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Abstract

With large-scale UAV swarms used in wide-area inspection, multi-UAV cooperative perception faces core challenges like uneven
target distribution and inefficient paths, causing blind planning with risks of redundant detection or misses. To address traditional
method limitations in real-time target existence probability quantification and dynamic path optimization, this paper proposes the
Differential Evolution Rolling Optimization path planning method (DEROA) based on a spatial grid probability map. Using a
constructed target grid probability map, DEROA dynamically updates the paths as the probabilities of the grid evolve, in order to
maximize the probability of general perception expectation of the multi-UAV system. The main innovations are as follows: (1) A
probabilistic quantification grid map with multisource information fusion for inspection targets integrates historical trajectories, geo-
graphical obstacles, and real-time perception data. Dynamically updates grid target existence probabilities via Bayesian inference
to direct UAVSs to high-probability areas, addressing the deficiency of traditional modeling in representing dynamic target distribu-
tions. (2) The differential evolution-based rolling optimization cooperative algorithm combines DE’s global search capability with
rolling horizon optimization’s real-time adjustment, achieving gridded dynamic path planning through distributed model redictive
control. Experiments show that DEROA improves high-probability area coverage by 65.7%—-106.6% and 1.0%—10.9% compared to
traditional algorithms, with non-faulty UAV task coverage maintaining 0.44-0.97 under failure mechanisms, demonstrating strong
robustness. (3) A dynamic reward function incorporating collision avoidance, communication constraints, and energy consumption,
coupled with a path inflection point simplification algorithm reducing flight turns by 40%—-60%, enables DEROA to achieve a max-
imum target discovery probability of 0.62 (3.3%-37.8% improvement), significantly enhancing perception efficacy in large-area

scenarios.

1. Introduction

The deep integration of Unmanned Aerial Vehicle (UAV) tech-
nology and Artificial Intelligence (AI) (Hashesh et al., 2022)has
demonstrated the critical value of multi-UAV systems in scen-
arios such as military reconnaissance (Alexan et al., 2024), situ-
ational awareness (Baek and Lim, 2018), emergency response
(Boccardo et al., 2015), and environmental monitoring (Asadz-
adeh et al., 2022). However, single UAVs are constrained by
limitations in endurance, sensing range, and decision-making
capabilities. When confronted with complex tasks, they are
prone to inefficiencies and difficulties in localized decision-
making. These shortcomings also hinder the development of
multi-UAV systems. Consequently, multi-UAV cooperative
planning has emerged as a key research focus (Xu et al., 2020).
By enabling collaborative cooperation among multiple UAVs, it
effectively enhances mission execution efficiency and mitigates
the operational constraints inherent to single-UAV operations
(Wu et al., 2022).

The efficient realization of multi-UAV cooperative percep-
tion relies on the accuracy of environmental models and the
decision-making capabilities of individual UAVs. The spatial
structure and target probability quantification within environ-
mental models determine the rationality of task allocation (Peng
et al., 2022). Environmental modeling often struggles to adapt
to target motion and dynamic scenario changes, while single-
agent algorithms are susceptible to local optima. This can
lead to multi-UAV path conflicts, task redundancy, and ulti-
mately constrain swarm effectiveness (Shahbazi et al., 2015).

In environmental modeling, the 2D grid mapping method dis-
cretizes the environment using regular grids to construct situ-
ational awareness information (Hiigler et al., 2020). The grid-
based approach fully leverages the computational advantages of
grid systems for planning flight trajectories while incorporating
UAV kinematic constraints (Xiao et al., 2021).The grid-based
probability map method further refines this discretization, as-
signing each cell a target existence probability that enables pre-
cise quantification of high-value regions. This structured rep-
resentation directly guides UAVs to prioritize areas with elev-
ated detection potential.

Single-UAV path planning necessitates a balance between en-
vironmental adaptability and optimization efficiency. Main-
stream algorithms fall into two categories: mathematical
model-based approaches and swarm intelligence algorithms.
While mathematical model-based algorithms can theoretically
achieve optimal solutions (Rachman and Razali, 2011), their
computational complexity increases exponentially with prob-
lem scale. Swarm intelligence algorithms (Zhou et al., 2020),
such as Differential Evolution (DE) (Yu et al., 2020), character-
ized by few parameters and good robustness, offer significant
advantages in multi-UAV cooperation. Multi-UAV collaborat-
ive decision-making requires solving the coupled challenge of
task allocation-trajectory planning-dynamic adaptation” (Li et
al., 2022). Traditional decoupled strategies, applications of in-
telligent algorithms, and distributed frameworks exhibit defi-
ciencies, with existing research showing gaps in constraint sat-
isfaction, robustness, and adaptability (Sun et al., 2024).
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To address these challenges, this study presents two core con-
tributions:

1. A multi-layer information fusion probabilistic quanti-
fication map model: The model integrates historical tra-
jectories, geographical obstacles, and real-time data. This
model dynamically updates grid target probabilities using
Bayesian inference, directing UAVSs to prioritize coverage
of high-value areas and resolving the dynamic distribution
representation deficiencies inherent in traditional model-
ing approaches (Elamin and El-Rabbany, 2022).

2. A Differential Evolution-based Rolling Optimization
Cooperative Algorithm (DEROA): This approach com-
bines the global search capability of the DE algorithm
with the real-time adjustment strength of rolling optimiza-
tion (Yu et al., 2017). By incorporating adaptive mechan-
isms and path simplification strategies, it provides an ef-
ficient planning solution for multi-UAV systems operating
in complex scenarios.

The rest of this paper is organized as follows: Section 2 models
multi-UAV cooperative tasks. Section 3 proposes the DEROA
algorithm. Section 4 evaluates via experiments. Section 5 con-
cludes and outlines future work.

2. Analysis and Modeling of Grid-Based Multi-UAV
Cooperative Perception Planning Tasks

2.1 Problem Description

In large-area inspection missions, there exist M targets to be
perceived (T'ar = {T1,T»,...,Ta}) within the region. N
UAVs (U = {U1,Us,...,Un}) are deployed to perform co-
operative detection. UAVs dynamically adjust their paths under
limited spatio-temporal resources. Based on a gridded probabil-
ity map and information sharing via ad-hoc networks, they form
a “detection-feedback-planning” closed loop aimed at maxim-
izing detection probability, minimizing energy consumption,
and prioritizing coverage of high-probability areas.

2.2 Modeling of Cooperative Perception Elements

2.2.1 Environmental Modeling: The target area is discret-
ized into a two-dimensional grid matrix using the grid method.
Each grid cell has coordinates (, 7) and attributes including its
location loc; and target existence probability 7; (where ; = 1
indicates target presence). This gridded probability map, up-
dated dynamically via Bayesian inference, fuses multi-source
data (e.g., historical trajectories, terrain obstacles) to form a
robust foundation for path planning. Grid size is determ-
ined based on target dimensions and sensor resolution. Paths
between adjacent grids are formed by connecting their center
points. By fusing prior data such as historical trajectories and
terrain obstacles using Bayesian inference, the target probabil-
ity per grid is dynamically updated, generating a probabilistic
quantification map to guide path planning.

2.2.2 UAV Modeling: The state of a UAV is defined by
its two-dimensional coordinates (z(t),y(¢)) and yaw angle
»(t). State transitions satisfy kinematic equations: position up-
dates are based on velocity and yaw angle, while changes in
the yaw angle are constrained by dynamics within the range
[—7 /4,7 /4]. The flight direction is discretized into eight direc-
tions to construct a path decision tree.

’

Figure 1. Schematic diagram of UAV sensor detection range
mapping.

2.2.3 Sensor Modeling: The sensor’s downward-looking
detection range is a circular area with radius R = h - tan6
(where h is altitude and 0 is the field-of-view angle). The gim-
bal tilt angle « ranges within [—amax, max]. The detection area
becomes elliptical, with the semi-major axis radius extended to
R(a) = h - tan(f + «).As shown in Figure 1, the sensor de-
tection range changes with the variation of relevant parameters.

2.2.4 Communication Modeling: In multi-UAV cooperat-
ive missions, UAVs must maintain communication within an
effective range. Let the maximum communication distance be
d.. Effective mission execution requires the distance d between
any two UAVs to satisfy d < d..

2.2.5 Target Probability Map Modeling: For multi-UAV
cooperative large-area inspection, target modeling requires con-
structing a probabilistic quantification map that integrates target
attributes and environmental features. Taking vehicle targets as
an example, the specific process is as follows:

Structured Fusion of Multi-Source Factors: After discret-
izing the target area into grids, multi-dimensional environ-
mental data such as road distribution, terrain slope, and vegeta-
tion coverage are extracted. Road elements are assigned initial
probabilities based on their presence. Terrain flatness is con-
verted into probability values via normalized slope. Shelter and
vegetation coverage are directly linked to regional survivability,
enabling probabilistic representation of multi-source data.

Gaussian Buffer Expansion Mechanism: Gaussian Buffer
Expansion Mechanism:Centered on road grids, buffer probabil-
ities are generated using Eq. (1) to simulate the diffusion trend
of targets along the road network. This overcomes the limit-
ation of traditional grid methods in representing linear target
distributions, making the probability map better conform to ac-
tual target migration patterns.The grid-based probability map
employs this Gaussian buffer mechanism to simulate target dif-
fusion, ensuring adaptability to linear distributions. Here, €2,
denotes the set of all road grids, and o controls the buffer ex-
tent.

Prb = Z

(m,n)€Qy

SN2 SN2

where Q, = set of all road grids
o = buffer extent control parameter

prp = buffer probability at grid (3, 7)
Multi-Factor Linear Weighted Model: A linear weighted
model integrates the factors to generate the target existence

probability:

Dt = Wr * Prb + Ws - Ps + We * Pe + Wy - Po 2)
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where p = target existence probability at grid (2, j)
wr, Ws, We, wy =weights for different features

Ps, De, Py = probabilities for different factors

The weight coefficients satisfy w, + ws + we + w, = 1. For
instance, in constructing a road-target probability map, typical
weights are: road feature weight w, = 0.7, terrain flatness
weight ws = 0.1, shelter coverage weight w. = 0.1, and vegeta-
tion coverage weight w, = 0.1. This model, utilizing Gaussian
buffering and linear weighting, generates a probability map that
guides UAVs to prioritize detecting high-probability areas.

3. Grid-Based Path Planning Method for Multi-UAV
Cooperative Perception Tasks

Addressing the bottlenecks of dynamic environment adapta-
tion and path optimization efficiency in multi-UAV cooper-
ative perception modeling, this chapter proposes DEROA.
This algorithm integrates the This algorithm integrates the
global search capability of Differential Evolution DE with the
real-time adjustment strength of Rolling Horizon Optimiza-
tion (RHO). Utilizing Distributed Model Predictive Control
(DMPC), it constructs a reward function to achieve dynamic
path planning for multiple UAVs.

3.1 Path Planning Method Based on DE Algorithm

The DE algorithm is well-suited for multi-UAV path planning
due to its strong global search capability, low computational
cost, and flexible parameter tuning. Its core process comprises
four stages:

1. Inmitialization: Each UAV determines its initial position,
direction, and population size, planning paths for the
next L steps (individual dimension = L). Three turning
strategies (0, —1, 1) are generated via a random function
as initial solutions. Parameter ranges are set according to
flight constraints to cover the feasible search space.

2. Selection: Three distinct individuals (turning strategy
samples) are randomly selected from the population. An
indexing mechanism prevents duplicate selection, ensur-
ing sample diversity and providing foundational input for
Crossover.

3. Crossover: The original individual undergoes gene re-
combination with the three selected individuals based on
a preset probability, generating an intermediate candidate
solution. Random parameters determine whether new fea-
tures (e.g., adjusting the turning strategy at specific steps)
are retained, balancing global search capability with di-
versity in local path inflection points.

4. Mutation: Based on the difference information between
the intermediate candidate solution and the three selec-
ted individuals, a mutant individual is generated via lin-
ear combination. A mutation factor controls the weight of
the difference vector, regulating the magnitude of heading
angle changes. This explores potential optimal solutions
while preserving population diversity, generating candid-
ate paths that balance path smoothness and global explor-
ation capability.

3.2 Multi-UAV Cooperative Search Decision Strategy
Based on DMPC

DMPC employs a decentralized architecture. Each UAV in-
dependently maintains a local prediction model based on kin-
ematic equations, considering sensor and communication con-
straints. Through ad-hoc networking, UAVs share states and
trajectories to form a cooperative group. Paths are optimized
over a finite horizon in a rolling fashion within each control
cycle to reduce computational complexity.

Building upon this, multi-UAV cooperative search forms a dy-
namic closed loop through state prediction, path optimization,
and execution feedback: Trajectory decision trees are generated
based on motion equations; paths are optimized using a multi-
criteria utility function; the map is updated during execution;
the model is reconstructed using real-time data; and coordina-
tion is achieved via communication interaction.

3.3 Environmental Information Model

The environmental information model constructs a dynamic
target probability update mechanism based on Bayesian infer-
ence. The target area is divided into discrete grids initialized
with prior probabilities using multi-source environmental data.
Real-time detection data is then fused to update the posterior
probability, characterizing the target distribution.

First, define P’ = P(D}; | Hf;) - P(H,L-’fj_l), which represents
the joint probability of observing data Di—f ; under the hypothesis
that the target exists in grid (7, j). The Bayesian update process
is thus reformulated as:
/
P(H};) = S (3)
P+ P(DF, | H; ) - (1— P(HSY))

P(H, ZZ j)1= post.erior probgbility of target existence
P(H i )jkpnor probability
P(Df; | H; ;) = probability (target absent)

where

The Bayesian inference-based update mechanism continuously
refines grid probabilities, ensuring the map remains responsive
to real-time detection data. This dynamic grid representation
is central to DEROA’s ability to adapt to changing target distri-
butions. This formula iteratively refreshes the probability map:
the prior probability reflects historical knowledge; the observa-
tion probability reflects detection reliability; the posterior prob-
ability integrates both to form an environmental estimate.

Based on UAV detection feedback, the model updates the prob-
ability map to guide path planning towards high-probability
areas.

3.4 Dynamic Reward Function

After generating candidate UAV paths via DE, evaluating path
quality is critical. A dynamic reward function balances detec-
tion efficiency and constraints, with hard/weighted terms:

1. Collision Avoidance (Hard Constraint): This is a binary
function for flight safety. Paths are infeasible if the Euc-
lidean distance E;;(t) between two UAVs is less than the
safety threshold d;. Only when the condition for feasible
paths (i.e., F;;(t) > di1) is met, subsequent weighted op-
timization terms are calculated.
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2. Communication Constraint (Weighted): It quantifies
communication link effectiveness. The value is 1 if the
Euclidean distance F;;(t) between two UAVs is less than
or equal to the communication threshold dz (representing
the information-sharing range), otherwise 0.

3. Energy Consumption (Weighted): The number of UAV
turns is used as the energy consumption metric. The for-

mula is:
turn )
Stt)=1-— —1 4
3(1) step 4
where turn¢;y = UAV turns at ¢

step = planning steps

4. High-Probability Coverage (Weighted): It integrates
coverage assessment with high-probability area detection.
The formula is:

_ HC(t) + AC(1)

Si) = et o 5)

where HC(t) = high-probability grids detected at ¢
AC(t) = grid changes at ¢

HC = initial high-probability grids

C = initial unsearched grids

State-Dependent Weight Adjustment: UAVs operate in
high-probability (p; > 0.6) or low-probability (p; < 0.6)
areas. Weights adapt via:

Sin(t) = St - (8255 + BsS5 + BaSt) (6)

Sou(t) = S1 - (8252 + 8353 + £151) @)
where B2, B3, B4 = base weights
B4, 84 = adjusted weights
0<pBs<fsBa<pi<l

High-Probability (p; > 0.6): Sz = 0.2, 83 = 0.3, B4 =
0.5 (Balances communication and energy consumption for
sustained high - value coverage)

Low-Probability (p: < 0.6): B2 = 0.2, 83 = 0.1, B4 =
0.7 (Reduces energy-related weight, increases detection-
related weight to guide UAVs to high-probability areas)

4. Experiments and Analysis
4.1 Experimental Design

4.1.1 Experimental Objectives: To evaluate the practical
effectiveness of the proposed DEROA algorithm in UAV path
planning, the following three sets of experiments were de-
signed:

1. Feasibility Experiment: Conducted with 2, 5, and 10
UAVs, respectively, with randomly set faulty UAVs.

2. Robustness Experiment: Compared DEROA against
mainstream PSO and greedy strategies under complex en-
vironments and varying mission scales.

3. Planning Quality Experiment: Based on the robust-
ness experiment, statistically analyzed DEROA’s aver-
age runtime and maximum target discovery probability to
quantitatively assess its time complexity and planning ac-
curacy.

4.1.2 Experimental Data and Environment: An area in
Zhengzhou was selected as the inspection region, utilizing the
probabilistic quantification map shown in Figure 2. This map
discretizes the inspection area into a grid matrix of 118 km x
121 km, with each grid cell sized 1 km x 1 km. The grid-
ded probability map discretizes the inspection area into 1 kmx1
km cells, with color depth reflecting target probability. This
visualization highlights the grid structure critical for UAV path
planning. The color depth of each grid cell maps to the tar-
get existence probability, where darker shades represent high-
probability regions (0.6—1.0). Each grid is assigned a probabil-
ity value between 0 and 1, characterizing the likelihood of target
presence. These probability values were generated by fusing
core factors such as road distribution. Specifically, the regional
road network was extracted, and Gaussian buffering analysis
with a buffer radius set to 5 km was applied to simulate the dif-
fusion trend of targets along roads, resulting in the initial prob-
ability distribution. The UAVs used in the experiments were
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Figure 2. Vehicle target probability map of a specific area.

a common model, with parameters assumed based on publicly
available data as follows: cruise speed of 80 km/h; maximum
endurance per mission of 5 hours; sensor detection radius of 5
km (covering 5 to 10 grid cells on the map, corresponding to
an actual coverage area of 100-200 km?); and communication
range sufficient for multi-UAV cooperation within the region.
All UAVs possessed identical payload capacity, endurance, and
flight speed. Their kinematic model was simplified based on
rigid-body dynamics, assuming straight-line flight at constant
speed with a yaw angle variation range of +45° and a minimum
turning radius of 500 m.

The experimental hardware environment utilized an 11th Gen
Intel(R) Core(TM) i5-1135G7 @ 2.40GHz processor, 16GB
RAM, and Windows 10 x64 operating system. The algorithm
was implemented in C++11 and compiled using Visual Studio
2022.

4.1.3 Experimental Evaluation Metrics:

1. Grid Coverage Rate: The Grid Coverage Rate serves
as the core metric for evaluating an algorithm’s ability to
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cover high-probability target areas. Its calculation formula
is:

N

C:ﬁt

®)
where N. =number of covered grid cells
N = total grid cells

2. Maximum Target Discovery Probability: The Max-
imum Target Discovery Probability is a key metric for as-
sessing detection effectiveness. Its calculation formula is:

n

Prax = I*H(lfmi) (9)

=1

where n = number of planning steps

m; = target discovery probability

This formula calculates the probability of detecting the tar-
get at least once throughout the planned path by multiply-
ing the complements of the non-detection probabilities at
each grid cell.

4.2 Experimental Procedure

The experimental procedure comprises three key stages to com-
prehensively evaluate the DEROA algorithm, as detailed below:

1. Feasibility Experiment Steps: For UAV counts of 2, 5,
and 10 respectively, DEROA was employed for path plan-
ning. The generated paths were examined to ensure reas-
onable avoidance of known obstacles, verifying the solu-
tion’s feasibility in basic scenarios.

2. Robustness Experiment Steps: Path planning was per-
formed using DEROA, PSO, and Greedy Strategy(GS) un-
der varying environmental complexities. Each algorithm
was independently executed 25 times under identical en-
vironmental settings, followed by comparative analysis of
Grid Coverage Rate parameters.

3. Planning Quality Experiment Steps: Path planning was
conducted on prior probability maps incorporating road
and shelter features under different reconnaissance time
scales. The average runtime and Maximum Target Dis-
covery Probability for DEROA, PSO, and GS were statist-
ically recorded.

4.3 Experimental Results and Analysis

4.3.1 Feasibility Experiment Results and Analysis: Feas-
ibility experiments employed 2, 5, and 10 UAVs, including
randomly introduced faulty UAVs, during a 50-minute recon-
naissance mission to validate DEROA’s capability to generate
collision-free paths and handle anomalies. As illustrated in Fig-
ures 3, 4, 5, UAVs across all counts successfully traversed high-
probability regions from their starting points according to the
planned paths. Faulty UAVs were correctly marked as “Faulty”
without disrupting normal task execution.

The key metric, coverage rate, exhibited a trend where with 2
UAVs, the coverage rate was 0.44, primarily covering central
high-probability regions (probability > 0.6); with 5 UAVs, cov-
erage improved to 0.90, extending to peripheral regions (prob-
ability 0.3-0.5); and with 10 UAVs, coverage reached 0.97,

achieving uniform coverage across the entire region, including
low-value areas (probability 0.1-0.2). This demonstrates that
DEROA’s collaboration mechanism effectively utilizes multi-
UAV resources, with coverage showing near-exponential im-
provement as the UAV count increases.

Figure 3, 4, 5 depict the planned paths of UAVs focusing on
high-probability regions within the area. The figures illus-
trate task execution for 2, 5, and 10 UAVs, respectively. Indi-
vidual UAV routes are distinguished by different colors, clearly
showing their traversal paths from starting points through high-
probability zones based on the grid map. The visualization in-
tuitively presents the detection coverage pattern of individual
UAVs over high-probability areas and the collaborative detec-
tion coverage effectiveness of multiple UAVs operating simul-
taneously. Operational UAV paths exhibited 40%-60% fewer
turns compared to traditional spiral scanning patterns. For ex-
ample, UAV 1 in the 10-UAV case (Figure 5) flew straight from
(91,22) to (91,47), demonstrating no redundant inflection points
and confirming the efficacy of the path simplification algorithm.
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Figure 3. 2 UAVs: High-Probability region paths.
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Figure 4. 5 UAVs: High-Probability region paths.

4.3.2 Robustness Experiment Results and Analysis:
Table 1 lists the overall average coverage and variance for the
three algorithms. Results exhibiting significant differences
compared to the other two algorithms are marked in bold. The
confidence level for hypothesis testing was set at a = 0.05,
indicating the decision risk level (Liang et al., 2023).

In the low reconnaissance time scenarios (30-50 min), the cov-
erage rate of DEROA is 0.70-0.87. Compared to GS, it in-
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Figure 5. 10 UAVs: High-Probability region paths.

50

70

0.45 % (2.79-3)

0.53 % (6.09e-3)

0.85 + (2.95¢e-3)

0.95 + (6.73¢-4)

Time GS PSO DEROA
30 0.34 £ (4.42¢-3) | 0.63 & (4.83¢-3) | 0.70 & (4.05¢-3)
40 0.40 + (4.68e-3) | 0.77 + (6.36¢-3) | 0.82 + (2.20e-3)

0.87 + (2.69¢-3)

0.94 + (2.37e-3)

( ( (
( ( (
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80 0.59 £ (7.60e-3) | 0.95 =+ (7.38e-4) | 0.97 + (4.48e-4)

Table 1. Detailed grid coverage rate results of robustness
experiment.

creases by 93.1%-106.6%, and compared to the PSO algorithm,
it increases by 2.3%-10.9%. At this time, the algorithm utilizes
the global search characteristic of differential evolution to pri-
oritize covering the core regions with a probability greater than
0.8, avoiding the local optimum trap of the GS algorithm.

In high-recognition-time scenarios (60-80 min), the coverage
rate of DEROA reaches 0.91-0.97. Compared to GS, it in-
creases by 65.7%-81.8%, and compared to the PSO algorithm,
it increases by 1.0%-1.2%. As time prolongs, the rolling optim-
ization mechanism of DEROA continuously updates the path,
while PSO falls into local optimum, resulting in stagnant cov-
erage rate growth. The growth rate decreases from 10.9% at 30
min to 1.0% at 60 min. DEROA demonstrates better capability
of continuous expansion coverage.

4.3.3 Planning Quality Experiment Results and Analysis:
In the target discovery probability experiment, under large-
scale inspection scenarios, each condition was set with different
reconnaissance times, and DEROA, PSO, and GS were run 25
times for each condition. Table 2 lists the total average return
and variance of the maximum target discovery probability from
25 path planning results.

Time GS PSO DEROA

50 0.30 & (3.34e-4) | 0.39 £ (1.43e-4) | 0.40 = (1.22¢-4)
70 0.38 4 (2.51e-4) | 0.47 =+ (9.43¢-5) | 0.48 + (1.93e-4)
90 0.42 & (1.86¢-4) | 0.53 = (1.91e-5) | 0.54 + (1.11e-4)
110 | 0.46 + (2.72e-4) | 0.57 & (5.87e-5) | 0.58 = (1.72e-4)
130 | 0.50 + (1.63e-4) | 0.60 % (5.83¢-5) | 0.61 = (4.87e-5)
150 | 0.52 % (2.60e-4) | 0.61 + (3.15¢-5) | 0.62 = (2.67¢-5)

Table 2. Detailed maximum target discovery probability results

DEROA’s maximum target discovery probability increased
from 0.40 (50min) to 0.62 (150min), representing improve-

of planning quality experiment.

ments of 19.2%-33.8% over GS and 1.2%-2.9% over PSO.

As reconnaissance time increased, DEROA exhibited signific-
antly superior stability in probability growth compared to the
other algorithms. Within the 50-150min range, its hourly prob-
ability increase rate was 0.133%, which is 6.4% higher than
PSO (0.125%/hour) and 35.7% higher than GS (0.098%/hour),
demonstrating its sustained optimization capability in long-
duration missions.

Runtime comparison results are presented to analyze the com-
putational efficiency of the algorithms. Table 3 details the aver-
age computation time for the three algorithms across different
reconnaissance times. DEROA'’s runtime increased from 4.17
seconds at 50 min to 12.81 seconds at 150 min, exceeding the
runtimes of both GS and PSO. This higher computational com-
plexity stems from operations like Bayesian probability map
updates, multi-UAV state interactions, and multi-layer inform-
ation fusion.

Working time | GS(s) | PSO(s) | DEROA(s)
20 0.26 0.39 0.48
50 0.72 0.94 1.12
30 1.23 1.52 2.09
110 1.64 2.37 2.56
140 2.00 3.64 4.42
170 3.38 3.84 4.21

200 4.17 4.56 5.24
230 5.75 7.76 9.12
260 6.99 9.78 10.63
290 7.88 10.89 12.81

Table 3. Runtime results for planning quality experiment.

Considering detection efficacy, DEROA’s computational over-
head is justified by significant gains in scenarios prioritizing
”detection accuracy first.” For instance, at 150 min, its 1.2%
higher discovery probability over PSO could correspond to dis-
covering substantially more critical targets (e.g., disaster sites,
anomalous areas) in real-world applications, far outweighing
the impact of the time cost.

From an engineering perspective, DEROA’s computation time
remains acceptable (e.g., 12.81 seconds for a 150 min mis-
sion). Furthermore, runtime efficiency can be further enhanced
through hardware upgrades and algorithmic parallelization op-
timizations.

5. Conclusions and Prospects

5.1 Conclusions

This study addresses the challenges of high uncertainty in target
distribution and inefficient inspection path planning for multi-
UAV cooperative target perception. By designing a multi-layer
information fusion probabilistic quantification map model, a
Differential Evolution-based Rolling Optimization Cooperat-
ive Algorithm (DEROA), and dynamic reward functions with
path optimization strategies, we achieve significant improve-
ments in high-probability area coverage, substantial reductions
in flight turns, increased target discovery probability, and robust
algorithm performance.

5.2 Future Work

Despite the progress achieved, several areas warrant further
investigation. Future research could extend heterogeneous
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UAV swarm collaboration mechanisms to optimize task alloc-
ation strategies for mixed formations of fixed-wing and rotary-
wing UAVs. Additionally, advancing cross-domain cooperative
systems-particularly the in-depth application of integrated air-
ground sensor network task chains in scenarios such as disaster
emergency response-represents a critical direction for explora-
tion.
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