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Abstract 

 

Based on GOSIF GPP data and climate data, this study systematically explored the impact mechanism of triple La Niña event on gross 

primary productivity (GPP) of forest ecosystem in China from 2020 to 2022 and its physiological and ecological driving process. The 

results show that GPP in China forest presents a significant dynamic response of "initial inhibition-gradual recovery" to La Niña event. 

The annual average GPP decreased from 1799.27 Tg C year−1 in the base period (2017-2018) to 1783.89 Tg C year−1, of which 2020 

reached the lowest value of 1763.68 Tg C year−1 in the study period, but showed strong recovery ability in the following two years, 

rising to 1804.54 Tg C year−1. Spatially, the subtropical monsoon region realized "V" recovery through vegetation adaptation, while 

the temperate monsoon region was inhibited by soil moisture at root zone and phenological delay. The temperate region showed "early 

stage determines late stage" characteristics, and the subtropical region formed "spring and autumn compensation" pattern. These 

differences are mainly due to the latitudinal difference regulation of La Niña event on East Asian monsoon system. The temperate 

region is adjusted by mid-high latitude circulation while the subtropical region directly responds to the continuous drought caused by 

tropical sea surface temperature (SST) anomaly. This study clarified the response of China forest to triple La Niña event through multi-

scale analysis, which provided important scientific basis for improving ecosystem model parameterization and predicting carbon sink 

function evolution.  

 

 

1. Introduction 

Global warming and human activities have combined to alter the 

water cycle. Extreme climate events are becoming more frequent 

and unpredictable (Best and Darby, 2020). Terrestrial ecosystems 

have limited adaptive capacity and extreme climate events are 

likely to cause more severe, long-lasting, and irreversible 

damages to terrestrial ecosystems (Bastos et al., 2014).  

 

In the three years from 2020 to 2022, the world ushered in the 

first triple La Niña events of this century, which had a significant 

impact on climate change in China. There is a close coupling 

relationship between the carbon cycle of terrestrial ecosystems 

and the water cycle, nutrient cycle and biodiversity of ecosystems. 

Therefore, under the strong influence of extreme climate events, 

the changes in the carbon cycle of terrestrial ecosystems will be 

a comprehensive manifestation of the response of terrestrial 

ecosystems to extreme climate events. 

 

There is an urgent need for accurate assessment of forest carbon 

sink changes in China in the context of extreme climate change. 

This study intends to study the impact of extreme climate change 

on the gross primary productivity (GPP) of China's forest 

ecosystems by accounting for the triple La Niña events from 2020 

to 2022. This study could provide a scientific basis for forestry 

management and help us better understand and predict the 

response of forest carbon sycle to future climate change 

scenarios(Wolf, 2023). 

 

2. Study Area and Datas 

2.1 Study Area 

China forest ecosystem has significant global ecological 

importance. It is not only an important carbon sink area in the 

world, but also an ideal place to study vegetation-climate 

interaction. In recent years, vegetation carbon storage has been 

significantly improved through ecological projects such as 

returning farmland to forest. In terms of biodiversity, it covers a 

variety of climate zone types from tropical to cold temperate zone. 

Forest in China has important scientific value and practical 

significance as a research area. 

 

 
Figure 1. Regional Land Cover Types Map of China. 
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Figure 2. Forest cover in five climatic regions of China. Orange 

yellow is plateau mountain climate forest area. Reddish brown 

is temperate continental climate forest area. Dark green is 

tropical monsoon climate forest area. Light green is subtropical 

monsoon climate forest area. Sky blue is temperate monsoon 

climate forest area. 
 

2.2 GPP Data 

This study used the GOSIF GPP (Global, OCO-2-based SIF-

derived Gross Primary Productivity) dataset, a global total 

primary productivity estimation product based on sunlight 

induced chlorophyll fluorescence (SIF) and remote sensing data. 

The dataset is an OCO-2 based Global SIF product (GOSIF) 

developed by Sun Yat-sen University and a linear relationship 

between SIF and GPP, plotting global GPP for the period 2000 

to 2024 at 0.05° spatial resolution and 8 day (and monthly) time 

steps. 

 

Due to its high spatial and temporal resolution and direct 

correlation with photosynthesis, the dataset is widely used for 

vegetation productivity monitoring, ecosystem carbon cycling 

studies and climate change impact assessments. 

 

GOSIF GPP can effectively capture GPP dynamics at regional or 

global scales in terms of spatial and temporal variation analysis 

of vegetation productivity. GOSIF GPP is often used as baseline 

data to verify the simulation capability of different light use 

efficiency (LUE) models in assessing the effects of drought on 

vegetation productivity.In ecosystem carbon cycle and climate 

response studies, GOSIF GPP is used to quantify the carbon 

uptake capacity of vegetation in different climatic zones. 

 

Therefore, using the GOSIF GPP dataset with high accuracy and 

wide availability helps to clarify the impact of triple La Niña 

events on total forest primary productivity in China from 2020 to 

2022. In order to improve the computational efficiency while still 

maintaining the key spatial pattern information, it is processed to 

a spatial resolution of 0.5°. GOSIF GPP data available: 

https://globalecology.unh.edu/data/GOSIF-GPP. 

 

2.3 Land Cover Data 

MODIS MCD12Q1 land cover data is used in this study. It has 

long time series and multiple land cover types. It is one of the 

most widely used land cover data in the world. It is obtained by 

supervised classification of reflectance data from MODIS 

satellites Terra and Aqua, and then further refinement of specific 

categories through post-processing and ancillary information. It 

provides a global distribution of land cover types by year with a 

resolution of 500 meters. This study selected land cover data for 

2020 and processed it to the same spatial resolution of 0.5° as the 

GOSIF GPP dataset. MODIS MCD12Q1 land cover data 

available: https://modis.gsfc.nasa.gov/data/dataprod/mod12.php. 

 

2.4 Climate Factor Datas 

ERA5-Land precipitation, air temperature and soil moisture at 

root zone (SMroot) data were used in this study. ERA5-Land is a 

reanalysis dataset that provides a consistent view of the evolution 

of land variables over decades at a higher resolution than ERA5. 

ERA5-Land is generated by replaying the ECMWF ERA5 

climate reanalysis portion of the land. The spatial resolution of 

the data is 0.1 degrees, with precipitation and temperature data 

covering January 1950 to the present, and soil moisture data 

covering January 1981 to the present, with monthly temporal 

resolution. During data processing, all three climate data were 

resampled to a spatial resolution of 0.5°. 

 

CRUJRA v2.4 dataset is a land-surface gridded time series data 

set developed by the Climate Research Unit (CRU) of the 

University of East Anglia (UEA) with a spatial resolution of 0.5° 

and a temporal resolution of 6 hours covering the period January 

1901 to December 2022. The dataset is re-gridded based on Japan 

Reanalysis Data (JRA) from the Japan Meteorological Agency 

(JMA) and contains climate variables. Although this dataset does 

not directly provide Vapor Pressure Deficit (VPD) data, it can be 

calculated using the near-surface specific humidity, surface 

pressure and air temperature data it contains. 

 

ERA5-Land data available: Muñoz Sabater, J. (2019): ERA5-

Land monthly averaged data from 1950 to present. Copernicus 

Climate Change Service (C3S) Climate Data Store (CDS). 

DOI: 10.24381/cds.68d2bb30 (Accessed on DD-MMM-YYYY). 

 

CRU JRA data available: University of East Anglia Climatic 

Research Unit; Harris, I.C. (2023): CRU JRA v2.4: A forcings 

dataset of gridded land surface blend of Climatic Research Unit 

(CRU) and Japanese reanalysis (JRA) data; Jan.1901 - Dec.2022.. 

NERC EDS Centre for Environmental Data Analysis, date of 

citation. https://catalogue.ceda.ac.uk/uuid/aed8e269513f446fb1

b5d2512bb387ad. 

 

3. Methodology 

3.1 Detrending Method 

Elevated CO2  concentrations in the atmosphere enhance 

photosynthesis in plants, a phenomenon known as the CO2 

fertilization effect. Since CO2  is a key substrate for 

photosynthesis, increasing its concentration can improve the 

photosynthetic efficiency of C3 plants, especially under 

conditions of sufficient nutrients and water. Therefore, when 

analysing GPP, it is important to consider the effect of CO2 

fertilization on long-term trends, and direct analysis of raw data 

may lead to seasonal and interannual variability being masked. 

Therefore, in calculating the annual total GPP, detrend 

processing is performed to eliminate the influence of long-term 

trends and make the influence of interannual variations and 

climatic factors clearer: 

 

GPPdetrended(t) = GPPobserved(t) − (a + b × t) ,          (1) 

 

where GPPobserved(t) is the original GPP observation at year t, a 

is the intercept term, b is the slope of the linear trend, and t is the 

time variable. First, linear regression fitting is performed on the 

annual total GPP time series from 2015 to 2022. The fitted linear 

trend term is then subtracted from the original series. Finally, the 

detrended GPP sequence is obtained. This method can effectively 

remove long-term linear trends from the data and retain 

interannual fluctuations. 
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STL (Seasonal-Trend decomposition using Loess) is used to 

analyze seasonal spatial anomaly and monthly anomaly in key 

areas. This hierarchical processing strategy can not only keep the 

simplicity of interannual analysis, but also effectively extract 

seasonal cycle characteristics of monthly scale data, thus 

revealing the spatial variation of GPP at different time scales 

more accurately. 

 

STL  is a robust method for decomposing time series, in which 

Loess is a method for estimating nonlinear relationships. STL can 

decompose a time series into three main components: trends, 

seasonal terms, and residuals (Cleveland et al., 1990). Given a yt 

of time series data, STL breaks it down into: 

 

                                        yt = Tt + St + Rt ,                                    (2) 

 

where Tt = Trend, St = Seasonal, Rt = Residual. STL uses Loess 

to extract smoothed estimates of the three components, fulfilling 

the need to remove the seasonal trend of GPP. 
 

3.2 Abnormal Calculation 

To quantify how abnormal a period is relative to historical 

normals, calculate the deviation of actual values (e.g. GPP, 

temperature, precipitation, etc.) from average conditions for a 

period using the following formula: 

 

                                         A(t) = X(t) − X̅ ,                                       (3) 

 

where X(t) is the actual value at point t (e.g., a year, month, or 

day). X̅ is the state average, usually taking the mean of a fixed 

time period as the benchmark. A(t) is the deviation of the actual 

value at time  t from the reference value, with positive values 

indicating higher than normal and negative values indicating 

lower than normal. Different scenarios apply different time 

periods to calculate annual anomalies, monthly anomalies, 

seasonal anomalies, etc. X̅ is calculated as follows: 

 

                                        X̅ =
1

n
∑ Xi

n
i=1  ,                                         (4) 

 

where n is the length of the time series. Xi is the actual value for 

year i. ∑ Xi
n
i=1  is the sum of actual values over n years. 

1

n
 is the 

normalization factor for averaging, dividing the sum by the 

number of years to get the average. 

 

3.3 Z-Score Standardized 

To eliminate dimensional effects and allow cross-variable, cross-

regional comparisons, Z-Score is used to normalize regional GPP 

and climate data to anomalies: 
 

                                Astd(t) =
X(t)−X̅

σ
 ,                                              (5) 

                             σ = √
1

n
∑ (Xi − X̅)2n

i=1  ,                                    (6) 

 

where X(t) and  X̅ are explained. ∑ (Xi − X̅)2n
i=1  is the sum of the 

squares of the differences between the actual values and the mean 

values in n years, and the variance can be obtained by combining 

the normalization factor 
1

n
. After square extraction, it is the 

standard deviation σ of the reference time period. Completes the 

requirement to show the absolute magnitude of the observed 

deviation from the mean. 

 

3.4 SHAP Analysis 

The SHAP model can analyze the contribution and influence of 

features to the output of the model (Mosca et al., 2022). For 

model f and input sample  x , the Shapley value of feature ∅i 

calculated as follows: 

 

∅i(f, x) = ∑
|S|(|F|−|S|−1)!

|F|!
[f(S ∪ {i}) − f(S)]S⊆F  ,      (7) 

 

where F is the set of all features (total |F| features), S is a subset 

that does not contain feature i  (i.e., S ⊆ F{i}), and f(S)  is the 

predicted value of the model when using only a subset of features 

S, and 
|S|(|F|−|S|−1)!

|F|!
 is the weight (taking into account all possible 

order of feature combinations). S is  calculated by marginalizing 

other features). 

 

4. Results 

4.1 Annual GPP Total Anomaly and Climate Zoning 

Contribution 

In analyzing GPP, the effect of CO₂ fertilization on long-term 

trends must be considered, so detrend treatment is performed in 

calculating annual total GPP to eliminate the influence of long-

term trends and make the influence of interannual variation and 

climatic factors clearer. According to Figure 3, the Detrended 

GPP data of China forests from 2015 to 2022 show certain inter-

annual fluctuations, but the overall data remain relatively stable 

and are within the interval. The average value of these eight years 

is 1785.44 Tg C year−1 , the standard deviation is 19.53 

Tg C year−1 , the data dispersion is low, and the interannual 

variation is limited. Specifically, Detrended GPP fluctuated 

between 1763.68 Tg C year−1  and 1823.06 Tg C year−1 , 

reaching a peak in 2017 (1823.06 Tg C year−1), which was about 

2.1% higher than the average, and falling to a minimum in 2020 

(1763.68 Tg C year−1), which was about 1.2% lower than the 

average. For the remaining years, fluctuations were smaller, 

ranging within ±1σ of the mean. 

 

 
Figure 3. Interannual variation of forest Detrended GPP in 

China (2015-2022). Broken line is actual value. Purple-red part 

is triple La Niña event occurrence period. Dark gray solid line is 

multi-year average value. Light gray and lighter gray areas 

represent ±1σ and ±2σ standard deviation range respectively. 

 

Taking into account the strong El Niño event from May 2014 to 

May 2016 and the impact of high temperature and drought in 

2019, the study selected 2017-2018 as the reference period for 

follow-up analysis. 
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During the triple La Niña event from 2020 to 2022, the average 

annual Detrended GPP was 1783.89 Tg C year−1, down 15.38 

Tg C year−1  from the baseline period (1799.27 Tg C year−1 ). 

Among them, there is a 0.6% decrease from 2019 to 2020 

(1774.29 Tg C year−1→1763.68 Tg C year−1). The 2020 value 

is not only the lowest point during the triple La Niña event, but 

also the lowest recorded in the entire 2015-2022 observation 

cycle. Entering 2021, it showed a strong recovery trend, with 

Detrended GPP jumping to 1783.44 Tg C year−1, an increase of 

about 1.1% compared with 2020. The value jumped to 1804.54 

Tg C year−1 in 2022, up about 1.2% from the previous year and 

exceeding the eight-year average by about 1.1%. 

 

 
Figure 4. Annual variation of Detrended GPP in five forest 

climatic regions. 

 

 
Figure 5. Five forest climatic regions Detrended GPP Z-Score 

comparison. 

 

Based on this, the response of forest ecosystem in China to triple 

La Niña event presents phased characteristics: GPP decreases in 

the early stage of the event (2020), showing short-term inhibition 

effect; but with the duration of the event (2021-2022), GPP 

slowly rises, showing certain adaptability and long-term recovery 

potential of the ecosystem. 

 

The fluctuation characteristics of forest annual total GPP in 

China are formed by the superposition of forest area responses to 

different climates. Figure 4 shows that there are significant 

spatial differences in the contribution of different climatic 

regions to the change of total Detrended GPP in China forests. 

Among them, subtropical monsoon climate forest area 

contributed the most, with an average of 1137.75 Tg C year−1 in 

the study period, accounting for 63.7%, becoming the dominant 

area. The temperate monsoon climate forest area is the second, 

with an average of 440.69 Tg C year−1 and a contribution rate of 

24.7%. In contrast, the contribution of tropical monsoon climate 

forest areas is relatively limited, accounting for only 6.5%, and 

the contribution of other two climate types forest areas is 

relatively weak. This distribution pattern clearly reflects the 

significant regional heterogeneity of forest GPP changes in China. 

 

In view of the significant magnitude difference in the 

contribution of five climatic forest regions to GPP, Z-Score 

normalization method was used to normalize the data of each 

climatic region to eliminate the dimensional effect, so as to 

compare the relative variation trend of GPP fluctuation in 

different climatic regions more clearly. This normalization helps 

to reveal the synchronicity or diversity of GPP changes in 

different climatic regions. 

 

The GPP normalized by five climatic zones showed different 

fluctuation characteristics during the period. Temperate monsoon 

climate forest area fluctuates most violently, reaching peak in 

2017 (2.14σ), falling to trough in 2019 (-1.03σ); the overall 

fluctuation of subtropical monsoon climate forest area is 

relatively gentle, but significant negative anomaly will appear in 

2020.(-1.33σ), rising to positive again in 2022 (1.18σ); tropical 

monsoon climate forest area has the largest fluctuation amplitude, 

with an extreme low value (-1.73σ) in 2020 and a rebound to the 

highest value (1.59σ) in 2022; temperate continental climate 

forest area has a significantly higher value (1.73σ) in 2015, and 

fluctuates in negative range in subsequent years; plateau 

mountain climate forest area has an abnormal low value (-2.09σ) 

in 2020, and other years fluctuate slightly near zero value. 

 

On the whole, the GPP fluctuation of each climate zone is 

synchronous. For example, each climate zone shows obvious 

negative anomaly in 2020, among which the synchronous decline 

of subtropical monsoon climate forest area, tropical monsoon 

climate forest area and plateau mountain climate forest area is 

especially prominent. While in 2022, except temperate monsoon 

climate forest area, the other four climate zones show 

synchronous recovery trend, especially the rebound amplitude of 

tropical monsoon climate forest area and subtropical monsoon 

climate forest area is the most significant. At the same time, the 

GPP fluctuation of each climate zone shows obvious regional 

differences. During the triple La Niña event, except temperate 

monsoon climate forest area, GPP in the other four climatic 

regions showed a trend of "decreasing first and then increasing," 

which directly affected the interannual variation pattern of total 

GPP in China. The temperate monsoon climate forest area region 

showed a different response pattern from other climate regions, 

and its GPP showed an anti-phase change characteristic of "first 

increasing and then decreasing." 

 

4.2 Analysis of Seasonal Spatial Anomalies 

In order to highlight seasonal characteristics, differential data 

processing methods are used in spatial analysis: Detrend is 

directly used for annual GPP analysis to eliminate the influence 

of long-term trend; STL decomposition method is used in 

seasonal spatial anomaly analysis in this section and monthly 

scale anomaly analysis in the next section. This hierarchical 

processing strategy can not only keep the simplicity of 

interannual analysis, but also effectively extract seasonal cycle 

characteristics of monthly scale data, thus revealing the spatial 

variation of GPP at different time scales more accurately. 

 

Firstly, the forest GPP anomalies in China showed significant 

seasonal differences, with the fluctuation amplitude in spring and 

summer being significantly greater than that in autumn and 

winter (Figure 6). In 2020, the average anomalies in spring and 
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summer are -4.16 gC m−2 mon−1  and 2.65 gC m−2 mon−1 

respectively, while the average anomalies in autumn and winter 

are smaller (-0.82 gC m−2 mon−1  and-0.44 gC m−2 mon−1 ). 

Similar trends continued in 2021–2022. Notably, the anomaly 

range in 2022 autumn expands to -29.24 gC m−2 mon−1 to 26.60 

gC m−2 mon−1. 

 

 

 

 
Figure 6. Spatial anomaly distribution of forest GPP in China 

from spring 2020 to autumn 2022. (a) 2020;(b) 2021;(c) 2022. 

Green indicates an abnormal increase in GPP and red indicates 

an abnormal decrease (relative to the 2017-2018 average for the 

same period). 

 

Secondly, GPP anomalies showed significant spatial 

differentiation. In the spring of 2020, 68.1% of the regions in 

China showed negative GPP anomalies, especially in the three 

eastern provinces and the south; while in summer, there was 

obvious spatial pattern transformation, and the three eastern 

provinces and the southeast coastal areas turned to positive 

anomalies. This feature continues in 2021. In spring, 70.8% of 

the areas (mainly distributed in the three eastern provinces and 

the central and eastern parts) present negative anomalies, but in 

summer, the southern parts of the three eastern provinces, the 

southeast of Xizang and central parts (Shanxi and Hubei) turn 

into positive anomalies. In 2022, the spatial pattern is quite 

different from that of the previous two years: 65.3% of the 

regions present positive anomalies in spring, and significant 

spatial differentiation is formed in the south and northeast; in 

summer, the southeast changes from positive anomalies to 

negative anomalies, while the north of Inner Mongolia and the 

north of the three eastern provinces show opposite changes. This 

spatial differentiation is closely related to the fact that China 

spans multiple climatic zones. 

 

4.3 Analysis of Key Areas 

In view of the significant spatial heterogeneity of forest GPP 

anomalies in China, and the contribution of forests in temperate 

monsoon climate zone and subtropical monsoon climate zone to 

the total GPP of China is more than 88%, this study focuses on 

these two key regions. 

 

 
Figure 7. Characteristics of GPP monthly variation in temperate 

monsoon climate forest area of China (base period vs. 2020-

2022). 

(a)Comparison of monthly GPP averages for the baseline period 

and 2020-2022;(b) Monthly relative outliers for GPP 2020-

2022. 

 

 
Figure 8. Characteristics of GPP monthly variation in 

subtropical monsoon climate forest area of China (base period 

vs. 2020-2022). 

(c)Comparison of monthly GPP averages for the baseline period 

and 2020-2022;(d) Monthly relative outliers for GPP 2020-

2022. 

 

Between 2020 and 2022, the GPP in temperate monsoon climate 

forest area exceeded the baseline level observed in 2019. 

However, there has been a consistent decrease in GPP annually 

during this period, a trend likely influenced by the interannual 

variability of climate factors. 
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According to Figure 9, the precipitation in this area will increase 

by 0.25 mm  and 0.49 mm  on average in 2020 and 2021 

respectively, while it will decrease slightly by 0.03 mm in 2022. 

This change of precipitation pattern reflects the interannual 

difference of regional water circulation process. The temperature 

continues to be high in the same period, but the increase 

decreases year by year, and increases by 0.83 K, 0.37 K and 0.10 

K respectively in three years, indicating that the climate warming 

trend is still continuing but the intensity has slowed down. 

SMroot content increased steadily, with an increase of 0.003 

m3m−3 , 0.021 m3m−3  and 0.015 m3m−3  respectively, while 

saturated vapor pressure difference (VPD) increased first and 

then decreased, with a significant increase of 62.90 Kpa in 2020 

and a decrease of 41.21 Kpa and 32.89 Kpa respectively from 

2021 to 2022. This change pattern reflected the phased mitigation 

of atmospheric drought. 

 

From the perspective of seasonal dynamics (Figure 7(a)), GPP in 

this region reaches its peak in July every year, but the peak 

intensity decreases year by year. GPP in July 2020 is 15.72 

gC m−2 higher than that in the baseline period, and the amplitude 

of high in 2021 decreases to 2.85 gC m−2, while it turns to 0.33 

gC m−2  lower in 2022. According to Figure 7 (b), anomaly 

analysis shows that GPP fluctuation is mainly concentrated in 

May-July, showing obvious regular changes: GPP is 

continuously low in May accompanied by significant low 

temperature (0.49 k , 1.56 k  and 1.42 k  lower in three years 

respectively), while it turns to positive anomaly in June and its 

amplitude is equivalent to that of negative anomaly in May. This 

change is closely related to temperature recovery (Figure 11), 

especially the temperature in June from 2021 to 2022 is higher 

than that of baseline period 0.18 k and 0.24 k. 

 

In the first year of La Niña event (2020), GPP in subtropical 

monsoon climate forest area was suppressed, but it showed strong 

recovery ability in the following two years. This dynamic change 

is closely related to the evolution of regional climatic factors. The 

data show (Figure 10) that precipitation increases first and then 

decreases, increasing by 0.43 mm in 2020, weakening to 0.06 

mm in 2021 and decreasing by 0.41 mm in 2022. Temperature 

fluctuated and increased by 0.005 K, 0.35 K and 0.096 K in three 

years, respectively, and the significant warming in 2021 may play 

a key role in vegetation restoration. It is worth noting that SMroot 

content continues to decrease, decreasing by 0.005 m3m−3 , 

0.005 m3m−3  and 0.008 m3m−3  respectively in three years, 

while VPD shows an accelerated upward trend, increasing from 

6.61 Kpa  in 2020 to 48.00 Kpa  in 2022, indicating that 

atmospheric drought continues to intensify. 

 

Figure 8 (c) shows that GPP dynamics in subtropical monsoon 

climate forest area show different characteristics from those in 

temperate regions. Although GPP also peaks in July in this region, 

the interannual variation in peak intensity is opposite to that in 

temperate regions: the lowest in 2020 and the highest in 2021. 

Outlier distribution characteristics are more complex. 

Temporally, the outliers are not concentrated in a specific month, 

but scattered throughout the year. The interannual difference is 

significant. In 2020, the positive and negative abnormal months 

are half, but the negative abnormal intensity is greater; in 2021, 

the negative abnormal months are dominant (7 months), but the 

overall abnormal degree is weaker than that in 2020. Of particular 

concern is the anomaly pattern in 2022: significant negative 

anomalies (8.96 gC m−2 , 13.55 gC m−2 , 11.37 gC m−2 

respectively) in autumn (September-October) and winter 

(December), while strong positive anomalies appear in spring 

(March-June), with an anomaly increase of 17.80 gC m−2  in 

April. 
 

 

 
Figure 9. Climate factor anomalies in temperate monsoon 

climate forest area of China (base period vs. 2020-2022). 

(a)Monthly relative anomaly of precipitation from 2020 to 

2022;(b) Monthly relative anomaly of temperature from 2020 to 

2022;(c) Monthly relative anomaly of SMroot from 2020 to 

2022;(d) Monthly relative anomaly of VPD from 2020 to 2022. 

 

 

 
Figure 10. Climate factor anomalies in subtropical monsoon 

climate forest area of China (base period vs. 2020-2022). 

(a)Monthly relative anomaly of precipitation from 2020 to 

2022;(b) Monthly relative anomaly of temperature from 2020 to 

2022;(c) Monthly relative anomaly of SMroot from 2020 to 

2022;(d) Monthly relative anomaly of VPD from 2020 to 2022. 

 

 
Figure 11. SHAP attribution analysis results of June reverse 

May negative anomaly in temperate monsoon climate forest 

area of China. 

 

5. Discussion 

5.1 GPP Spatio-temporal Changes and Zoning 

Comprehensive Discussion 

This study reveals the complex response mechanism of forest 

GPP in China to climate events through multi-time scale analysis. 
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In terms of time scale, different data processing strategies were 

adopted: interannual analysis used detrend processing to 

eliminate long-term trend effects, while seasonal and monthly 

analysis used STL decomposition method to extract seasonal 

cycle characteristics. This method effectively captures the 

variation law of GPP anomalies on different time scales. 

 

The data show that the national average annual GPP is 1785.44 ± 

19.53 Tg C year−1, which drops to 1783.89 Tg C year−1 during 

La Niña event (2020-2022), 0.86% lower than 1799.27 

Tg C year−1 in base period (2017-2018). This decrease is mainly 

due to a significant inhibitory effect at the beginning of the event 

(2020), when GPP fell to 1763.68 Tg C year−1, the lowest value 

in the study period. However, the GPP recovered to 1783.44 and 

1804.54 Tg C year−1  in the following two years. This "initial 

inhibition-gradual recovery" change pattern not only reflects the 

short-term impact of extreme climate events, but also reveals that 

China's forest ecosystem has certain adaptive capacity and long-

term recovery potential. 

 

The results showed that GPP anomalies in China forest showed 

significant seasonal and spatial differentiation characteristics. On 

the seasonal scale, the fluctuation amplitude in spring and 

summer is obviously larger than that in autumn and winter. This 

pattern is closely related to seasonal variations in vegetation 

phenology and climatic conditions. Greening of vegetation in 

spring and vigorous photosynthesis in summer lead to enhanced 

GPP, and extreme weather events trigger violent fluctuations in 

carbon emissions (Deng et al., 2021). In contrast, vegetation 

activity weakened in autumn and winter, and GPP changed 

relatively gently. From the perspective of vegetation phenology, 

spring is the key period at the beginning of the growing season, 

and phenological processes such as budding and leafing of 

deciduous trees and restoration of photosynthetic activity of 

evergreen trees are very sensitive to temperature and 

moisture(Lapointe, 2001). Summer is the peak season for 

vegetation growth (Chen et al., 2000). In autumn of 2022, the 

anomaly was significantly strengthened and its range expanded, 

which reflected the cumulative effect of ecosystem carbon cycle 

under the background of long-term climate change (Frank et al., 

2015). In terms of spatial pattern, GPP anomalies show obvious 

regional differentiation. 2020-2021 In 2020, the three eastern 

provinces and the southern region generally showed negative 

anomalies (68.1%-70.8% area) in spring and turned to positive 

anomalies in summer, while the spatial pattern reversed in 2022, 

with positive anomalies in 65.3% area in spring and positive 

anomalies in southeast in summer. This spatial differentiation is 

closely related to the geographical characteristics of China 

spanning multiple climatic zones, especially the transition zone 

between temperate and subtropical monsoon climatic zones. 

 

The response of different climatic regions to La Niña events is 

different. Subtropical monsoon climate region is the largest 

carbon sink contributing region (annual average GPP 1137.75 

Tg C year−1 , accounting for 63.7% of the total), and its GPP 

appears significant negative anomaly (-1.33σ) in 2020, but 

quickly returns to positive anomaly (+1.18σ) in 2022. Temperate 

monsoon climate region (annual average GPP 440.69 

Tg C year−1 , accounting for 24.7%) shows unique anti-phase 

response characteristics, relatively high in 2020 and low in 2022. 

The GPP fluctuates most violently in tropical monsoon climate 

region, with the anomaly reaching -1.73σ in 2020 and bouncing 

back to +1.59σ in 2022. 

 

The formation mechanism of this regional difference is mainly 

related to the following factors: First, the prominent response of 

temperate and subtropical monsoon climate zones is closely 

related to their special ecological and geographical 

characteristics. These two regions not only have the largest forest 

resources in China, but also are close to the ocean, so that the 

ocean-atmosphere coupling anomaly caused by La Niña event 

can affect these regions first and most strongly through 

atmospheric circulation (Wu et al., 2010). This unique 

geographic location makes it a critical transition zone linking 

ocean climate anomalies with terrestrial ecosystem responses. 

Secondly, different vegetation composition (Lloret et al., 2012) 

(e.g., evergreen broad-leaved forest vs. deciduous forest) and 

environmental adaptation strategies (e.g., differences in water 

and heat use efficiency) further shape their response 

characteristics. Finally, specific combinations of climatic factors 

at regional scales result in differences in observed GPP spatial 

and temporal patterns by regulating plant phenology and 

physiological processes. 

 

5.2 Regional Response Gap Analysis Discussion 

The differential responses of temperate and subtropical monsoon 

forest regions to La Niña events revealed in this study are 

essentially due to the latitudinal differential regulation 

mechanism of the climate events on the East Asian monsoon 

system. 

 

In the temperate monsoon climate forest area, La Niña mainly 

affects through enhanced winter monsoon circulation and 

meridional temperature gradient change: strong cold air 

southward leads to significant low temperature in spring of 2020. 

This hydrothermal allocation explains the observed increase in 

SMroot and VPD. In contrast, the subtropical monsoon climate 

forest area is more directly regulated by tropical SST anomalies: 

the continuous strengthening of the western Pacific subtropical 

high leads to the increase and decrease of precipitation (Yang et 

al., 2022), accompanied by the continuous increase of VPD and 

the drought of soil. This difference reflects the spatial-scale 

characteristics of the impact of the La Niña event, the temperate 

zone is mainly regulated by atmospheric teleconnection at middle 

and high latitudes, while the subtropical zone directly responds 

to the tropical air-sea coupling process (Zi et al., 2022). This 

fundamental driving difference is the reason for the two climate 

zones. The underlying reasons for the different GPP response 

patterns. 

 

Temperature, precipitation, SMroot and VPD are four key 

climatic factors regulating vegetation photosynthesis. 

Temperature regulates photosynthesis by directly affecting 

enzymatic reaction rate and membrane stability, and its effect 

shows a single-peak curve: in the appropriate temperature range, 

heating can increase Rubisco enzyme activity, but exceeding the 

threshold will lead to negative effects (Salvucci and Crafts‐

Brandner, 2004). Precipitation and soil water content determine 

the water status of plants together. The decrease of soil water 

content will cause the decrease of xylem water potential, induce 

stomatal closure through ABA signal pathway, and weaken the 

activity of electron transport chain (Liu et al., 2022). VPD 

reflects the degree of atmospheric drought, and its increase will 

aggravate plant transpiration and water loss (López et al., 2021). 

When the atmosphere is too dry, it will not only promote stomata 

closure, but also directly damage photosynthetic membrane 

system (Arve et al., 2011). There are complex interactions among 

these factors, such as high temperature with high VPD will 

aggravate water stress, and moderate temperature may promote 

photosynthesis when water is sufficient (Will et al., 2013). 

 

The interannual variation of GPP in temperate monsoon climate 

forest area reflects the complex regulation mechanism of climate 
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factors on photosynthesis. The study shows that although annual 

precipitation fluctuates little, SMroot continues to rise. A special 

water supply pattern was formed: on the one hand, it improved 

the water availability of vegetation, on the other hand, excessive 

soil water had negative effects on photosynthesis by inhibiting 

root respiration and inducing abnormal stomatal opening. At the 

same time, moderate temperature increase can increase Rubisco 

enzyme activity. With the regulation of VPD increasing first and 

then decreasing, the synergistic effect of these factors finally 

showed the trend of GPP decreasing year by year, indicating that 

soil moisture excess had become a more critical photosynthetic 

limiting factor than temperature change in this region. It should 

be noted that the seasonal dynamics of GPP showed a significant 

"early stage determines late stage" characteristic: persistent low 

temperature in May could cause persistent low leaf area index at 

key growth stages by delaying phenological process 

(Bhattacharya, 2022). The cumulative effect of this early stress 

explained why the peak intensity of GPP decreased year by year 

in July. 

 

The response of GPP to La Niña events in subtropical monsoon 

climate forest area presents a typical three-stage dynamic 

characteristic of "suppression-adaptation-recovery," which is 

closely related to the coordinated change of regional water and 

heat conditions. At the beginning of the event, although 

precipitation increased, a special hydrothermal configuration was 

formed with a slight increase in temperature and an increase in 

VPD: the evapotranspiration effect of increased warming caused 

the new precipitation to be rapidly consumed, while the SMroot 

still decreased. This seemingly contradictory moisture condition 

induced partial closure of stomata through ABA signaling 

pathway, which directly restricted the intercellular diffusion of 

CO2 , resulting in significant inhibition of GPP. With the 

continuous development of the event, the climate stress showed 

an aggravating trend: precipitation increased and decreased, 

temperature continued to increase, VPD increased, soil moisture 

decreased, forming a typical high temperature and drought 

combined stress. Under this environment, vegetation can initiate 

multi-level adaptation strategies: adjusting VPD response 

threshold of stomatal opening and closing in short-term response 

level (Zi et al., 2022); enhancing osmotic regulation ability and 

photosynthetic apparatus stability in medium-and long-term 

adaptation level (Hsiao et al., 1976). These physiological 

adjustments enable the ecosystem to maintain its basic carbon 

sink function under continuous stress, showing the unique 

environmental adaptability of subtropical evergreen forests. 
 

6. Conclusions 

This study elucidates the intricate response mechanism of the 

forest ecosystem in China to the La Niña event and yields the 

following crucial findings. Initially, in terms of temporal 

dynamics, the gross primary productivity (GPP) of China forest 

exhibits distinct features of "initial suppression-gradual 

recovery" during the La Niña event (2020-2022). The national 

average annual GPP declined from 1799.27 Tg C year−1 in the 

reference period (2017-2018) to 1783.89 Tg C year−1  (a 

decrease of 0.86%) during this event. Specifically, it reached its 

lowest point of 1763.68 Tg C year−1 in 202 but steadily rose to 

1804.54 Tg C year−1 in the subsequent two years. This recovery 

trend underscores the robust climate resilience of forest 

ecosystems in China, albeit with notable variations across regions 

and seasons. 

 

Secondly, in the spatial pattern, the study found obvious regional 

differentiation characteristics. Subtropical monsoon climate 

region is the main contributor (63.7%), and its GPP shows a 

typical "V" rebound, while temperate monsoon climate region 

(24.7%) shows a unique anti-phase response. This difference is 

due to the latitudinal difference regulation of La Niña event on 

East Asian monsoon system: temperate zone is mainly affected 

by the adjustment of mid-high latitude atmospheric circulation, 

subtropical zone directly responds to tropical sea surface 

temperature (SST) anomaly and experiences continuous aridity 

process. From the physiological mechanism angle, the regulation 

function of key climatic factors was clarified. The decline of GPP 

in temperate zone was mainly limited by soil moisture at root 

zone (SMroot) and delayed spring phenology, while the recovery 

ability in subtropical zone depended on physiological adaptation 

at multiple levels. These findings provide a new physiological 

basis for understanding climate adaptation thresholds in forest 

ecosystems. 

 

Finally, the study reveals the important regulation law of seasonal 

scale. The fluctuation amplitude of GPP in spring and summer 

was significantly larger than that in autumn and winter, and the 

temperate zone showed the characteristic of "early stage 

determines late stage", while the subtropical zone formed the 

pattern of "spring and autumn compensation". These seasonal 

dynamics reflect the differences in adaptive strategies of different 

functional vegetation types and are of great value to improve 

phenological parameterization in ecosystem models. 

 

Through multi-scale analysis, this study not only clarified the 

response mechanism of forests in China to climate events, but 

also provided scientific basis for predicting the evolution of 

carbon sink function under the background of global change. 

Future studies need to combine long-term observations and 

multi-omics approaches to further elucidate the genetic basis of 

vegetation adaptation and its interaction with climate variability. 
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