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Abstract

Vision-Language Models(VLMs) have demonstrated impressive capabilities in interpreting natural scene imagery. However, their
generalization to domain-specific applications, such as remote sensing, remains underexplored. We address this gap by introdu-
cing a refined methodology centered on language-driven prompt optimization, with the aim of enhancing the adaptability of VLMs
to remote sensing tasks. Specifically, we adopt a two-stage evaluation framework comprising Zero-Shot Prompting and Prompt-
Informed Supervised Fine-Tuning. In the first stage, we assess the influence of prompt formulation on zero-shot performance. In
the second stage, we further explore how the incorporation of optimized prompts during supervised fine-tuning can help reveal
the model’s generalization potential. Within this framework, we introduce two prompting strategies tailored for remote sensing:
Cognitively-Guided Prompting (CogPrompt), which employs Chain-of-Thought reasoning to elicit structured and interpretable
responses; and Knowledge-Injected Prompting (KnowPrompt), which incorporates domain-specific priors through existence asser-
tions. We conducted a comprehensive evaluation of several open-source VLMs, including Qwen-VL, InternVL, and the LLaVA
series, across multiple remote sensing benchmarks, including remote sensing object detection and captioning. To support our ana-
lysis, we propose a two-stage evaluation framework, including Zero-Shot Prompting and Prompt-Informed Supervised Fine-Tuning.
Extensive experimental results show that prompt optimization consistently enhances overall detection and captioning performance
across a range of metrics, and there is still significant room for improvement in the capabilities of VLMs for remote sensing tasks.

1. Introduction

In recent years, the development of Vision Language Models
(VLMs) has marked a significant milestone in the field of arti-
ficial intelligence. These models, pre-trained on datasets con-
taining billions of image-text pairs (Schuhmann et al., 2022,
Jia et al., 2021), have demonstrated unprecedented capabilit-
ies in understanding, reasoning and generation, bridging visual
perception and natural language. A representative example is
CLIP (Radford et al., 2021), which uses contrastive learning
to project images and texts in a shared embedding space, en-
abling robust zero-shot image classification. Building on this
paradigm, the combination of Large Language Models (LLMs)
with visual encoders has given rise to more advanced VLMs,
such as LLaVA (Liu et al., 2023), Qwen2-VL (Wang et al.,
2024), and InternVL (Chen et al., 2024). These models sup-
port a range of multi-modal tasks, including visual question an-
swering, detailed image captioning, and instruction following,
while also demonstrating a degree of commonsense reasoning.
With strong generalization across diverse visual tasks, VLMs
have become a key component in the development of general-
purpose AI systems, offering a scalable and adaptable frame-
work for addressing real-world multimodal challenges.

The notable success of VLMs in the general domain has spurred
researchers’ interest in transferring their capabilities to more
specialized field, such as Remote Sensing. Among various
adaptation strategies, Supervised Fine-Tuning has emerged as
the predominant strategy. By fine-tuning with remote sensing-
specific image-text datasets, researchers aim to extend the
knowledge base of VLMs from natural scenes to the remote
sensing domain. To improve adaptation efficiency while min-
imizing computational overhead and mitigating catastrophic
forgetting, parameter-efficient fine tuning techniques, particu-

larly Low-Rank Adaptation (LoRA) (Hu et al., 2022), have
gained wide adoption. For example, RemoteCLIP (Liu et
al., 2024) enhances the cross-modal retrieval capabilities in
RS scenarios through continuous contrastive learning in RS-
specific image-text pairs. RS-LLaVA (Bazi et al., 2024) rep-
resents the first adaptation of the LLaVA architecture to remote
sensing, using an instruction-tuning dataset that covers mul-
tiple RS tasks to enable basic remote sensing dialogue capabil-
ities. These studies have collectively advanced the application
of VLMs in the remote sensing domain, demonstrating the feas-
ibility of adapting general-purpose VLMs to specialized fields
through SFT strategies.

Despite recent progress, the direct application of VLMs to the
remote sensing domain remains challenging due to the unique
characteristics of RS imagery. Unlike natural images (Lin et al.,
2014, Deng et al., 2009), RS images are typically acquired from
a top-down perspective, exhibit substantial scale variations, and
contain numerous domain-specific land cover types (e.g., crop
varieties, mining regions) that are rarely present in natural im-
age datasets (Zhang et al., 2023, Zhang et al., 2021). Moreover,
spatial relationships and fine-grained texture details in the im-
ages often convey more informative cues than those of the dis-
crete objects. Consequently, directly applying prompt tem-
plates designed for natural scenes often fails to precisely guide
the model to focus on the core elements of remote sensing tasks,
leading to comprehension biases and performance degradation.

In addition, using large-scale remote sensing data exclusively
for full or partial parameter fine-tuning can lead to catastrophic
forgetting (Chen et al., 2023), where the model overfits the
target domain and loses its previously acquired general know-
ledge and reasoning capabilities. This undermines both the
generalization performance within RS tasks and the model’s
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broader utility as a versatile AI assistant. Addressing this trade-
off—preserving general capabilities while effectively adapting
to domain-specific tasks—has become a central challenge. Ex-
isting efforts have mainly focused on dataset construction and
model architecture adaptation, while comparatively less atten-
tion has been paid to another important component: the lan-
guage interaction interface, i.e., the prompt. Beyond serving as
a query mechanism, the prompt can play a critical role in activ-
ating domain-relevant knowledge, guiding reasoning processes,
and encoding task-specific priors.

To address these challenges, we propose a prompt optimization
framework that evaluates the effectiveness of VLMs in remote
sensing tasks through language-driven optimization, without
the need for architectural modifications. Our overall frame-
work consists of two core components: (1) Zero-Shot Prompt-
ing, which employs prompts as inference-time mechanisms to
elicit more accurate and interpretable outputs from pretrained
models; and (2) Prompt-Informed Training, which integrates
prompt design into the fine-tuning process to guide model learn-
ing and improve task generalization. Within this dual-stage
design, we introduce several advanced prompting strategies
that probe a model’s reasoning capacity and domain adapt-
ability. Together, these components offer a lightweight and
architecture-agnostic approach to enhance the transferability of
VLMs in remote sensing scenarios. To validate our framework,
we assess the capabilities of VLMs on both object detection and
captioning tasks.

In summary, the main contributions of this work are as follows:

(1) We propose a prompt optimization framework for adapting
VLMs to remote sensing tasks, which integrates two comple-
mentary strategies: Zero-Shot-Prompting and Prompt-Informed
Fine-Training to enhance model adaptability during the infer-
ence and fine-tuning stages.

(2) We introduce two prompting strategies tailored for the re-
mote sensing domain: (i) Cognitively-Guided Prompting based
on Chain-of-Thought reasoning, which improves interpretabil-
ity and inference quality; and (ii) Knowledge-Injected Prompt-
ing, which leverages domain priors through existence assertions
and task reformulation to guide robust model behavior.

(3) We conduct comprehensive experiments on multiple VLMs
across different remote sensing tasks to validate the effective-
ness of the proposed strategies. And the results suggest that
prompt design has a notable effect on model performance and
transferability.

2. Prompt Optimization Framework

2.1 Framework Overview

Motivated by the limitations of existing VLM adaptation ap-
proaches in the remote sensing domain, we propose a prompt-
centered optimization framework. The framework is structured
in two stages, corresponding to the two core components of our
proposed method: Zero-Shot Prompting and Prompt-Informed
Supervised Fine-Tuning. This two-stage design allows us to
first explore the intrinsic, zero-shot capabilities of existing mod-
els through advanced prompting, and then investigate how these
optimized prompts can be integrated into the fine-tuning pro-
cess to cultivate more robust and specialized models.

2.2 Zero-Shot Prompting

To evaluate the ability of VLMs to generalize to remote sensing
tasks without any fine-tuning, we investigate a range of Zero-
Shot Prompting strategies. In this setting, prompts are used as
inference-time control mechanisms to guide model behavior,
enabling the evaluation of language interface design without
altering model weights. This component aims to isolate and
analyze the model’s intrinsic reasoning capacity and its adapt-
ability to the unique characteristics of remote sensing imagery,
such as complex spatial relations, scale variations, and uncom-
mon object categories. To achieve this, we design two distinct
classes of advanced prompting strategies: Cognitive-Guidance
Prompting and Knowledge-Injection Prompting. As shown in
Table 1 , which includes task description, range and edge hand-
ling, instruction and output format of all prompt.

2.2.1 Cognitively-Guided Prompting (CogPrompt) Re-
mote sensing imagery presents unique challenges for VLMs, of-
ten characterized by significant scale variation, densely packed
scenes, and objects defined more by textural or contextual cues
than by distinct visual boundaries. When prompted with a
direct query, VLMs may default to superficial pattern match-
ing or memorized associations, leading to inaccurate or un-
interpretable results. To address these issues, we propose
Cognitively-Guided Prompting, a strategy designed to emulate
the step-by-step analytical process employed by human experts.
Built upon the CoT prompting paradigm, CogPrompt aims to
elicit structured reasoning from pretrained models in a fully
zero-shot setting.

Instead of requesting an immediate answer, CogPrompt
prompts the model to generate intermediate reasoning steps, en-
closed within a predefined "\n<think>...</think>" format.
This decomposition of a complex task into interpretable sub-
components facilitates more robust handling of spatial relation-
ships, reduces ambiguity, and activates relevant domain pri-
ors. In contrast to basic prompts—which issue direct quer-
ies such as “What is in the image?” or “Please locate the air-
plane”—CogPrompt encourages the model to articulate a co-
herent reasoning process prior to generating the final output,
thereby improving both interpretability and inference quality.

To further enhance the structure and reliability of the reas-
oning process, we introduce Cognitively Guided Prompting,
termed CogPrompt-G. While standard CogPrompt merely sug-
gests that the model "think step-by-step" CogPrompt-G
imposes an explicit three-stage reasoning sequence within the
prompt. These stages are: (1) describe the context of the image,
(2) identify relevant features, (3) determine the object class. An
overview of the CogPrompt-G prompting pipeline is presented
in Figure 1, which illustrates how each reasoning stage is ex-
plicitly encoded into the prompt to simulate a deliberate and
expert-like decision-making process. This structured prompt-
ing format constrains the model’s inference trajectory, promot-
ing consistent and interpretable outputs across varied remote
sensing scenes.

2.2.2 Knowledge-Injected Prompting (KnowPrompt) To
enhance the robustness and domain adaptability of VLMs in
remote sensing tasks, we propose KnowPrompt—a prompting
strategy that injects external domain priors and reformulates
task semantics through prompt engineering. In contrast to cog-
nitively guided methods that simulate step-by-step reasoning,
KnowPrompt focuses on reducing ambiguity and reinforcing
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Method Task
Description Range and Edge Handling Instruction Output Format

Baseline

Detect all
objects
belonging to
the category
’Plane’ in the
image.

Provide the bounding boxes (between 0 and 1000,
integer) and confidence (between 0 and 1, with two
decimal places). If no object belonging to the
category ’Plane’ in the image, return ’No Objects’.

None
<answer>[’Position’:
[x1, y1, x2, y2]]
</answer>

Cog-
Prompt

Detect all
objects
belonging to
the category
’Plane’ in the
image.

Provide the bounding boxes (between 0 and 1000,
integer) and confidence (between 0 and 1, with two
decimal places). If no object belonging to the
category ’Plane’ in the image, return ’No Objects’.

Output the thinking
process in
<think></think>and
final answer in <an-
swer></answer>tags.

<think>...
<think><answer>
[’Position’: [x1, y1,
x2, y2]] </answer>

Cog-
Prompt-G

Detect all
objects
belonging to
the category
’Plane’ in the
image.

Provide the bounding boxes (between 0 and 1000,
integer) and confidence (between 0 and 1, with two
decimal places). If no object belonging to the
category ’Plane’ in the image, return ’No Objects’.
Please think as followed: Observe this image
carefully, and explain the background context of
this picture. Output features unique to a top-down
perspective. This includes: geometric shape,
texture, color features and spatial relationship. For
each candidate ’Plane’ identified in step 2, perform
a detailed verification. Confirm if it truly is a
’Plane’. Provide a clear reason for your decision.

Output the thinking
process in
<think></think>and
final answer in <an-
swer></answer>tags.

<think>...
</think><answer>
[’Position’: [x1, y1,
x2, y2]] </answer>

Know-
Prompt

Detect all
objects
belonging to
the category
’Plane’ in the
image.

There is at least one ’Plane’ in this image. Provide
the bounding boxes (between 0 and 1000, integer)
and confidence (between 0 and 1, with two decimal
places). If no object belonging to the category
’Plane’ in the image, return ’No Objects’.

None
<answer>[’Position’:
[x1, y1, x2, y2]]
</answer>

Table 1. Prompt design comparisons for zero-shot object detection on the DOTA dataset. Each prompt consists of four components:
Task Description (i.e., problem statement), Range and Edge Handling, Instruction, and Output Format.

Figure 1. Prompt structure of CogPrompt-G. Each step is
encoded in the prompt to support interpretable object analysis in

remote sensing imagery.

domain alignment by modifying the informational content of
the input query.

The first component of KnowPrompt, introduces explicit as-
sumptions about object presence within the prompt to guide
model attention and reduce uncertainty. Rather than requir-
ing the model to jointly infer both existence and location (e.g.,
“Is there a soccer-ball-field in the image?”), the prompt asserts
prior knowledge, such as: ”There is at least one soccer-ball-
field in the image. Where is it located?”. This removes the need
for the model to internally resolve object existence, allowing it
to concentrate solely on the spatial localization subtask. In re-
mote sensing imagery—where targets may be small, occluded,

or visually ambiguous—such declarative priors can help reduce
false negatives and improve localization robustness.

In addition to modifying semantic priors, KnowPrompt pro-
motes representational consistency through task reformulation.
This approach pairs the same image with varied task instruc-
tions to examine the stability of the model’s internal represent-
ations. For example, a remote sensing image may be evaluated
using both an object localization prompt (“Where is the air-
plane?”) and a descriptive captioning prompt (“Describe what
you see in the image.”). By reformulating the task while keep-
ing the visual input constant, we can assess the model’s ability
to generalize across analytical paradigms and maintain consist-
ent interpretations of scene content.

2.3 Prompt-Informed Supervised Fine-Tuning

While zero-shot prompting effectively probes the inherent cap-
abilities of pretrained VLMs, it remains limited by the model’s
fixed parameters and reliance on prompt engineering alone. To
further enhance model adaptability and generalization in remote
sensing scenarios, we introduce the second component of our
framework: Prompt-Informed Supervised Fine-Tuning. This
strategy builds on the insights from zero-shot evaluations by
embedding optimized prompts into the model’s training pro-
cess. We hypothesize that not only the quantity and quality of
training data, but also the structure and logic of the prompts,
play a critical role in guiding model behavior.

To enable Prompt-Informed SFT, we first construct a structured
instruction dataset based on existing remote sensing bench-
marks. These datasets typically contain image–label pairs, like
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the caption-level descriptions. Following a few-shot learning
paradigm, we randomly sample a small, fixed number of images
from each dataset to form the fine-tuning set, while reserving
the remainder for inference-based evaluation.

To establish a baseline for comparison, we implement a stand-
ard SFT pipeline using simple, command-style prompts (e.g.,
“Describe the image” or “Locate the airplane”) paired with
conventional labels. On this basis, we introduce our Prompt-
Informed SFT strategy, denoted as CogPrompt SFT in which
each training sample is reformulated using the CogPrompt
strategy introduced in Section 2.2.1.

For each image in the fine-tuning set, we generate a high-
quality, reasoning-aware response to match the CogPrompt
structure (e.g., in the format "<think> Reasoning steps...

</think> Final answer"). These structured outputs are syn-
thesized using a strong teacher model (Gemini 2.5 Pro) which
enables the generation of fluent and logically coherent re-
sponses following the CoT format. This process yields a set
of (image, optimized prompt, structured response) triplets that
form the training data for CogPrompt SFT.

We then fine-tune the target VLMs on this prompt-informed
dataset using the LoRA technique. By updating only a small
number of additional trainable parameters, LoRA provides
an efficient and scalable fine-tuning approach that adapts the
model to remote sensing tasks while mitigating the risk of cata-
strophic forgetting of general pre-trained knowledge.

3. Experimental Setup

This section outlines the experimental setup used to evaluate the
proposed prompting strategies, covering the datasets and tasks,
model backbones, evaluation metrics, and training protocols for
both zero-shot inference and supervised fine-tuning.

3.1 Datasets and Tasks

To comprehensively evaluate the performance of various VLMs
on remote sensing tasks, we selected four different datasets,
covering two basic capabilities: object detection and image cap-
tioning.

3.1.1 Object Detection Our object detection task is trained
and evaluated on a custom-sampled subset derived from the
DOTA(Xia et al., 2018) and DIOR(Li et al., 2020) datasets.
Both are prominent large-scale benchmarks renowned for their
high-resolution aerial images, which present significant chal-
lenges such as complex backgrounds, dense object distribu-
tions, and wide scale variations.

Due to the high computational cost of evaluating all 15 an-
notated categories, we first conducted an initial inference us-
ing the Qwen2-7B model to identify object classes with relat-
ively high detection accuracy. Based on this analysis, we selec-
ted three representative categories—planes, soccer-ball-fields,
and tennis-courts—for focused evaluation. These classes were
chosen for their semantic clarity, consistent visual appearance,
and relatively low inter-class ambiguity, making them suitable
for assessing object-level reasoning in VLMs.

Among them, planes and tennis-courts contain a large number
of labeled RGB images. For these, we randomly sampled 500
images per class to ensure sufficient evaluation coverage while
maintaining computational efficiency. In contrast, soccer-ball-
fields included only 378 images in total, and all were used in
the experiment.

3.1.2 Image Captioning For the image captioning task, we
evaluate the models’ ability to generate descriptive and con-
textually appropriate captions using three datasets: RSICD (Lu
et al., 2017), Sydney Captions (Qu et al., 2016). We also use
DIOR-RSVG (Zhan et al., 2023), a captioning-oriented variant
derived from the DIOR dataset, which requires describing spe-
cific regions and their spatial relationships to assess perform-
ance on a more complex visual grounding task.

Both RSICD and Sydney Captions are used in their entirety.
Due to computational constraints, however, it was not feas-
ible to process the full DIOR-RSVG dataset. To mitigate this,
we randomly sampled approximately 2,300 image-text pairs to
construct a representative subset. This subset was subsequently
partitioned into training and testing sets using a 3:7 split ra-
tio, ensuring a consistent and reliable evaluation protocol under
our experimental settings. We present the outputs of DIOR-
RSVG dataset in Figure 2, which provides a qualitative example
from the DIOR-RSVG dataset, illustrating the task and a typical
model output.

3.2 Model Backbones

To ensure the generalizability of our findings, we evaluate a di-
verse set of publicly available VLMs that differ in architecture,
scale, and pretraining paradigms. To enhance the relevance and
reproducibility of our study, we selected widely adopted rep-
resentatives from three major VLM series: Qwen-VL, LLaVA,
and InternVL.

Qwen-VL. We include Qwen2-VL-7B and Qwen2.5-VL-7B
(here-after referred to as Qwen2 and Qwen2.5), developed by
Alibaba Cloud. These models integrate a Vision Transformer
(ViT) with the Qwen large language model, and are optimized
for multilingual, multimodal tasks, particularly those requiring
fine-grained visual grounding.

LLaVA. We adopt LLaVA-1.5-7B (here-after referred to as
LLaVA), an open-source VLM that aligns ViT features with
a language model via a lightweight projection matrix. Its ar-
chitecture emphasizes simplicity and efficiency, and has been
widely used as a baseline in multimodal learning research.

InternVL. We also include InternVL3-2B (here-after referred
to as InternVL), a large-scale foundation model that scales
the vision encoder and progressively aligns it with a language
model. It is designed to support a wide range of visual percep-
tion and instruction-following tasks across domains.

All selected models are publicly available and used without ar-
chitectural modifications. Further details on parameter settings
and evaluation protocols are provided in subsequent sections.

3.3 Evaluation Metrics

To ensure a rigorous and task-appropriate evaluation of model
performance, we adopt standard metrics for both object detec-
tion and image captioning tasks.

For the object detection task on the DOTA dataset, we report
Precision (P), Recall (R), F1 Score (F1), and Average Preci-
sion (AP). AP, computed as the area under the precision-recall
curve, provides a class-wise summary of detection performance
across varying confidence thresholds. Given the high spatial
resolution and wide scene coverage of remote sensing imagery,
predicted bounding boxes from VLMs often exhibit low spa-
tial overlap with ground-truth annotations, especially compared
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Figure 2. Details of outputs from VLMs when using Baseline and CogPrompt.

to natural image scenarios. To accommodate this, we relax
the intersection-over-union (IoU) threshold used to determine
true positives from the conventional 0.5 to 0.1, allowing for a
more inclusive evaluation of object localization behavior under
weakly aligned predictions.

For the image captioning task, evaluated on the RSICD, Sydney
Captions, and DIOR-RSVG datasets, we use the BLEU-1 (here-
after referred to as BLEU) metric, which measures single-token
precision between generated and reference captions, reflecting
basic fluency. When it comes to caculate BLEU, we do not con-
sider the thinking part, but only calculate the similarity between
the true value and the predicted result part, that is, calculate the
similarity of the part marked in red in the Figure 2.

3.4 Implementation Details

To evaluate the isolated effect of prompt design on model per-
formance, we conduct a controlled zero-shot prompting experi-
ment in which the VLM remains fixed—i.e., without any para-
meter updates or architectural changes. The prompt itself serves
as the sole independent variable. We design a set of prompting
strategies that differ in reasoning structure and semantic con-
tent, aiming to assess their influence on the model’s ability to
process and interpret remote sensing imagery.

The prompting strategies compared in this study include:

Baseline: A minimal, direct query such as “What is in the im-
age?” or “Please locate the airplane.” This serves as a baseline
for evaluating the model’s raw zero-shot capability without ad-
ditional guidance.

CogPrompt: A cognitively guided prompt that activates the
model’s internal CoT reasoning by instructing it to “think step-
by-step” before answering, thereby improving interpretability
and reasoning depth.

CogPrompt-G: A guided variant of CogPrompt that en-
forces a fixed four-stage reasoning process—format specifica-
tion, key feature identification, candidate scanning, and veri-
fication—explicitly encoded into the prompt to structure the
model’s analytical flow.

KnowPrompt: A knowledge-injected prompt that asserts the
existence of the target object. This reduces ambiguity in object
presence detection and focuses the model on spatial localiza-
tion.

In our experiments, a desktop workstation equipped with an In-
tel(R) Core(TM) i9-10980XE CPU @ 3.00GHz and 4 NVIDIA
GeForce A800 GPUs with total 320G of memory was utilized.
The operating system employed was Ubuntu 20.04, and the ex-
periments were conducted on the PyTorch platform. During
training process, we set the evaluation batch size to 2 per device
and an initial learning rate of 2e-5. The model was trained for a
total of 20 epochs. And the rank of LoRA matrices is 4. Mean-
while, for Prompt-Informed SFT training, we conducted exper-
iments on the DIOR-RSVG dataset, where we randomly selec-
ted 100 images as the training set, and reasoned on the rest of
the images.

4. Results and Analysis

This section presents a comprehensive empirical evaluation of
the proposed prompt optimization framework. We assess the
effectiveness of each core component across multiple remote
sensing tasks and VLMs. The analysis is organized in two parts:
the first examines the impact of direct prompting strategies un-
der zero-shot settings, and the second investigates the benefits
of incorporating prompts into supervised fine-tuning.

4.1 Zero-Shot Prompting Results

To evaluate the effectiveness of our proposed zero-shot prompt-
ing strategies—CogPrompt and KnowPrompt—we conduct a
series of experiments across two representative remote sensing
tasks: object detection and image captioning. These experi-
ments aim to assess the models’ inference behavior under dif-
ferent prompt formulations, without any fine-tuning or weight
updates. For clarity and structured analysis, we present the res-
ults in three subsections: CogPrompt, KnowPrompt in Object
Detection and CogPrompt in Captioning. Each subsection in-
cludes both quantitative evaluation and qualitative examples to
highlight the prompt-induced behavioral differences.

4.1.1 Results of CogPrompt in Object Detection To val-
idate the effectiveness of the proposed CogPrompt, we conduct
a series of comparative experiments on a standard remote sens-
ing object detection task using multiple representative VLMs.
Detailed model configurations and implementation settings are
provided in Sections 3.4 and 3.2.

The experimental results for all prompting strategies across dif-
ferent object categories are summarized in Table 2. These res-
ults demonstrate that overall, the performance of current VLMs
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VLM Method
Soccer-ball-field Tennis-court Plane

P (%) R (%) F1 (%) AP (%) P (%) R (%) F1 (%) AP (%) P (%) R (%) F1 (%) AP (%)

LLaVA Baseline 16.06 4.87 7.48 0.97 19.44 2.14 3.86 0.64 34.66 4.47 7.92 1.7
CogPrompt 20.29 17.45 7.92 1.7 25 6.94 18.77 4.24 28.38 6.58 10.86 1.97

CogPrompt-G 26.23 7.35 11.48 2.48 22.86 4.04 6.87 1.11 29.93 3.1 5.62 1.19
KnowPrompt 17.96 7.81 10.89 1.66 27.48 3.64 6.43 1.21 31.42 4.29 7.55 1.53

Qwen2 Baseline 55.36 19.5 28.84 12.65 62.34 15.20 24.4 9.95 68.09 15.28 24.94 10.81
CogPrompt 57.36 30.03 39.42 20.56 47.92 17.65 25.8 8.92 47.2 15.31 23.13 8.13

CogPrompt-G 31.4 24.69 27.64 10.25 26.84 6.27 10.16 1.87 34.79 7.05 11.72 2.68
KnowPrompt 55.68 23.11 32.67 14.03 62.85 16.08 25.6 11.03 67.5 15.7 25.48 11.05

Qwen2.5 Baseline 38.21 23.43 29.04 10.18 35.09 9.49 14.94 3.68 15.07 5.7 8.27 0.98
CogPrompt 49.26 21.07 29.52 11.22 37.44 8.06 13.27 3.32 17.34 5.35 8.19 1.07

CogPrompt-G 39.68 22.97 29.1 10.57 38.57 8.19 13.51 3.39 19.42 4.12 6.8 0.91
KnowPrompt 32.66 22.8 26.85 10.44 30.68 7.79 12.42 2.75 16.18 6.03 8.78 1.21

InternVL Baseline 13.29 9.95 11.38 1.97 18.79 5.97 9.06 1.48 24.64 3.51 6.14 0.98
CogPrompt 21.23 15.31 17.79 4.58 33.73 11.32 16.69 6.01 25.05 4.05 6.98 1.3

CogPrompt-G 12.57 12.86 12.72 2.78 25.28 6.88 10.81 2.24 18.24 3.17 5.4 0.75
KnowPrompt 15.27 14.24 14.74 2.72 24.26 6.67 10.47 1.71 23.09 4.33 7.29 1.21

Table 2. Performance comparison of VLMs in remote sensing object detection on DOTA dataset.

on remote sensing object detection remains modest, with con-
siderable variance across object categories. This highlights the
substantial challenge of transferring pretrained VLM capabil-
ities to the remote sensing domain. Within this context, our
proposed CogPrompt strategy consistently improves model per-
formance relative to the baseline prompts.

Notably, the impact of CogPrompt is especially pronounced for
models with limited initial performance, such as LLaVA and
InternVL. Across most object categories, CogPrompt delivers
substantial gains. For example, InternVL’s AP on the “Tennis
court” category increases from 1.48% to 6.01%, representing
a fourfold improvement. Similarly, LLaVA’s AP on the same
category rises from 0.64% to 4.24%, a more than sixfold in-
crease. These gains are not confined to AP alone; recall and
F1 score also improve significantly. For instance, LLaVA’s re-
call on the “Soccer-ball field” category improves from 4.87%
to 17.45%. These results indicate that for models unable to
directly establish strong visual-to-semantic mappings in com-
plex remote sensing scenes, CogPrompt serves as an effective
cognitive scaffold, guiding the model through structured reas-
oning and enhancing its localization ability. In contrast, the ef-
fect of CogPrompt on stronger base models, such as Qwen2,
is more nuanced. In some categories—such as “Soccer-ball
field”—CogPrompt still yields notable improvements. Qwen2’s
AP improves from 12.65% to 20.56%, and Qwen2.5’s Precision
increases from 38.21% to 49.26%.

As shown in Table 3, we also utilize Qwen2.5 to conduct a de-
tailed comparative analysis on DIOR dataset to evaluate the ob-
ject detection performance of CogPrompt. The experiment is
performed on three distinct and challenging categories from re-
mote sensing imagery: Dam, Golf Field, and Expressway Toll
Station. We report AP and F1 as the primary evaluation met-
rics. The results clearly indicate that CogPrompt consistently
and significantly outperforms the Baseline across all tested cat-
egories. For the ’Dam’ and ’Golf Field’ categories, our method
demonstrates solid improvements. For instance, in the ’Dam’
category, the AP increases from 0.6764 to 0.7368, and the F1
rises from 0.8000 to 0.8571. This points to a more balanced
and accurate detection capability. The most remarkable ad-
vantage of our method is observed in the ’Expressway Toll
Station’ category, which is notoriously difficult due to small,

densely packed objects and complex backgrounds. CogPrompt
achieves an AP of 0.2777, a more than five-fold improvement
over the Baseline’s 0.0501. This substantial gain underscores
CogPrompt’s enhanced robustness and its superior capability in
handling complex scenes where the baseline system evidently
struggles.

Method Category F1(%) AP(%)

Baseline
Baseball Field 74.11 55.68

Golf Field 52.38 53.69
Basketball Field 59.15 40.86

CogPrompt
Baseball Filed 74.74 58.69

Golf Field 77.42 65.63
Basketball Field 71.79 54.28

Table 3. Performance comparison of Baseline and CogPrompt
on the DIOR dataset.

Figure 3. Qualitative comparison of Baseline and CogPrompt
using Qwen2.5 on the DIOR dataset.

Figure 3 illustrates that after using CoT, compared with the
second and third col, it is obvious that after using CogPrompt,
the model’s output can better grasp the key point of the ques-
tion. After output thinking process, model successfully recog-
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nizes basketball court. However, the model without CogPrompt
incorrectly identified the baseball field as a basketball court.
Moreover, it exhibits higher accuracy in localizing objects.

However, in simpler tasks where the model already performs
well, the added reasoning steps introduced by CogPrompt may
impose unnecessary inference overhead, potentially reducing
localization precision. These observations suggest that the ef-
fectiveness of CogPrompt is task-dependent. Its benefits are
most evident in complex scenes requiring multi-step contextual
reasoning, while in simpler scenarios, its application must be
more selective to avoid diminishing returns.

4.1.2 Results of CogPrompt-G in Object Detection As
shown in Table 2, we further evaluate the performance of
CogPrompt-G, the guided variant of our reasoning-based
prompting strategy. While CogPrompt-G introduces a more
structured multi-step reasoning process during inference, its ef-
fectiveness is observed to be highly inconsistent across models
and categories. While notable improvements are observed in
certain settings—such as the LLaVA model on the “Soccer-ball-
field” category, where both precision and recall increase sub-
stantially—the strategy often yields inconsistent or even neg-
ative effects in other scenarios. For example, performance de-
gradation is observed on several categories under Qwen2 and
InternVL, suggesting limited robustness. These results sug-
gest that although guided reasoning may benefit models strug-
gling with contextual organization, it can become counterpro-
ductive for models already equipped with strong intrinsic reas-
oning capabilities. Overall, CogPrompt-G should be applied
selectively, depending on both the model architecture and the
task complexity. Given these mixed results, we did not extend
CogPrompt-G to the captioning task.

VLM Method Sydney RSICD DIOR-RSVG

LLaVA Baseline 5.92 7.23 3.88
CogPrompt 17.38 7.57 14.29

Qwen2 Baseline 17.68 6.1 16.38
CogPrompt 27.83 10.9 21.61

Qwen2.5 Baseline 13.06 6.7 9.05
CogPrompt 27.59 9.06 27.17

InternVL Baseline 15.36 7.17 9.41
CogPrompt 18.68 7.32 16.02

Table 4. Performance comparison of VLMs in remote sensing
captioning.

4.1.3 Results of KnowPrompt in Object Detection To
evaluate the effect of KnowPrompt, we compare it with the
baseline across all VLMs in the object detection task (see
Table 2). KnowPrompt introduces a declarative prior by stat-
ing that a target object exists in the image, aiming to encourage
detection in lower-confidence scenarios. Quantitative results
show that this strategy has the potential to improve detection
performance across multiple evaluation metrics, including Pre-
cision, Recall, F1, and AP, although the extent and consistency
of improvements vary across models and categories. For ex-
ample, LLaVA’s Recall on the “Soccer-ball-field” category in-
creases from 4.87% to 7.81%, while InternVL improves from
9.95% to 14.24%. Qwen2 also exhibits upward trends across
all three categories. Similarly, albeit smaller, gains can be ob-
served in other metrics such as F1 and AP in several cases.

However, these improvements are not consistent across all mod-
els and categories. In several cases, performance on Precision,

Recall, F1, or AP declined slightly. For example, among the 12
model–category combinations evaluated, 10 showed improve-
ments in AP, suggesting a generally positive but non-uniform
impact. This suggests that while KnowPrompt can guide the
model to recover low-confidence targets, the assertive nature
of the prompt may also introduce misdetections when the as-
serted object presence does not align with the model’s internal
visual evidence. As a result, the overall effect is sensitive to
both model characteristics and category-specific complexity.

4.1.4 Results of CogPrompt in Captioning To further
evaluate the generalizability of the Chain-of-Thought strategy,
we extended its application from the detection task to image
captioning. Experiments were conducted on three public re-
mote sensing datasets: DIOR-RSVG, Sydney, and RSICD,
to analyze the comprehensive impact of Chain-of-Thought
prompting on the model’s scene understanding and caption cap-
abilities. The experimental results are shown in Table 4, re-
spectively. For tasks such as remote sensing image captioning
and visual question answering, which require reasoning bey-
ond basic object recognition, the CoT-based prompting strategy
demonstrates clear advantages.

Compared to the Baseline prompt, the proposed CogPrompt
strategy consistently improved performance across all tested
models and datasets. Notably, the Qwen2.5 model achieved a
significant increase in BLEU score on the DIOR dataset, from
9.05% to 27.17%. Similarly, the LLaVA model on the Sydney
dataset saw its BLEU score rise from 5.92% to 17.38%, repres-
enting a nearly threefold improvement. These results indicate
that CogPrompt enhances the model’s capacity for semantic ab-
straction and logical structuring, leading to more coherent and
contextually relevant caption outputs.

4.2 Results of Prompt-Informed SFT in Captioning

We investigate whether fine-tuning VLMs on a dataset enriched
with advanced prompting strategies can produce more accurate,
robust, and generalizable models compared to standard SFT
methods. Table 4 and Table 5 show the performance of each
model on the DIOR-RSVG dataset before and after SFT, re-
spectively. All SFT for these models was performed on an in-
struction dataset that included these advanced prompts.

VLM Method BLEU (%)

LLaVA Baseline SFT 18.41
CogPrompt SFT 22.25

Qwen2 Baseline SFT 22.94
CogPrompt SFT 28.07

Qwen2.5 Baseline SFT 17.41
CogPrompt SFT 31.97

InternVL Baseline SFT 17.35
CogPrompt SFT 21.79

Table 5. Performance comparison of VLMs in remote sensing
captioning via SFT on the DIOR-RSVG dataset.

The result using CogPrompt is significantly and comprehens-
ively superior to the Baseline method, regardless of whether it
is in a zero-shot or post-fine-tuning setting, and regardless of the
VLM in question. In all 8 comparative tests shown in the charts,
the BLEU score of the CoT group was higher than that of the
Base group. This provides initial proof that CoT, as a universal
prompting strategy, has a generally positive effect on improving
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a model’s scene understanding and text generation capabilities
for the remote sensing image captioning task. This indicates
that when a model relies entirely on its pre-trained knowledge
to understand unfamiliar remote sensing images, the guidance
from CoT is crucial. By introducing CoT in the prompt to SFT,
all VLMs’ BLEU have a significant and consistent improve-
ment over their Bases and CoTs.

5. Conclusion

While VLMs have achieved remarkable success in general-
domain tasks, their application to remote sensing remains lim-
ited due to domain-specific challenges such as scale variability,
top-down viewpoints, and sparse semantic alignment. These
issues hinder the direct transfer of pre-trained models to geo-
spatial contexts. Therefore, in this work, we investigate the ad-
aptation of VLMs to remote sensing tasks through a language-
driven prompt optimization framework. Firstly, we systematic-
ally investigate the effects of this approach under both zero-shot
inference and supervised fine-tuning scenarios. Furthermore,
we propose zero-shot Prompting Results and Prompt-Informed
SFT Results exploring CogPrompt, CogPrompt-G and Know-
Prompt as a simple and broadly applicable method for solving
remote sensing tasks. Through experiments on both object de-
tection tasks and captioning tasks processed on remote sensing,
we find that with the use of chain-of-thought prompt, VLMs
would have a better understanding of the relationship between
different regions and more precise localization. Moreover, our
results also show that the effectiveness of guided prompts is
highly dependent on the model’s intrinsic capabilities , while
knowledge-injected prompts boost overall detection perform-
ance by improving recall.

Acknowledgment

This work was supported by the National Natural Science
Foundation of China [grants number 42201440 and 42401500]
and the Fundamental Research Funds for Chinese Academy of
Surveying and Mapping [grant number AR2410].

References

Bazi, Y., Bashmal, L., Al Rahhal, M. M., Ricci, R., Melgani,
F., 2024. RS-LLaVA: A large vision-language model for joint
captioning and question answering in remote sensing imagery.
Remote Sensing, 16(9), 1477.

Chen, Y., Sikka, K., Cogswell, M., Ji, H., Divakaran, A., 2023.
Measuring and improving chain-of-thought reasoning in vision-
language models. arXiv preprint arXiv:2309.04461.

Chen, Z., Wu, J., Wang, W., Su, W., Chen, G., Xing, S., Zhong,
M., Zhang, Q., Zhu, X., Lu, L. et al., 2024. Internvl: Scaling
up vision foundation models and aligning for generic visual-
linguistic tasks. Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 24185–24198.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.,
2009. Imagenet: A large-scale hierarchical image database.
Proceedings of the IEEE conference on computer vision and
pattern recognition, IEEE, 248–255.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S.,
Wang, L., Chen, W. et al., 2022. Lora: Low-rank adaptation of
large language models. International Conference on Learning
Representations, 1(2), 3.

Jia, C., Yang, Y., Xia, Y., Chen, Y.-T., Parekh, Z., Pham, H., Le,
Q., Sung, Y.-H., Li, Z., Duerig, T., 2021. Scaling up visual and
vision-language representation learning with noisy text super-
vision. International conference on machine learning, PmLR,
4904–4916.

Li, K., Wan, G., Cheng, G., Meng, L., Han, J., 2020. Object
detection in optical remote sensing images: A survey and a
new benchmark. ISPRS journal of photogrammetry and remote
sensing, 159, 296–307.

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Zitnick, C. L.,
2014. Microsoft COCO: Common Objects in Context. Springer
International Publishing.

Liu, F., Chen, D., Guan, Z., Zhou, X., Zhu, J., Ye, Q., Fu,
L., Zhou, J., 2024. Remoteclip: A vision language foundation
model for remote sensing. IEEE Transactions on Geoscience
and Remote Sensing, 62, 1–16.

Liu, H., Li, C., Wu, Q., Lee, Y. J., 2023. Visual instruction
tuning. Advances in neural information processing systems, 36,
34892–34916.

Lu, X., Wang, B., Zheng, X., Li, X., 2017. Exploring models
and data for remote sensing image caption generation. IEEE
Transactions on Geoscience and Remote Sensing, 56(4), 2183–
2195.

Qu, B., Li, X., Tao, D., Lu, X., 2016. Deep semantic under-
standing of high resolution remote sensing image. international
conference on computer, information and telecommunication
systems, IEEE, 1–5.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J. et al.,
2021. Learning transferable visual models from natural lan-
guage supervision. International conference on machine learn-
ing, PmLR, 8748–8763.

Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C., Wight-
man, R., Cherti, M., Coombes, T., Katta, A., Mullis, C., Worts-
man, M. et al., 2022. Laion-5b: An open large-scale dataset for
training next generation image-text models. Advances in neural
information processing systems, 35, 25278–25294.

Wang, P., Bai, S., Tan, S., Wang, S., Fan, Z., Bai, J., Chen, K.,
Liu, X., Wang, J., Ge, W. et al., 2024. Qwen2-vl: Enhancing
vision-language model’s perception of the world at any resolu-
tion. arXiv preprint arXiv:2409.12191.

Xia, G.-S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J.,
Datcu, M., Pelillo, M., Zhang, L., 2018. Dota: A large-scale
dataset for object detection in aerial images. Proceedings of the
IEEE conference on computer vision and pattern recognition,
3974–3983.

Zhan, Y., Xiong, Z., Yuan, Y., 2023. Rsvg: Exploring data
and models for visual grounding on remote sensing data. IEEE
Transactions on Geoscience and Remote Sensing, 61, 1–13.

Zhang, R., Newsam, S., Shao, Z., Huang, X., Wang, J., Li, D.,
2021. Multi-scale adversarial network for vehicle detection in
UAV imagery. ISPRS Journal of Photogrammetry and Remote
Sensing, 180, 283–295.

Zhang, R., Zhang, H., Ning, X., Huang, X., Wang, J., Cui, W.,
2023. Global-aware siamese network for change detection on
remote sensing images. ISPRS journal of photogrammetry and
remote sensing, 199, 61–72.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025 
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-219-2025 | © Author(s) 2025. CC BY 4.0 License.

 
226




