021).

GeoSOT (Geographic Coordinate Subdividing Grid with One
Dimension Integral Coding on 2n Tree), a representative
implementation of Discrete Global Grid Systems (DGGS), has
exhibited high computational efficiency and strong spatial-
temporal organizational capabilities across a range of geospatial
applications (Cheng et al., 2012). GeoSOT is a spatial
subdivision and encoding system that discretizes the Earth's
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surface using a recursive quadtree structure based on the
geographic coordinate system of latitude and longitude (Figure
1) (Cheng et al., 2016). Centered at the intersection of the prime
meridian and the equator, GeoSOT recursively partitions the
Earth's surface into a hierarchical grid system that is continuous,
gapless, and non-overlapping. To construct a precise multiscale
spatial grid, the Earth's coordinate system is first expanded to a
512° x 512° space. Each degree (1°) is then subdivided into 64/,
and each arcminute (1') is further divided into 64”. This
hierarchical scheme enables the construction of a complete and
non-overlapping quadtree structure, ranging from the global
scale (level 0) down to centimeter-level resolution (level 32)(Li
et al., 2022). GeoSOT is highly suitable for real-world spatio-
temporal computing tasks due to its hierarchical structure and
efficient spatial indexing capabilities (Zhu et al., 2023).
GeoSOT grids can enhance both the training accuracy and
computational efficiency of the spatio-temporal knowledge
graph reasoning model. For example, the GN-GCN model
leverages the multi-scale aggregation capabilities of GeoSOT to
improve both the ftraining accuracy and computational
efficiency of the model (Han et al., 2025).

Contemporary knowledge graph (KG) reasoning systems
exhibit significant limitations in processing complex

spatiotemporal dependencies and scaling to voluminous datasets.

While graph attention networks (GATSs) demonstrate enhanced
capability for comprehensive semantic representation in KGs
and improved reasoning accuracy/efficiency, their intrinsic
architecture  remains  fundamentally ~ constrained in
spatiotemporal relational organization. Therefore, we proposed
an integrated approach combining grid calculation and graph
attention network (GC-GAT) to enhance geographic KG
reasoning.

The main contributions of this study are as followed: (1) The
GC-GAT hybrid model, integrating spatial-temporal
organizational capabilities of GeoSOT and feature prioritization
strengths of GAT. (2) Empirical evaluations show that GC-GAT
achieves state-of-the-art performance on geographic KG
reasoning benchmarks.
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Figure 1. The GeoSOT discrete grid model. (a) GeoSOT
subdivision grid. (b) GeoSOT quadtree structure for binary code.

2. Methods

The GC-GAT for spatio-temporal KG reasoning consists of
three components including a static GAT module, a
neighborhood grid calculation (NGC) module, and a time
evolution unit (TEU).

2.1 GAT module

In this study, we use graph attention network (GAT), a novel
class of neural architectures designed for graph-structured data,
which employ masked self-attention mechanisms to overcome
the limitations of traditional graph convolutional approaches
and their approximations (Velic¢kovi¢ et al., 2017).
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Figure 2. The GAT module (Velickovic et al., 2017).

2.2 NGC module

The NGC module is based on the GeoSOT Grid map, which can
build a spatial neighbourhood learning network. The
architecture of the NGC module is presented in Figure 3. The
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architecture of NGC has been described in a previous study
(Han et al., 2025).
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Figure 3. The NGC module.

2.3 TEU module

The TEU module is a type of gated recurrent unit method,
which can achieve spatiotemporal KG reasoning. The spatio-
temporal entity prediction architecture of the TEU module is
presented in Figure 4. The architecture of TEU has been
described in a previous study (Han et al., 2025).
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Figure 4. Architecture of the TEU module (Han et al., 2025).

3. Experiments and Results
3.1 Datasets

In this paper, our evaluation is conducted on the universal
temporal benchmark dataset: ICEWS14 (Garcia-Duran et al.,
2018), sourced from the Integrated Crisis Early Warning
System. Detailed statistics of the three datasets are shown in
Tables 1.

Datasets ICEWS14
Train 74,845
Valid 8,514
Test 7,371
Time gap | 24 hours

Table 1. The statistics of ICEWS14 dataset.

3.2 Experimental Setup

In this study, we carried out the experiments in a high
performance computing environment. We selected the
hyperparameters used in the model, with details provided in
Table 2.

Parameter Value
Epoch 100
Attention heads 1
Dropout 0.2
Batch-size 1
Learning rate 0.001

Table 2. Description of model parameters.

We benchmark GC-GAT against 9 other models, including
TransE (Bordes et al., 2013), DisMult (Yang, 2014), ConvE
(Dettmers et al., 2018), ComplEx (Trouillon et al., 2016), R-
GCN (Schlichtkrull et al., 2018), TANGO-DistMult (Garc1 a-
Dur’an et al., 2018), RE-NET (Jin et al., 2019), CyGNet (Zhu
et al., 2021) and RE-GCN (Li et al., 2021).

For each dataset, we used 80% of the sequences as the training
set, 10% as the test set, and 10% as the valid set. To evaluate
the results on these datasets, we used the mean reciprocal rank
(MRR) and Hits@{1, 3, 10} (the proportions of correct
predictions ranked within the top 1/3/10) as evaluation metrics.

MRR and Hits@{1, 3, 10} are two commonly used
performance evaluation indicators in knowledge graph
embedding models, mainly used to measure the accuracy of link
prediction tasks. MRR is the average of the reciprocal rankings
of correct facts, reflecting the model's ability to rank correct
facts in the top positions. The larger the MRR value, the better
the model performance. Hits@n refers to the average proportion
of triples ranked less than n in link prediction. Generally, n is
taken to be 1, 3 or 10. The larger the indicator, the better. For
example, Hits@3 refers to the proportion of triples predicted to
rank in the top 3 to the actual correct triples. If there are 100
triples, 50 of which rank in the top 3 in the prediction, then
Hits@3 is 50%. The larger the indicator, the higher the
proportion of correct predictions of the model in the top three.

We conducted two types of spatiot-emporal reasoning
comparison experiments, namely spatio-temporal entity
reasoning and spatio-temporal relation reasoning.

3.3 Experimental results

Spatio-temporal knowledge graph (KG) reasoning involves
predicting missing elements in quadruples within spatio-
temporal contexts. This task extends traditional semantic
reasoning by incorporating both temporal and spatial
dimensions, thereby enhancing the expressiveness and
generalizability of the model.

We evaluate the performance of GC-GAT by comparing it
against nine representative KG reasoning models: Transk,
DistMult, ConvE, ComplEx, R-GCN, TANGO-DistMult, RE-
NET, CyGNet, and RE-GCN. All baseline models are
implemented using their recommended configurations. It is
important to note that most of these models are designed
primarily for semantic reasoning and have not been specifically
adapted for spatio-temporal scenarios. Therefore, the
comparison highlights GC-GAT’s ability to handle spatio-
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temporal reasoning, supplemented by representative results RE-GCN |40.35 29.80 |45.20 60.98
from traditional semantic models. GC-GAT |46.11 35.72 |51.22 66.18

3.3.1 Spatio-temporal entity reasoning: Spatio-temporal
entity prediction results are presented in Figure 5 and Table 3.
Figure 5 demonstrates that GC-GAT consistently outperforms
the baselines on the ICEWS14s+* dataset. In the entity
prediction based on the ICEWS14s+* dataset, the MRR values
of TransE, DistMult, ConvE, ComplEx, R-GCN, TANGO-
DistMult, RE-NET, CyGNet, RE-GCN and GC-GAT are 10.49,
18.78, 28.55, 23.64, 28.42, 25.41, 45.63, 35.35, 40.35, 46.11,
respectively. The Hits@1 values of TransE, DistMult, ConvE,
ComplEx, R-GCN, TANGO-DistMult, RE-NET, CyGNet, RE-
GCN and GC-GAT are 6.10, 10.10, 16.83, 13.73, 20.01, 16.22,
34.42, 26.42, 29.80, 35.72, respectively. The Hits@3values of
Transk, DistMult, ConvE, ComplEX, R-GCN, TANGO-
DistMult, RE-NET, CyGNet, RE-GCN and GC-GAT are 13.98,
22.99, 28.92, 27.99, 31.89, 30.86, 49.10, 36.83, 45.20, 51.22,
respectively. The Hits@10 values of Transg, DistMult, ConvE,
ComplEx, R-GCN, TANGO-DistMult, RE-NET, CyGNet, RE-
GCN and GC-GAT are 32.34, 44.75, 42.68, 43.61, 44.51, 46.36,
58.47, 53.05, 60.98, 66.18, respectively.

Table 3. Results of spatio-temporal entity prediction
experiments conducted on ICEWS14s+* dataset.

MRR

Static embedding models such as Transg, DistMult, ConvE and
ComplEx perform poorly due to their limited capacity to
capture complex entity and relation structures. Specifically,
TransE, DistMult, and ConvE struggle with datasets
characterized by a large number of relation types and high
sparsity. DistMult, a simplified version of RESCAL, is limited
to modeling symmetric relations. Although TANGO-DistMult
integrates features from both TANGO and DistMult, its
inference performance remains suboptimal. R-GCN performs
relatively well among static semantic models but fails to
effectively capture temporal and spatial dependencies, resulting
in a mean reciprocal rank (MRR) below state-of-the-art (SOTA)
levels.

Several temporal reasoning models demonstrate competitive
performance. For instance, RE-NET performs well on the
ICEWS14s dataset; however, its effectiveness diminishes on
other datasets, likely due to the limited number of entities and
relations in ICEWS14s. RE-GCN incorporates a time-gating
mechanism that enhances its ability to model temporal
neighborhoods, but it lacks the capacity to analyze spatial
neighborhoods in an interpretable manner. CyGNet, inspired by
the replication mechanism in natural language generation,
suffers from long training times and delivers inferior predictive
performance compared to other temporal models.

Overall, GC-GAT achieves superior spatio-temporal reasoning
performance compared to all baseline models, particularly in b e v e en s fn e e s
terms of mean reciprocal rank (MRR). It demonstrates the @ g o (e el o e
largest performance gains and effectively captures more precise <

and comprehensive spatio-temporal dependencies. The entity

prediction experiments confirm the high accuracy and

robustness of GC-GAT in spatio-temporal settings.

Model MRR Hits@1 | Hits@3 Hits@10
TransE 10.49 6.10 13.98 32.34
DisMult | 18.78 10.10 |22.99 44.75
ConvE 28.55 16.83 |28.92 42.68
ComplEx | 23.64 13.73 [ 27.99 43.61
R-GCN 28.42 20.01 |31.89 44,51
TANGO- | 25.41 16.22 |30.86 46.36
DistMult

RE-NET | 45.63 34.42 |49.10 58.47
CyGNet | 35.35 26.42 |36.83 53.05
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Figure 5. Results of spatio-temporal entity prediction
experiments conducted on ICEWS14s+* dataset.

3.3.2 Spatio-temporal relation reasoning: We also
evaluate spatio-temporal relation prediction, with the results
presented in Table 4. Since not all models support relation
prediction, a subset of representative models is selected as
baselines. In the relation prediction based on the ICEWS14s+*
dataset, the MRR values of Transg, ConvE, R-GCN, RE-GCN

and GC-GAT are 32.66, 34.88, 40.44, 46.69, 52.72, respectively.

As shown in Table 4 and Figure 6, static embedding models
such as TransE and ConvE perform poorly on spatio-
temporal relation prediction tasks. In contrast, R-GCN and
RE-GCN highlight the strengths of graph convolutional
networks (GCNs) in modeling temporal relations. However,
when spatial relations are introduced, both models tend to
treat them as standard semantic relations, limiting their
effectiveness. In comparison, GC-GAT achieves the best

performance among all models, demonstrating superior
capability in capturing and reasoning over spatio-temporal
relations.

Model ICEWS14s+
* dataset
TranskE 32.66
ConvE 34.88
R-GCN 40.44
RE-GCN | 46.69
GC-GAT |52.72

Table 4. MRR scores produced for the spatio-temporal relation
prediction results obtained on three spatio-temporal datasets.
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Figure 6. Results of spatio-temporal relation prediction
experiments conducted on ICEWS14s+* dataset.

4. Conclusions and Future Works

Geographic knowledge graph (KG) reasoning facilitates the
inference of missing entities and relations, serving as a
foundational step in building comprehensive geospatial
knowledge systems. However, existing methods often struggle
to model complex spatio-temporal dependencies effectively,
especially at large scales, and typically lack interpretability. In
this work, we propose GC-GAT, a hybrid framework that
combines grid-based spatial encoding with a graph attention
network to improve geographic KG reasoning. We evaluate
GC-GAT against several baseline models using a widely
adopted temporal benchmark dataset. Compared with state-of-
the-art methods, our method achieves superior accuracy and
training efficiency, owing to the multiscale spatial aggregation
capabilities of the GeoSOT-based encoding. These findings
underscore the robustness and scalability of GC-GAT in
geographic knowledge graph reasoning tasks.
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