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Abstract 
 
Most traditional indoor localization schemes necessitate the pre-installation of hardware devices, leading to uncontrollable costs and 
the requirement for ongoing maintenance. While pure vision-based localization solutions offer the advantages of low cost and 
deployment-free implementation, they still encounter two major technical bottlenecks. Firstly, vision-based systems relying solely on 
point cloud data impose substantial computational burdens, which creates difficulties in meeting the real-time performance 
requirements of mobile terminals. This challenge stems partly from the intensive operations required for point cloud processing—
including feature extraction and spatial alignment—whose complexity often exceeds the hardware capabilities of portable devices 
designed for energy efficiency. Secondly, image matching schemes based on key frames are prone to position jumps, particularly in 
dynamic scenes or areas with insufficient features. To address the aforementioned constraints, this paper proposes a lightweight indoor 
positioning framework that establishes tight coupling between visual data and inertial measurements. This framework is structured into 
three sequential phases: data preprocessing, real-time visual localization computation, and fused positioning result output. During the 
data preprocessing phase, image data covering the entire indoor scene is acquired, and representative key frames are selected to train 
a key frame recognizer—with the aim of reducing redundant information and improving subsequent matching efficiency. Concurrently, 
feature point descriptors of these selected key frames are extracted and organized to construct a structured environmental feature 
information database. In the real-time visual localization computation phase, based on externally input real-time video streams, 
relatively precise position estimation is achieved through key frame matching and feature point correspondence, by leveraging the pre-
established environmental feature database to accelerate the matching process. Finally, in the fused localization result output stage, 
based on visual localization, the system integrates data from an Inertial Measurement Unit (IMU) to construct a position estimation 
framework using the Extended Kalman Filter, outputting smooth and continuous precise positions. Compared with conventional vision-
based solutions, this system optimizes the motion trajectory through the recursive propagation of inertial data under the constraints of 
visual features, thereby significantly enhancing the spatiotemporal continuity of the localization results while maintaining the accuracy 
of visual localization. 
 
 

1. Introduction 

As the foundational infrastructure of the internet of things (IoT) 
era, indoor localization technologies hold substantial application 
potential in smart venues, transportation hubs, and similar 
environments.	 At present, the dominant indoor positioning 
technologies mainly include Wi-Fi, Bluetooth beacons, 
pedestrian dead reckoning (PDR), geomagnetic positioning, and 
ultra-wideband (UWB). Alongside the continuous evolution of 
image recognition algorithms and the advancement of deep 
learning frameworks, vision-based indoor localization 
technology has undergone gradual maturation, emerging as an 
increasingly competitive option in the field of indoor positioning. 
Although contemporary vision-based localization paradigms 
offer advantages in cost-effectiveness and ease of deployment, 
they encounter two critical technical limitations: (1) the high 
computational demands of pure point-cloud-based vision 
systems render real-time performance unsustainable for mobile 
terminals, and (2) keyframe-dependent image matching schemes 
are prone to positional discontinuities, particularly in dynamic 
environments or feature-deficient regions. 

 
To mitigate the aforementioned challenges, this study puts 
forward a lightweight visual-inertial integrated framework 
characterized by tight coupling between visual data and inertial 
measurements. This methodology synergizes feature-based 
keyframe matching with inertial measurement unit (IMU) data 
through an extended Kalman filter (EKF)-based estimation 
architecture. By fusing visual feature constraints with inertial 
data propagation, the system achieves trajectory optimization 
that preserves the precision of vision-aided localization while 
substantially enhancing the spatiotemporal continuity of the 
positioning outputs. This hybrid approach provides a robust 
solution for resource-constrained platforms that require 
continuous, high-accuracy indoor positioning. 
 

2. System Process Overview 

The proposed lightweight indoor localization system that 
integrates keyframe recognition and inertial navigation, is 
illustrated in Fig. 1. As shown in the workflow diagram, the 
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framework is structurally partitioned into three modular 
components: (1) a vision-based localization module, (2) an 
inertial navigation module, and (3) a fusion engine for optimized 

pose estimation. The specific implementation procedures of the 
proposed framework are outlined below. 

 

 
 
Figure 1. Workflow Diagram of the Indoor Positioning System Integrating Keyframe Recognition and Inertial Navigation Technology. 
 
 
2.1 Visual Localization 

2.1.1 Data Preprocessing: The environmental feature 
database is constructed through the following procedure. First, 
video sequences are repeatedly captured (3-4 times per position) 
using video acquisition equipment. Each video is subsequently 
frame-decomposed to extract the XFeat features and VLAD 
global descriptors. From these, N keyframes with salient feature 
representations are uniformly selected, and the corresponding 
camera pose parameters are recorded. Global feature matching is 
performed for each keyframe to establish similar image sets. The 
training dataset is augmented using geometric (rotation and affine 
transformation) and photometric (grayscale conversion and 
filtering) transformations. Leveraging transfer learning, a pre-
trained MobileNet V3-Small architecture is fine-tuned to develop 
a keyframe recognition model. Finally, all XFeat descriptors are 
connected to their spatial pose information to establish an 
integrated environmental feature-pose-mapping database. 
 
2.1.2 Real-time Positioning: Real-time video streams are 
ingested into a pre-trained keyframe recognizer to obtain the 
coarse positional region and corresponding reference keyframe. 
Subsequently, the XFeat descriptors are extracted from the query 
frame and matched against the environmental feature database. 
Pose refinement is achieved through affine transformation 
parameter estimation and homography matrix decomposition, 
enabling centimeter-level localization accuracy. 
 
2.2 Inertial Navigation 

Localization was achieved by integrating tri-axial accelerometers 
and gyroscopes within an inertial measurement unit (IMU). The 
linear acceleration components along each axis are double-
integrated to compute the real-time position and velocity vectors 
of the moving platform. Gyroscopes measure either vibrational 

phase differentials (as in Coriolis-effect gyroscopes) or angular 
velocities, which are integrated using rotation vector algorithms 
to resolve the three-dimensional attitude angles (pitch, roll, and 
yaw) within the navigation coordinate frame. 
 
2.3 Fusion-based Localization Output 

The proposed tightly coupled vision-inertial architecture based 
on an extended Kalman filter (EKF) achieves enhanced 
localization performance through mutual constraint mechanisms. 
The inertial navigation system (INS) serves as the primary 
kinematic constraint, leveraging its high-frequency output 
capability to bridge perceptual gaps in vision-based localization 
and ensure continuous pose estimation during visual feature 
degradation. Concurrently, the vision-based localization module 
mitigates INS drift accumulation through environmental feature 
re-localization, establishing a bidirectional constraint mechanism. 
This synergistic framework ultimately yields accurate and 
continuous positioning outputs by combining the complementary 
strengths of both sensory modalities. 
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3. Detailed Elaboration of Key Technologies for this study 

3.1 Development of the Key Frame Recognizer 

3.1.1 Lightweight Feature Point Detection: Traditional 
feature point extraction approaches that do not rely on 
convolutional neural networks—including SURF and ORB—are 
predominantly dependent on static algorithmic frameworks for 
feature point extraction, thereby providing minimal scope for 
adaptive adjustments to varying environmental conditions or 
application-specific requirements. Consequently, each algorithm 
can only excel in its specific domain of expertise and fails to 
universally accommodate all scenarios. Additionally, these 
algorithms exhibit high computational complexity, resulting in 
suboptimal performance on mobile devices with average 
computational capabilities.	 In order to achieve superior 
performance, this paper employs Xfeat as the feature point 
recognition algorithm. 
 

XFeat adopts a novel convolutional neural network architecture, 
utilizing meticulously designed strategies for keypoint detection 
and local feature extraction, aiming to minimize computational 
overhead while maintaining robustness and accuracy. 
Furthermore, XFeat is applicable to both sparse feature matching 
based on keypoints and dense matching of coarse feature maps. 
In comparison with other image matching approaches, XFeat 
achieves a superior balance between matching precision and 
computational efficiency. It outperforms the vast majority of 
lightweight deep learning-based local feature methods in terms 
of speed, while simultaneously attaining accuracy comparable to 
that of larger-scale models such as SuperPoint 
The network architecture of XFeat comprises three major 
modules: a lightweight backbone network, a dual-branch feature 
extractor (for keypoint detection and descriptor generation), and 
a semi-dense matching refinement module, as illustrated in 
Figure 2.

 

 
 

Figure 2. Schematic illustration of the architectural structure of the XFeat network. 
 
 
1) Featherweight Backbone: A channel optimization strategy is 
employed, wherein the initial layer utilizes only 4 channels. As 
the spatial resolution decreases (with a stride of 2 for each 
subsequent layer), the number of channels is progressively 
increased up to 128. The formalized computational cost is 
expressed as: 

 

𝐹!"# = 𝐻$ ∙ 𝑊$ ∙ 𝐶$ ∙ 𝐶$%& ∙ 𝑘'                       (1) 

 
Where 𝐻$ and 𝑊$ represent the spatial resolution, 𝐶$ denotes the 
number of channels, and 𝑘 is the size of the convolutional kernel. 
 
By reducing the number of channels at an early stage, the 
computational load is significantly decreased.	Feature maps at 
three scales, specifically 1/8, 1/16, and 1/32, are fused by 
upsampling them to a 1/8 resolution through bilinear 
interpolation, followed by summation. This process enhances the 
robustness against variations in viewpoint. 
 
2) Dual-branch feature extractor: The keypoint detection branch 
of XFeat operates independently from the descriptor branch, 
thereby avoiding mutual interference during joint training. It 
partitions the input image into an 8x8 grid and regresses the 
coordinates of keypoints within each grid through 1x1 
convolution, enabling sub-pixel level localization. Additionally, 

a "dustbin" classification mechanism is introduced to filter out 
invalid regions. 
 
The descriptor generation branch of XFeat outputs a 64-
dimensional dense descriptor map (Dense Descriptor Map), 
which is combined with a reliability map (Reliability Map) to 
select high-confidence features. The reliability map, regressed 
through convolutional blocks, represents the unconditional 
probability of successful feature point matching. 
 
3) Semi-dense matching refinement module: The matching 
strategy is divided into two modes. The sparse mode involves 
extracting 4,096 high-confidence keypoints and rapidly matching 
them through mutual nearest neighbor search (MNN). The semi-
dense mode entails extracting 10,000 feature regions and 
utilizing a lightweight Multi-Layer Perceptron (MLP) to predict 
pixel-level offsets, thereby achieving sub-pixel matching. 
 
4) Training strategy and loss function: The model is trained using 
a mixed dataset of Megadepth and COCO, with a 6:4 ratio to 
balance real-world scenes and synthetic deformation data. Pixel-
level correspondences are employed to supervise the learning of 
feature descriptors and keypoint locations. By leveraging the 
Dual-Softmax Loss, the similarity of matched feature pairs is 
maximized:  
 

𝐿(# = ∑ log(𝑠𝑜𝑓𝑡𝑚𝑎𝑥)(𝑆)$$) − log(𝑠𝑜𝑓𝑡𝑚𝑎𝑥)(𝑆*)$$)$   (2) 
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3.1.2 Global Feature Representation and Matching 
Mechanisms: For the training of the key-frame recognizer, it is 
necessary to extract frame subsets with high similarity that match 
each key frame from the raw image dataset, which serves as the 
training data. Simple similarity retrieval based on elementary 
feature points is insufficient; instead, the features of each frame 
need to be aggregated into a consolidated global descriptor vector. 
In this study, the VLAD algorithm was utilized for both the 
generation of global descriptors and the retrieval of similar 
frames, ensuring the effectiveness of the training data 
construction process. 
 
The VLAD algorithm is predicated on the assumption that each 
image frame encompasses local feature points with a 
dimensionality of 𝑁 ×𝐷(where 𝑁 may be substantial and varies 
per image). The objective is to derive a compact 𝐾 × 𝐷 -
dimensional global descriptor (with 𝐾 being a predefined value, 
e.g., 128) from these 𝑁 ×𝐷 -dimensional features. The core 
procedural steps are outlined as follows: 
 
1) K-means clustering is applied to all 𝑁 ×𝐷-dimensional local 
features to derive 𝐾 cluster centers, designated as 𝐶+. 
 
2) The 𝑁 ×𝐷-dimensional local features are transformed into a 
global feature 𝑉, which exhibits a feature vector dimensionality 
of 𝐾 × 𝐷 —where 𝑘  ranges over K  and 𝑗  over D . The 
corresponding formula is given as follows: 
 

𝑉(𝑗, 𝑘) = ∑ 𝑎+,
$-& (𝑥$)(𝑥$(𝑗) − 𝑐+(𝑗))                  (3) 

 

In this formula, 𝑥$ denotes the 𝑖-th local feature extracted from 
the image, and 𝑐+ represents the 𝑘-th cluster center—with both 
𝑥$  and 𝑐+  being 𝐷 -dimensional vectors. Meanwhile, 𝑎+(𝑥$) 
denotes a binary indicator function: it takes a value of 1 if and 
only if 𝑥$ is assigned to the cluster center 𝑐+, and 0 in all other 
cases. 
 
Ultimately, this process yields a dimensionally reduced global 
descriptor for the image. Through the application of a suitable 
Euclidean distance threshold, all images bearing similarity to the 
key frame can be retrieved with high efficiency. 
 
3.1.3 Key Frame Identification Model: The central system 
module of this research was implemented on mobile devices, 
with computational efficiency emerging as a pivotal factor given 
the algorithm's intensive processing requirements. Consequently, 
MobileNetV3-Small was adopted as the backbone network 
architecture. Through architectural optimizations, MobileNetV3 
achieves superior accuracy compared to most large-scale neural 
networks while maintaining significantly fewer parameters and 
lower computational overhead. The latest iteration, 
MobileNetV3-Small, processes images in just 22 ms-
substantially faster than conventional deep networks. MobileNet 
V3-Small comprises 12 distinct Bneck layers, one standard 
convolutional layer, and two pointwise convolutional layers. 
Notably, it exhibits the following attributes. 
 
1) Depthwise Separable Convolution (MobileNetV1): 
Employing depthwise separable convolution instead of standard 
convolution reduces both parameter count and computational 
requirements by approximately 90% while preserving 
comparable model accuracy. 
 
2) Inverted Residual with Linear Bottleneck (MobileNetV2): 
This enhanced architecture further decreases parameter size and 
computational costs by 30-50% compared to standard 

convolution through its innovative spatial-channel optimization 
approach. 
 
3) Squeeze-and-Excitation Attention Modules: 
The integrated lightweight attention mechanism dynamically 
recalibrates channel-wise feature responses, amplifying relevant 
features while suppressing redundant ones through learned 
channel interdependencies. 
 
4) h-swish Activation Function: 
Implementation of the h-swish activation function, as validated 
by Google AI research, demonstrates approximately 15% 
computational efficiency gains while maintaining numerical 
stability in mobile-optimized networks. 
 

 
 

Figure 3. Distinctive Bneck Structure in MobileNet V3. 
 
3.1.4 Transfer Learning for Key Frame Identification: In 
the current research, the parameters of the pre-trained model were 
derived via the transfer of well-calibrated weights from 
MobileNet V3, which had undergone prior training on the 
ImageNet dataset—this transfer strategy leverages the generic 
feature extraction capabilities already encoded in the model 
through large-scale image learning. To further adapt the model to 
the specific task of keyframe recognition, a fine-tuning process 
was implemented: specific layers of the pre-trained model were 
selected for retraining to capture task-specific patterns, while the 
remaining layers were kept frozen to preserve the pre-learned 
generic features that are critical for robust visual representation. 
Through this targeted adjustment, the intended keyframe 
recognizer, optimized for the indoor positioning scenario, was 
ultimately obtained. 
 
3.2 Development of the Environmental Feature Data 
Database 

By using the XFeat algorithm, feature points in all keyframe 
images are identified, and their corresponding feature descriptors 
are computed. Subsequently, by integrating the positional 
information of the keyframe images along with the camera's pose 
information at the time of capturing each keyframe, an 
environmental feature information database can be constructed. 
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3.3 Vision-based Precise Position Determination 

3.3.1 By utilizing the key-frame recognizer, the key-frame 
corresponding to the current location is identified. Following this, 
XFeat is utilized to extract and characterize feature points from 
the video stream. Next, the feature points within the current video 
stream are matched against those of the respective key frame. In 
the present study, stable corresponding point pairs were first 
screened from the initially matched corresponding point pairs to 
eliminate spurious matches, and the homography matrix 𝑯 
(formulated as Equation (4)) was subsequently computed based 
on these reliable point correspondences. To derive the camera’s 
pose parameters, singular value decomposition (SVD)—a classic 
numerical method for resolving pose parameters—was employed 
to decompose the homography matrix, through which the rotation 
matrix and translation matrix were acquired, followed by the 
calculation of the camera attitude angle 𝜃.//$/0(1. 
 
Further, the set of stable feature points was subjected to random 
perturbation to simulate potential variations in real-world 
imaging scenarios, and the positional differences between the 
perturbed and original feature points were quantified. Inverse-
weighted coefficients were assigned to each feature point 
according to the magnitude of these differences—with smaller 
differences corresponding to higher weights—to suppress the 
impact of abnormal values. On this basis, the weighted mean 
value of the positional distance differences δ($#/.231  between 
feature points in the template image and those in the real-time 
video stream image was computed. 
 
By integrating key imaging parameters and pre-calibrated data, 
including the known camera focal length 𝑓 , the previously 
derived camera attitude angle 𝜃.//$/0(1, the position coordinates 
𝑃4  of the template image, and the shooting distance 𝑧4	  of the 
template image, the spatial distance between the mobile device 
and the current template image was calculated. Through this 
multi-step optimization and integration of geometric constraints 
and feature matching results, the high-precision position 
coordinates 𝑃 (detailed in Equation (5)) of the mobile device in 
the indoor environment were ultimately determined. 
 

𝑯 = 𝑲(𝑹 + 𝑻 &
(
𝑵*)𝑲6&                             (4) 

 
Herein, 𝑲 denotes the intrinsic parameter matrix of the 
camera—a core component that encapsulates the optical and 
geometric properties (e.g., focal length, principal point 
coordinates) of the imaging system in the indoor positioning 
scenario. 𝑑 stands for the inter-center distance, which is relevant 
to the spatial configuration of the imaging setup and critical for 
accurate coordinate mapping. 𝑵 represents the normal vector of 
the camera’s image plane, a parameter that characterizes the 
orientation of the imaging plane relative to the 3D spatial 
coordinate system of the indoor environment. 𝑹 refers to the 
extrinsic rotation matrix of the camera, responsible for 
describing the rotational posture of the camera relative to the 
global coordinate system established for indoor localization. 𝑻 
denotes the extrinsic translation vector of the camera, 
quantifying the linear displacement of the camera relative to the 
origin of the global coordinate system and enabling the 
conversion between 2D image coordinates and 3D spatial 
coordinates. 
 

𝑷 = 𝑷𝟎 + [(δ($#/.231	𝑓 + 𝑧4	)𝑠𝑖𝑛𝜃.//$/0(1				(δ($#/.231	𝑓 +
𝑧4	)𝑐𝑜𝑠𝜃.//$/0(1]*                              (5) 

 

3.4 Inertial Navigation Algorithm 

Inertial Navigation System (INS) is grounded in Newtonian 
mechanics, utilizing inertial sensors to measure the angular 
velocity and linear acceleration of a vehicle's motion. Through 
real-time computation by a computer, it derives navigation 
information such as the vehicle's three-dimensional attitude, 
velocity, and position. INS primarily comprises two components: 
the inertial measurement sensor unit and the computational 
processing unit. 
 
3.4.1 Inertial Measurement Unit (IMU): Inertial navigation 
and positioning technology employs accelerometers and 
gyroscopes to quantify the linear acceleration and angular 
velocity of a moving object, respectively, and derives the object's 
position and attitude through integral computations. The 
accelerometer determines linear acceleration by measuring the 
inertial force generated by the object, often employing micro-
electro-mechanical system (MEMS) technology. The gyroscope, 
on the other hand, measures the angular velocity by detecting the 
rotational speed of the object as it rotates about a certain axis, 
capable of providing information regarding the rotational rates of 
the object around three orthogonal directions.  
 
3.4.2 Quaternion-based Attitude Update: The Inertial 
Navigation System (INS) necessitates the transformation 
between the body-fixed coordinate system and the navigation 
coordinate system, which can be achieved by following a specific 
sequence of rotations based on the attitude angles. Accurate 
attitude determination is crucial for the positioning model. 
Generally, there are three commonly used methods to represent 
attitude, namely the Euler angle method, the direction cosine 
matrix (DCM) method, and the quaternion method. This paper 
adopts the quaternion method for attitude updating. The formula 
is as follows: 
 

𝑞8,+2 = 𝑞8,+6&2 ° Ucos‖0.5∆𝜃+‖
(∆<!)"

‖∆<!‖
sin‖ ‖0.5∆𝜃+_

*
     (6) 

 
Where °  denotes quaternion multiplication; ∆𝜃+  represents the 
angular increment output by the gyroscope from time instant 𝑘 −
1 to time instant 𝑘; ∆𝜃+ ≈ 𝜔+8∆𝑡, 𝜔+8 is the angular velocity at a 
certain time instant; and ∆𝑡  is the sampling interval. The 
corresponding rotation matrix can be obtained by transforming 
the quaternion 𝑞82 = [𝑞&		𝑞'		𝑞?		𝑞@]*. 
 
𝐶82

= c
𝑞&' + 𝑞'' − 𝑞?' − 𝑞@' 2(𝑞'𝑞? − 𝑞&𝑞@) 2(𝑞'𝑞@ + 𝑞&𝑞?)
2(𝑞'𝑞? + 𝑞&𝑞@) 𝑞&' − 𝑞'' + 𝑞?' − 𝑞@' 2(𝑞?𝑞@ − 𝑞&𝑞')
2(𝑞'𝑞@ − 𝑞&𝑞?) 2(𝑞?𝑞@ + 𝑞&𝑞') 𝑞&' − 𝑞'' − 𝑞?' + 𝑞@'

e 

(7) 
 
By leveraging such attitude information, the velocity update 
equation and the position update equation may be formulated as 
follows: 
 

𝑣+2 = 𝑣+6&2 +𝐶8,+2 g∆A!
#%B∆<!

#×∆A!
#D

'
h − 𝑔2∆𝑡              (8) 

 
𝑝+2 = 𝑣+6&2 ∆𝑡+𝐶8,+2 k∆𝑣+8 +

∆<!
#×∆A!

#

'
l ∆𝑡 − 0.5𝑔2∆𝑡'      (9) 

 
∆𝜃+8 = m𝜔+8 − 𝑏Eo∆𝑡                          (10) 

 
∆𝑣+8 = m𝑓+8 − 𝑏Fo∆𝑡                           (11) 
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3.5 Fusion Localization Algorithm Based on Extended 
Kalman Filter 

The Extended Kalman Filter (EKF) is primarily employed to 
address the state estimation problem in nonlinear systems. The 
localization process of the Pedestrian Dead Reckoning (PDR) 
technology is nonlinear and less susceptible to indoor 
environmental influences; however, it suffers from accumulated 
errors, leading to poor localization stability and making it 
unsuitable for standalone use over extended periods. In contrast, 
visual localization technology is easily affected by indoor 
environmental factors but does not accumulate errors, thus 
maintaining stable localization accuracy during prolonged use. 
This paper adopts the Extended Kalman Filter to fuse these two 
localization technologies, utilizing the localization results from 
visual localization as observed values and those from PDR 
localization as state estimates to construct a localization system 
that achieves the integration of both technologies. 
 
The state vector and observation vector of the positioning system 
are herein defined as follows: 
 

p
𝑋+ = [𝑥+ , 𝑦+ , 𝜑+]*

𝑍+ = [𝑥̇+ , 𝑦̇+]*
                             (12) 

 
Where 𝑥+  and 𝑦+  denote the predicted position coordinates at 
the k-th step, 𝜑+  represents the predicted pedestrian heading 
angle at the k-th step, 𝑥̇+  and 𝑦̇+  indicate the localization 
coordinates obtained from visual localization at time instant k. 
 
The state equation for the positioning system is formulated as 
follows: 
 

𝑋+ = v
𝑥+
𝑦+
𝜑+
w = v

𝑥+6& + 𝑠+6& ∙ sin𝜑+6&
𝑦+6& + 𝑠+6& ∙ cos𝜑+6&

𝜑+6& + ∆𝜑
w +𝑊         (13) 

 
The observation equation is given by: 
 

𝑍+ = x
𝑥̇+
𝑦̇+
y + 𝑉                               (14) 

 
Where 𝑊  represents the additive Gaussian white noise vector 
associated with the system's state equation, and 𝑉 denotes the 
Gaussian white noise vector of the system observation equation, 
with both being mutually independent. 𝑥+6& and 𝑦+6& signify the 
fused localization coordinates obtained at time instant k−1, 𝑠+6&
 indicates the step length determined at time instant k−1, 
𝜑+6& represents the pedestrian heading angle acquired at time 
instant k−1, and ∆𝜑  denotes the anticipated increment of the 
pedestrian heading angle. By performing a Taylor expansion on 
the nonlinear portion, the state transition matrix 𝐴+   can be 
derived as follows: 
 

𝐴+ = v
1 0 𝑠+6& ∙ sin𝜑+6&
0 1 𝑠+6& ∙ cos𝜑+6&
0 0 1

w                   (15) 

 
The observation matrix 𝐻+ is given by: 
 

𝐻+ = U1 0 0
0 1 0_                              (16) 

 
The initial covariance matrix 𝑃& is given by: 
 

𝑃& = v
1 0 0
0 1 0
0 0 1

w                              (17) 

 
The system process covariance noise matrix 𝑄  and the 
observation noise covariance matrix 𝑅 are defined as follows: 
 

𝑄 = c
𝛿G' 0 0
0 𝛿H' 0
0 0 𝛿I'

e                            (18) 

 

𝑅 = ~
𝛿G' 0
0 𝛿H'

�                                (19) 

 
Where, 𝛿G' and 𝛿H' respectively denote the localization variances 
along the X-axis and Y-axis for both Pedestrian Dead Reckoning 
(PDR) localization and visual localization, while 𝛿I'  represents 
the variance of the heading angle. 
 
Following the complete setup of all the aforementioned initial 
conditions, iterative computations are conducted to derive the 
localization outcomes of the fusion localization algorithm that is 
based on the Extended Kalman Filter. 
 

4. Experiment and Results 

To rigorously validate the proposed indoor localization 
technology, a systematic experimental protocol was designed to 
evaluate its functional feasibility and positioning accuracy. The 
experimental workflow comprises software deployment, 
localization testing, and quantitative analysis. Furthermore, the 
experiment not only assessed the positioning performance of the 
system proposed in this study but also compared its accuracy 
against that of traditional WiFi positioning and standalone PDR 
positioning. All tests were conducted under identical 
environmental conditions, with strict control over factors such as 
indoor signal interference and pedestrian movement speed to 
ensure fair comparison. 
 
4.1 Experimental Hardware Environment 

To validate the feasibility and accuracy of the indoor positioning 
system that integrates visual and inertial navigation proposed in 
this paper, corresponding experiments were designed. The 
positioning terminal employed in the experiments was a mobile 
phone (model: Samsung Galaxy S23), which is equipped with 
both an IMU (Inertial Measurement Unit) module and a camera, 
thus meeting the hardware requirements of the proposed system. 
 
4.2 Image Data Acquisition and Preprocessing 

Environmental images of the experimental site were uniformly 
collected, and XFeat was employed to identify and describe 
feature points from all the acquired environmental image data. 
Frames with prominent features were selected from all the 
environmental images as key frames, ensuring a relatively 
uniform distribution of these key frames across the experimental 
site. The camera pose data was documented at the moment each 
key frame was captured. Ultimately, the development of a key-
frame identifier and a database containing environmental feature 
information was undertaken. 
 
4.3 Analysis of Experimental Results 

Dynamic localization experiments were performed at the 
designated test site. For three different localization schemes (the 
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system proposed in this paper, traditional WiFi localization, and 
single PDR localization), identical routes were tested at least 30 
times. The average deviation of each scheme from the true 
trajectory was ultimately calculated to obtain the average error 
for each approach. Traditional WiFi localization exhibited an 
average error of approximately 1.5 meters, while the single PDR 
scheme yielded an average error of around 2.3 meters. In contrast, 
the scheme proposed in this paper managed to control the average 
error within approximately 0.1 meters, and was capable of 
outputting localization results for at least 5 frames per second. 
The experimental data fully demonstrated the feasibility, high 
efficiency, and high precision of the scheme proposed in this 
study. 
 

 
 

Figure 3. Comparison between real track and test track.. 
 

5. Conclusion 

This paper presents a lightweight localization scheme that tightly 
couples visual and inertial information. Based on feature-based 
key-frame matching, this scheme integrates data from an Inertial 
Measurement Unit (IMU) to construct position estimation using 
an Extended Kalman Filter. While maintaining the accuracy of 
visual localization, it significantly enhances the spatiotemporal 
continuity of the localization results. 
 
Experimental findings demonstrate that the localization error 
associated with the proposed approach maintains a consistent 
range of approximately 0.1 meters. Compared to traditional 
indoor localization schemes, this approach offers multiple 
advantages, including the elimination of the need for pre-
installed hardware, higher accuracy, lower computational 
overhead, and improved localization continuity. Further in-depth 
research will be conducted in this paper with the aim of further 
enhancing the accuracy and stability of localization. 
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