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Abstract

Most traditional indoor localization schemes necessitate the pre-installation of hardware devices, leading to uncontrollable costs and
the requirement for ongoing maintenance. While pure vision-based localization solutions offer the advantages of low cost and
deployment-free implementation, they still encounter two major technical bottlenecks. Firstly, vision-based systems relying solely on
point cloud data impose substantial computational burdens, which creates difficulties in meeting the real-time performance
requirements of mobile terminals. This challenge stems partly from the intensive operations required for point cloud processing—
including feature extraction and spatial alignment—whose complexity often exceeds the hardware capabilities of portable devices
designed for energy efficiency. Secondly, image matching schemes based on key frames are prone to position jumps, particularly in
dynamic scenes or areas with insufficient features. To address the aforementioned constraints, this paper proposes a lightweight indoor
positioning framework that establishes tight coupling between visual data and inertial measurements. This framework is structured into
three sequential phases: data preprocessing, real-time visual localization computation, and fused positioning result output. During the
data preprocessing phase, image data covering the entire indoor scene is acquired, and representative key frames are selected to train
a key frame recognizer—with the aim of reducing redundant information and improving subsequent matching efficiency. Concurrently,
feature point descriptors of these selected key frames are extracted and organized to construct a structured environmental feature
information database. In the real-time visual localization computation phase, based on externally input real-time video streams,
relatively precise position estimation is achieved through key frame matching and feature point correspondence, by leveraging the pre-
established environmental feature database to accelerate the matching process. Finally, in the fused localization result output stage,
based on visual localization, the system integrates data from an Inertial Measurement Unit (IMU) to construct a position estimation
framework using the Extended Kalman Filter, outputting smooth and continuous precise positions. Compared with conventional vision-
based solutions, this system optimizes the motion trajectory through the recursive propagation of inertial data under the constraints of
visual features, thereby significantly enhancing the spatiotemporal continuity of the localization results while maintaining the accuracy
of visual localization.

1. Introduction
To mitigate the aforementioned challenges, this study puts

As the foundational infrastructure of the internet of things (IoT)
era, indoor localization technologies hold substantial application
potential in smart venues, transportation hubs, and similar
environments. At present, the dominant indoor positioning
technologies mainly include Wi-Fi, Bluetooth beacons,
pedestrian dead reckoning (PDR), geomagnetic positioning, and
ultra-wideband (UWB). Alongside the continuous evolution of
image recognition algorithms and the advancement of deep
learning  frameworks, vision-based indoor localization
technology has undergone gradual maturation, emerging as an
increasingly competitive option in the field of indoor positioning.
Although contemporary vision-based localization paradigms
offer advantages in cost-effectiveness and ease of deployment,
they encounter two critical technical limitations: (1) the high
computational demands of pure point-cloud-based vision
systems render real-time performance unsustainable for mobile
terminals, and (2) keyframe-dependent image matching schemes
are prone to positional discontinuities, particularly in dynamic
environments or feature-deficient regions.

forward a lightweight visual-inertial integrated framework
characterized by tight coupling between visual data and inertial
measurements. This methodology synergizes feature-based
keyframe matching with inertial measurement unit (IMU) data
through an extended Kalman filter (EKF)-based estimation
architecture. By fusing visual feature constraints with inertial
data propagation, the system achieves trajectory optimization
that preserves the precision of vision-aided localization while
substantially enhancing the spatiotemporal continuity of the
positioning outputs. This hybrid approach provides a robust
solution for resource-constrained platforms that require
continuous, high-accuracy indoor positioning.

2. System Process Overview
The proposed lightweight indoor localization system that

integrates keyframe recognition and inertial navigation, is
illustrated in Fig. 1. As shown in the workflow diagram, the
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framework is structurally partitioned into three modular
components: (1) a vision-based localization module, (2) an
inertial navigation module, and (3) a fusion engine for optimized

pose estimation. The specific implementation procedures of the
proposed framework are outlined below.
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Figure 1. Workflow Diagram of the Indoor Positioning System Integrating Keyframe Recognition and Inertial Navigation Technology.

2.1 Visual Localization

2.1.1 Data Preprocessing: The environmental feature
database is constructed through the following procedure. First,
video sequences are repeatedly captured (3-4 times per position)
using video acquisition equipment. Each video is subsequently
frame-decomposed to extract the XFeat features and VLAD
global descriptors. From these, N keyframes with salient feature
representations are uniformly selected, and the corresponding
camera pose parameters are recorded. Global feature matching is
performed for each keyframe to establish similar image sets. The
training dataset is augmented using geometric (rotation and affine
transformation) and photometric (grayscale conversion and
filtering) transformations. Leveraging transfer learning, a pre-
trained MobileNet V3-Small architecture is fine-tuned to develop
a keyframe recognition model. Finally, all XFeat descriptors are
connected to their spatial pose information to establish an
integrated environmental feature-pose-mapping database.

2.1.2  Real-time Positioning: Real-time video streams are
ingested into a pre-trained keyframe recognizer to obtain the
coarse positional region and corresponding reference keyframe.
Subsequently, the XFeat descriptors are extracted from the query
frame and matched against the environmental feature database.
Pose refinement is achieved through affine transformation
parameter estimation and homography matrix decomposition,
enabling centimeter-level localization accuracy.

2.2 Inmertial Navigation

Localization was achieved by integrating tri-axial accelerometers
and gyroscopes within an inertial measurement unit (IMU). The
linear acceleration components along each axis are double-
integrated to compute the real-time position and velocity vectors
of the moving platform. Gyroscopes measure either vibrational

phase differentials (as in Coriolis-effect gyroscopes) or angular
velocities, which are integrated using rotation vector algorithms
to resolve the three-dimensional attitude angles (pitch, roll, and
yaw) within the navigation coordinate frame.

2.3 Fusion-based Localization Output

The proposed tightly coupled vision-inertial architecture based
on an extended Kalman filter (EKF) achieves enhanced
localization performance through mutual constraint mechanisms.
The inertial navigation system (INS) serves as the primary
kinematic constraint, leveraging its high-frequency output
capability to bridge perceptual gaps in vision-based localization
and ensure continuous pose estimation during visual feature
degradation. Concurrently, the vision-based localization module
mitigates INS drift accumulation through environmental feature
re-localization, establishing a bidirectional constraint mechanism.
This synergistic framework ultimately yields accurate and
continuous positioning outputs by combining the complementary
strengths of both sensory modalities.
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3. Detailed Elaboration of Key Technologies for this study
3.1 Development of the Key Frame Recognizer

3.1.1 Lightweight Feature Point Detection: Traditional
feature point extraction approaches that do not rely on
convolutional neural networks—including SURF and ORB—are
predominantly dependent on static algorithmic frameworks for
feature point extraction, thereby providing minimal scope for
adaptive adjustments to varying environmental conditions or
application-specific requirements. Consequently, each algorithm
can only excel in its specific domain of expertise and fails to
universally accommodate all scenarios. Additionally, these
algorithms exhibit high computational complexity, resulting in
suboptimal performance on mobile devices with average
computational capabilities. In order to achieve superior
performance, this paper employs Xfeat as the feature point
recognition algorithm.

XFeat adopts a novel convolutional neural network architecture,
utilizing meticulously designed strategies for keypoint detection
and local feature extraction, aiming to minimize computational
overhead while maintaining robustness and accuracy.
Furthermore, XFeat is applicable to both sparse feature matching
based on keypoints and dense matching of coarse feature maps.
In comparison with other image matching approaches, XFeat
achieves a superior balance between matching precision and
computational efficiency. It outperforms the vast majority of
lightweight deep learning-based local feature methods in terms
of speed, while simultaneously attaining accuracy comparable to
that of larger-scale models such as SuperPoint

The network architecture of XFeat comprises three major
modules: a lightweight backbone network, a dual-branch feature
extractor (for keypoint detection and descriptor generation), and
a semi-dense matching refinement module, as illustrated in
Figure 2.
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Figure 2. Schematic illustration of the architectural structure of the XFeat network.

1) Featherweight Backbone: A channel optimization strategy is
employed, wherein the initial layer utilizes only 4 channels. As
the spatial resolution decreases (with a stride of 2 for each
subsequent layer), the number of channels is progressively
increased up to 128. The formalized computational cost is
expressed as:

Fops=Hi'VVi'CL"CL'+1'k2 (D

Where H; and W; represent the spatial resolution, C; denotes the
number of channels, and k is the size of the convolutional kernel.

By reducing the number of channels at an early stage, the
computational load is significantly decreased. Feature maps at
three scales, specifically 1/8, 1/16, and 1/32, are fused by
upsampling them to a 1/8 resolution through bilinear
interpolation, followed by summation. This process enhances the
robustness against variations in viewpoint.

2) Dual-branch feature extractor: The keypoint detection branch
of XFeat operates independently from the descriptor branch,
thereby avoiding mutual interference during joint training. It
partitions the input image into an 8x8 grid and regresses the
coordinates of keypoints within each grid through 1x1
convolution, enabling sub-pixel level localization. Additionally,

a "dustbin" classification mechanism is introduced to filter out
invalid regions.

The descriptor generation branch of XFeat outputs a 64-
dimensional dense descriptor map (Dense Descriptor Map),
which is combined with a reliability map (Reliability Map) to
select high-confidence features. The reliability map, regressed
through convolutional blocks, represents the unconditional
probability of successful feature point matching.

3) Semi-dense matching refinement module: The matching
strategy is divided into two modes. The sparse mode involves
extracting 4,096 high-confidence keypoints and rapidly matching
them through mutual nearest neighbor search (MNN). The semi-
dense mode entails extracting 10,000 feature regions and
utilizing a lightweight Multi-Layer Perceptron (MLP) to predict
pixel-level offsets, thereby achieving sub-pixel matching.

4) Training strategy and loss function: The model is trained using
a mixed dataset of Megadepth and COCO, with a 6:4 ratio to
balance real-world scenes and synthetic deformation data. Pixel-
level correspondences are employed to supervise the learning of
feature descriptors and keypoint locations. By leveraging the
Dual-Softmax Loss, the similarity of matched feature pairs is
maximized:

Las = X;log(sof tmax, (S)y;) — log(sof tmax,.(S)u) (2)
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3.1.2 Global Feature Representation and Matching
Mechanisms: For the training of the key-frame recognizer, it is
necessary to extract frame subsets with high similarity that match
each key frame from the raw image dataset, which serves as the
training data. Simple similarity retrieval based on elementary
feature points is insufficient; instead, the features of each frame

need to be aggregated into a consolidated global descriptor vector.

In this study, the VLAD algorithm was utilized for both the
generation of global descriptors and the retrieval of similar
frames, ensuring the effectiveness of the training data
construction process.

The VLAD algorithm is predicated on the assumption that each
image frame encompasses local feature points with a
dimensionality of N X D(where N may be substantial and varies
per image). The objective is to derive a compact K X D -
dimensional global descriptor (with K being a predefined value,
e.g., 128) from these N X D -dimensional features. The core
procedural steps are outlined as follows:

1) K-means clustering is applied to all N X D-dimensional local
features to derive K cluster centers, designated as Cj,.

2) The N X D-dimensional local features are transformed into a
global feature VV, which exhibits a feature vector dimensionality
of KX D —where k ranges over K and j over D . The
corresponding formula is given as follows:

V(i k) =Xy ax () () — e () 3)

In this formula, x; denotes the i-th local feature extracted from
the image, and cj, represents the k-th cluster center—with both
x; and ¢, being D -dimensional vectors. Meanwhile, a;(x;)
denotes a binary indicator function: it takes a value of 1 if and
only if x; is assigned to the cluster center ¢j, and 0 in all other
cases.

Ultimately, this process yields a dimensionally reduced global
descriptor for the image. Through the application of a suitable
Euclidean distance threshold, all images bearing similarity to the
key frame can be retrieved with high efficiency.

3.1.3 Key Frame Identification Model: The central system
module of this research was implemented on mobile devices,
with computational efficiency emerging as a pivotal factor given
the algorithm's intensive processing requirements. Consequently,
MobileNetV3-Small was adopted as the backbone network
architecture. Through architectural optimizations, MobileNetV3
achieves superior accuracy compared to most large-scale neural
networks while maintaining significantly fewer parameters and
lower computational overhead. The latest iteration,
MobileNetV3-Small, processes images in just 22 ms-
substantially faster than conventional deep networks. MobileNet
V3-Small comprises 12 distinct Bneck layers, one standard
convolutional layer, and two pointwise convolutional layers.
Notably, it exhibits the following attributes.

1) Depthwise Separable Convolution (MobileNetV1):
Employing depthwise separable convolution instead of standard
convolution reduces both parameter count and computational
requirements by approximately 90% while preserving
comparable model accuracy.

2) Inverted Residual with Linear Bottleneck (MobileNetV2):
This enhanced architecture further decreases parameter size and
computational costs by 30-50% compared to standard

convolution through its innovative spatial-channel optimization
approach.

3) Squeeze-and-Excitation Attention Modules:

The integrated lightweight attention mechanism dynamically
recalibrates channel-wise feature responses, amplifying relevant
features while suppressing redundant ones through learned
channel interdependencies.

4) h-swish Activation Function:

Implementation of the h-swish activation function, as validated
by Google Al research, demonstrates approximately 15%
computational efficiency gains while maintaining numerical
stability in mobile-optimized networks.
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Figure 3. Distinctive Bneck Structure in MobileNet V3.

3.1.4 Transfer Learning for Key Frame Identification: In
the current research, the parameters of the pre-trained model were
derived via the transfer of well-calibrated weights from
MobileNet V3, which had undergone prior training on the
ImageNet dataset—this transfer strategy leverages the generic
feature extraction capabilities already encoded in the model
through large-scale image learning. To further adapt the model to
the specific task of keyframe recognition, a fine-tuning process
was implemented: specific layers of the pre-trained model were
selected for retraining to capture task-specific patterns, while the
remaining layers were kept frozen to preserve the pre-learned
generic features that are critical for robust visual representation.
Through this targeted adjustment, the intended keyframe
recognizer, optimized for the indoor positioning scenario, was
ultimately obtained.

3.2 Development of the Environmental Feature Data
Database

By using the XFeat algorithm, feature points in all keyframe
images are identified, and their corresponding feature descriptors
are computed. Subsequently, by integrating the positional
information of the keyframe images along with the camera's pose
information at the time of capturing each keyframe, an
environmental feature information database can be constructed.
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3.3 Vision-based Precise Position Determination

3.3.1 By utilizing the key-frame recognizer, the key-frame
corresponding to the current location is identified. Following this,
XFeat is utilized to extract and characterize feature points from
the video stream. Next, the feature points within the current video
stream are matched against those of the respective key frame. In
the present study, stable corresponding point pairs were first
screened from the initially matched corresponding point pairs to
eliminate spurious matches, and the homography matrix H
(formulated as Equation (4)) was subsequently computed based
on these reliable point correspondences. To derive the camera’s
pose parameters, singular value decomposition (SVD)—a classic
numerical method for resolving pose parameters—was employed
to decompose the homography matrix, through which the rotation
matrix and translation matrix were acquired, followed by the
calculation of the camera attitude angle 8,4¢ityde-

Further, the set of stable feature points was subjected to random
perturbation to simulate potential variations in real-world
imaging scenarios, and the positional differences between the
perturbed and original feature points were quantified. Inverse-
weighted coefficients were assigned to each feature point
according to the magnitude of these differences—with smaller
differences corresponding to higher weights—to suppress the
impact of abnormal values. On this basis, the weighted mean
value of the positional distance differences §g;5rance between
feature points in the template image and those in the real-time
video stream image was computed.

By integrating key imaging parameters and pre-calibrated data,
including the known camera focal length f, the previously
derived camera attitude angle 6 ,;¢;1,,4, the position coordinates
P, of the template image, and the shooting distance z, of the
template image, the spatial distance between the mobile device
and the current template image was calculated. Through this
multi-step optimization and integration of geometric constraints
and feature matching results, the high-precision position
coordinates P (detailed in Equation (5)) of the mobile device in
the indoor environment were ultimately determined.

H=KR+T-N)K™? 4)

Herein, K denotes the intrinsic parameter matrix of the
camera—a core component that encapsulates the optical and
geometric properties (e.g., focal length, principal point
coordinates) of the imaging system in the indoor positioning
scenario. d stands for the inter-center distance, which is relevant
to the spatial configuration of the imaging setup and critical for
accurate coordinate mapping. N represents the normal vector of
the camera’s image plane, a parameter that characterizes the
orientation of the imaging plane relative to the 3D spatial
coordinate system of the indoor environment. R refers to the
extrinsic rotation matrix of the camera, responsible for
describing the rotational posture of the camera relative to the
global coordinate system established for indoor localization. T
denotes the extrinsic translation vector of the camera,
quantifying the linear displacement of the camera relative to the
origin of the global coordinate system and enabling the
conversion between 2D image coordinates and 3D spatial
coordinates.

P=Py+ [(Sdistance [+ 20)sinBqetituae Baistance f +
29 )c088a¢ritude]” (5)

3.4 Inertial Navigation Algorithm

Inertial Navigation System (INS) is grounded in Newtonian
mechanics, utilizing inertial sensors to measure the angular
velocity and linear acceleration of a vehicle's motion. Through
real-time computation by a computer, it derives navigation
information such as the vehicle's three-dimensional attitude,
velocity, and position. INS primarily comprises two components:
the inertial measurement sensor unit and the computational
processing unit.

3.4.1 Inertial Measurement Unit (IMU): Inertial navigation
and positioning technology employs accelerometers and
gyroscopes to quantify the linear acceleration and angular
velocity of a moving object, respectively, and derives the object's
position and attitude through integral computations. The
accelerometer determines linear acceleration by measuring the
inertial force generated by the object, often employing micro-
electro-mechanical system (MEMS) technology. The gyroscope,
on the other hand, measures the angular velocity by detecting the
rotational speed of the object as it rotates about a certain axis,
capable of providing information regarding the rotational rates of
the object around three orthogonal directions.

3.4.2 Quaternion-based Attitude Update: The Inertial
Navigation System (INS) necessitates the transformation
between the body-fixed coordinate system and the navigation
coordinate system, which can be achieved by following a specific
sequence of rotations based on the attitude angles. Accurate
attitude determination is crucial for the positioning model.
Generally, there are three commonly used methods to represent
attitude, namely the Euler angle method, the direction cosine
matrix (DCM) method, and the quaternion method. This paper
adopts the quaternion method for attitude updating. The formula
is as follows:

@6 )"
126kl

T
Gk = Thres® [cos1|0.586, | T2 sin - 10.586,]  (6)

Where ° denotes quaternion multiplication; A8, represents the
angular increment output by the gyroscope from time instant k —
1 to time instant k; A8, ~ wlAt, w? is the angular velocity at a
certain time instant; and At is the sampling interval. The
corresponding rotation matrix can be obtained by transforming

the quaternion qjf = [q; 9 q3 q4]".

Cy
ai +43 —ai —di
=1 2(9293 + q194)
2(q294 — 9193)

2(q294 + 9193)
2(q394 — 192)
ai —a; — ¢ + 4i

@)

2(q293 — 4194)
qt —q5 +q3 —di
2(9394 + 91q2)

By leveraging such attitude information, the velocity update
equation and the position update equation may be formulated as
follows:

b b b
vﬁ::vﬁ_r+C£k<§$i@%ﬁgﬂQ)——g"At @®)
b b
PR = v Aty (Avp + 2222 ) Ar — 0.5gmA2 (9)
ABP = (wp — by)At (10)
Avp = (£ — bs)At (11)
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3.5 Fusion Localization Algorithm Based on Extended
Kalman Filter

The Extended Kalman Filter (EKF) is primarily employed to
address the state estimation problem in nonlinear systems. The
localization process of the Pedestrian Dead Reckoning (PDR)
technology is nonlinear and less susceptible to indoor
environmental influences; however, it suffers from accumulated
errors, leading to poor localization stability and making it
unsuitable for standalone use over extended periods. In contrast,
visual localization technology is easily affected by indoor
environmental factors but does not accumulate errors, thus
maintaining stable localization accuracy during prolonged use.
This paper adopts the Extended Kalman Filter to fuse these two
localization technologies, utilizing the localization results from
visual localization as observed values and those from PDR
localization as state estimates to construct a localization system
that achieves the integration of both technologies.

The state vector and observation vector of the positioning system
are herein defined as follows:

_ T
{Xk [xk:}’k: ‘P};] (12)
Zy = s Y]

Where x;, and y, denote the predicted position coordinates at
the k-th step, ¢ represents the predicted pedestrian heading
angle at the k-th step, X, and y;, indicate the localization
coordinates obtained from visual localization at time instant k.

The state equation for the positioning system is formulated as
follows:

Xk Xy—1 + Sg—q " SINQg_q
Xy = |Yr| = |Vk-1 + Sk-1"COSQp_1 |+ W (13)
Pr Pr-1+ 4
The observation equation is given by:
Z = ’.C"] +V (14)
Vi

Where W represents the additive Gaussian white noise vector
associated with the system's state equation, and V denotes the
Gaussian white noise vector of the system observation equation,
with both being mutually independent. x;,_; and y;,_, signify the
fused localization coordinates obtained at time instant k—1, s, _4
indicates the step length determined at time instantA—1,
@r_4 represents the pedestrian heading angle acquired at time
instant k—1, and A¢@ denotes the anticipated increment of the
pedestrian heading angle. By performing a Taylor expansion on
the nonlinear portion, the state transition matrix A, can be
derived as follows:

1 0 Sg—q-sin@g_q
Ay =10 1 sp_q-COSPr_1 (15)
00 1

The observation matrix Hy, is given by:

_[1 00
H=lp 1 o (16)

The initial covariance matrix P; is given by:

1 00
Pp=10 1 0] %))
0 0 1

The system process covariance noise matrix Q and the
observation noise covariance matrix R are defined as follows:

820 0
Q=|0 & 0 (18)
0 0 &2
R = 5 0 19
“lo & (19

Where, 52 and 65 respectively denote the localization variances
along the X-axis and Y-axis for both Pedestrian Dead Reckoning
(PDR) localization and visual localization, while 65, represents
the variance of the heading angle.

Following the complete setup of all the aforementioned initial
conditions, iterative computations are conducted to derive the
localization outcomes of the fusion localization algorithm that is
based on the Extended Kalman Filter.

4. Experiment and Results

To rigorously validate the proposed indoor localization
technology, a systematic experimental protocol was designed to
evaluate its functional feasibility and positioning accuracy. The
experimental workflow comprises software deployment,
localization testing, and quantitative analysis. Furthermore, the
experiment not only assessed the positioning performance of the
system proposed in this study but also compared its accuracy
against that of traditional WiFi positioning and standalone PDR
positioning. All tests were conducted under identical
environmental conditions, with strict control over factors such as
indoor signal interference and pedestrian movement speed to
ensure fair comparison.

4.1 Experimental Hardware Environment

To validate the feasibility and accuracy of the indoor positioning
system that integrates visual and inertial navigation proposed in
this paper, corresponding experiments were designed. The
positioning terminal employed in the experiments was a mobile
phone (model: Samsung Galaxy S23), which is equipped with
both an IMU (Inertial Measurement Unit) module and a camera,
thus meeting the hardware requirements of the proposed system.

4.2 Image Data Acquisition and Preprocessing

Environmental images of the experimental site were uniformly
collected, and XFeat was employed to identify and describe
feature points from all the acquired environmental image data.
Frames with prominent features were selected from all the
environmental images as key frames, ensuring a relatively
uniform distribution of these key frames across the experimental
site. The camera pose data was documented at the moment each
key frame was captured. Ultimately, the development of a key-
frame identifier and a database containing environmental feature
information was undertaken.

4.3 Analysis of Experimental Results

Dynamic localization experiments were performed at the
designated test site. For three different localization schemes (the
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system proposed in this paper, traditional WiFi localization, and
single PDR localization), identical routes were tested at least 30
times. The average deviation of each scheme from the true
trajectory was ultimately calculated to obtain the average error
for each approach. Traditional WiFi localization exhibited an
average error of approximately 1.5 meters, while the single PDR
scheme yielded an average error of around 2.3 meters. In contrast,
the scheme proposed in this paper managed to control the average
error within approximately 0.1 meters, and was capable of
outputting localization results for at least 5 frames per second.
The experimental data fully demonstrated the feasibility, high
efficiency, and high precision of the scheme proposed in this
study.
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Figure 3. Comparison between real track and test track..
5. Conclusion

This paper presents a lightweight localization scheme that tightly
couples visual and inertial information. Based on feature-based
key-frame matching, this scheme integrates data from an Inertial
Measurement Unit (IMU) to construct position estimation using
an Extended Kalman Filter. While maintaining the accuracy of
visual localization, it significantly enhances the spatiotemporal
continuity of the localization results.

Experimental findings demonstrate that the localization error
associated with the proposed approach maintains a consistent
range of approximately 0.1 meters. Compared to traditional
indoor localization schemes, this approach offers multiple
advantages, including the elimination of the need for pre-
installed hardware, higher accuracy, lower computational
overhead, and improved localization continuity. Further in-depth
research will be conducted in this paper with the aim of further
enhancing the accuracy and stability of localization.

Acknowledgements

This work is supported by the research and development project
on interactive decision-making and management technology for
urban sustainable development (No. 2022YFC3802904).

References

Guilherme, P., Felipe, C., Andre, A., Renato, M., Erickson, R. N.,
2024. XFeat: Accelerated Features for Lightweight Image
Matching. CVPR 2024., arXiv:2404.19174.

Yao, H., Wang, X., Qi, H., and Liang, X., 2022: Tightly
coupled indoor positioning using uwb/mmwave radar/imu, Int.
Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-3/W1-
2022, 323-329, https://doi.org/10.5194/isprs-archives-XLVI-3-
W1-2022-323-2022.

Wang, C., Bi, K., Zhao, B., Li, M., Chen, Y., Tao, S., and Yang,
J., 2024: Lightweight Indoor Positioning System Based on
Multiple Self-Learning Features and Key Frame Classification,
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-
2024, 373-379, https://doi.org/10.5194/isprs-annals-X-4-2024-
373-2024, 2024.

Zhou, B., Wu, Z., Chen, Z., Liu, X., and Li, Q., 2023: Wi-Fi
RTT/Encoder/INS-Based Robot Indoor Localization Using
Smartphones, IEEE Trans. Veh. Technol., vol. 72, no. 5, pp.
6683-6694, May 2023, doi: 10.1109/TVT.2023.3234283.

Mansour, A., Chen, W., Weng, D., Yang, Y., and Wang, J.,
2023: Leveraging human mobility and pervasive smartphone
measurements-based crowdsourcing for developing self-
deployable and ubiquitous indoor positioning systems, /nt.
Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-
1/W2-2023, 1119-1125, https://doi.org/10.5194/isprs-archives-
XLVIII-1-W2-2023-1119-2023.

Jégou, H., Douze, M., Schmid, C., Pérez, P., 2010: Aggregating
local descriptors into a compact image representation, 2010
1IEEE Computer Society Conference on Computer Vision and
Pattern Recognition., 10.1109/CVPR.2010.5540039.

Howard, A., Sandler, M., Chu, G., 2019: Searching for
mobilenetv3, Proce edgings of the IEEE/CVF International
Conference on Computer Vision., 2019: 1314-1324.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-275-2025 | © Author(s) 2025. CC BY 4.0 License. 281





