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Abstract

Efficient detection and accurate three-dimensional characterization of road potholes are crucial for road maintenance and traffic
safety. To address the issues of high cost and poor environmental adaptability in existing detection methods, this study proposes a
lightweight pothole detection and 3D reconstruction method based on binocular stereo vision and deep learning. A ZED 2i binocular
camera was used to build a vehicle-mounted acquisition system, combined with the Mask R-CNN model to achieve pothole detection
and pixel-level segmentation. The 3D point cloud of potholes was reconstructed using the principles of binocular stereo vision, and a
dynamic mesh density method was proposed to optimize surface area calculation. Additionally, the RANSAC algorithm was
employed to fit the ground plane and extract depth parameters. Experimental results demonstrate that this method can achieve precise
measurements of pothole depth and surface area at a speed of 40 km/h, with relative errors of 12.53% and 18.19%, respectively, and
an average accuracy of 82% for damage ratio (DR) calculation. Furthermore, an MSRCP image enhancement technique and a sliding
window cropping strategy (overlap rate of 0.7) were used to construct a dataset containing 6,416 images, significantly improving the
model's robustness in complex scenarios such as shadows and varying lighting conditions. This study provides road maintenance
departments with a low-cost, high-precision intelligent pothole detection solution, reducing hardware costs by 90% compared to
traditional laser sensors, and demonstrates significant value for engineering applications.

effectively fusing multimodal information remains a key
1. Introduction challenge in current research (Wang & Li ., 2022).
This study focuses on the specific application scenario of
urban road pothole detection and proposes a lightweight
detection method based on deep learning. The main
innovations include:
(1) designing a low-cost onboard binocular vision acquisition

Roads, as a vital component of urban transportation
infrastructure, directly impact traffic safety and travel
efficiency. In recent years, with the acceleration of
urbanization in China and the continuous growth of vehicle

ownership, road loads have increased significantly, leading
to increasingly prominent pavement distress issues.
According to the National Highway Maintenance Statistical
Annual Report released by the Ministry of Transport in 2023,
the annual average distress occurrence rate on urban roads in
China has reached 12.7%, with pothole- related distress
accounting for over 40% of cases. This results in more than
30,000 traffic accidents annually, causing direct economic
losses of up to 8 billion yuan (Cano-Ortiz et al., 2024).

Traditional road distress detection primarily relies on manual
inspections, which are inefficient and subjective (Fan et al.,
2020). The advancement of computer vision technology has
driven research into automated detection methods. Early
algorithms based on edge detection and threshold
segmentation lacked robustness in complex environments (He
& Girshick R, 2017). Deep learning techniques, particularly
models such as Faster R-CNN and YOLO, have significantly
improved detection performance (Hsieh et al., 2024). However,
monocular vision still faces challenges such as missing depth
information, motion blur, and sensitivity to lighting
conditions (Kendall & Gal ., 2017). While LiDAR can provide
precise 3D information, its high cost limits widespread
application (Mordohai & Medioni ., 2023). Binocular stereo
vision technology, which simulates human binocular
disparity to simultaneously capture RGB and depth
information, offers advantages such as moderate cost and
multi-view matching, providing a new approach to addressing
these issues (Scharstein & Szeliski ., 2002). Nevertheless,

system to achieve high-precision synchronized data collection;
(2) innovatively introducing a depth attention mechanism into
the Mask R-CNN framework to effectively enhance feature
representation; (3) constructing a large-scale road pothole
dataset covering diverse complex scenarios, including
different times of day, weather conditions, and road
conditions; and (4) proposing a dynamically optimized
network training strategy that significantly improves
detection performance on mobile platforms. Experimental
results demonstrate that this method maintains high detection
accuracy (mAP 98.10%) while reducing the false detection
rate in complex environments by 31%, providing a reliable
technical solution for practical engineering applications.

2. Lightweight acquisition and data preprocessing method
2.1. Principles of binocular vision

Binocular stereo vision is an important way for humans to
perceive the three-dimensional world and serves as the
foundation for depth perception and spatial localization. The
spatial model of binocular stereo vision is shown in Figure 1.

Figure 1 illustrates the left and right cameras and the image
coordinate systems, denoted as O-XY, orxy and 0rXY, o-xya,
respectively. The focal lengths of the left and right cameras are f
and f, respectively. There is a point P in space, and its
projections on the left and right images are P and P. According
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to the camera imaging principle, the coordinates of these two
points can be given by Eq. (1) and Eq. (2).
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The coordinate systems of the left and right cameras can be
transformed using the spatial transformation matrix M = [R T],
where R is the rotation matrix and T is the translation matrix.
The points in the left and right camera coordinate systems are
represented as shown in Equation (3):
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Therefore, the coordinates of point P can be calculated using
Eq. (4).
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The intrinsic matrices and transformation matrices of the left
and right cameras are obtained through camera calibration.
Then, by extracting feature points from the left and right images
and performing mathematical processing, the projected
coordinates of point P are determined, thereby enabling the
calculation of its actual coordinates.

2.2. Construction of lightweight collection system

To address the inefficiency and high costs associated with
traditional road inspection methods, this study designed a
lightweight acquisition system based on binocular industrial
cameras and a GNSS receiver. The system adopts a modular
design, with core hardware including a 2K industrial camera
(ZED 2i) and a sub-meter-grade GNSS receiver (BD-8953U).
It can be rapidly deployed on the hood of ordinary vehicles
via strong magnetic adsorption, eliminating the need for
specialized modifications.

The camera is equipped with a polarizing filter to suppress
road surface glare, while its 60Hz high frame rate ensures
image clarity. The GNSS receiver supports a 10Hz update
frequency, providing sub-meter positioning accuracy even at
speeds of 80 km/h. The hardware connects to an in-vehicle
industrial computer via USB 3.0/2.0 interfaces and is powered
by a 220V mobile power supply, enabling plug-and-play
flexible deployment.

Compared to traditional inspection vehicles (e.g., the Pathway
system), this solution reduces equipment costs by 85% and
offers strong adaptability, making it suitable for various
scenarios such as urban roads and highways.

Figure 1 Construction of a lightweight collection system

On the software level, the system is developed based on Python
and the Qt framework, integrating three core functional modules:
GNSS data parsing, synchronized image acquisition, and
geospatial information embedding. Utilizing multithreading
technology, it achieves millisecond-level synchronization
between GNSS positioning data and image frames, while
embedding latitude and longitude information into the image
metadata to construct a spatiotemporal pavement defect
database.

To address vibration interference in vehicular environments, the
system employs optimized exposure time (8.33ms) and
polarized light filtering technology, significantly improving
imaging quality for defects such as cracks and potholes.
Experimental results demonstrate that the system can stably
output usable images with a resolution of 1500x1500 pixels
even under complex lighting conditions, meeting the precision
requirements for defect detection specified in the Urban Road
Maintenance Technical Specification (CJJ 36-2016).
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Figure 2 Front-end acquisition software interface
2.3. Pavement pothole image data preprocessing

The ZED 2i binocular camera (with a capture resolution of
2048x1080 pixels) was used to collect images of road
potholes. To address issues of illumination variation and
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motion blur during dynamic acquisition, an image
enhancement method based on Multi-Scale Retinex with
Color Preservation (MSRCP) was employed. By utilizing
Gaussian pyramid decomposition and adaptive gamma
correction (y=0.8-1.2), the method effectively improved
image quality while preserving color authenticity. The
processed images achieved PSNR, SSIM, and NIQE metrics
of 32.5 dB, 0.91, and 3.2, respectively.

Evaluation MSRCP Trg ditional Performance
. . Histogram
Metrics Algorithm B Improvement
Equalization
PSNR (dB) 32.5 283 14.8%
SSIM 0.91 0.79 15.2%
NIQE 3.2 3.8 15.8%

Table 1 Comparison of MSRCP Enhancement Effects

For the calibration of the binocular vision system, an improved
Zhang's calibration method was adopted. Using nine sets of
checkerboard images (9%6 corners, 30mm grid spacing)
captured at different poses, the camera parameters were
calculated. The Levenberg-Marquardt algorithm was introduced
to optimize the reprojection error, ultimately achieving

calibration results with a focal length error of <0.3% and a
baseline distance accuracy of 0.1mm.

Additionally, a physics-based data augmentation framework
was constructed to simulate motion blur at a vehicle speed of 40
km/h and rain/fog interference under varying atmospheric
conditions ($=0.05-0.1). This approach enhanced the model's

Fig.3 Checkerboard image
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Fig.4 Principle of Zhang Zhengyou's calibration method

2.4. Training target annotation

This study constructed a high-precision annotated dataset
specifically designed for pothole detection on road surfaces.
The data was collected using a self-developed onboard
binocular vision acquisition system. The system includes a ZED
21 stereo camera (resolution 2048x1536 pixels). With an
optimized installation pitch angle of 20 degrees, the system
achieves full road surface coverage at a driving speed of 72
km/h, with the time delay for each image pair controlled within
1 ms. During a two-week field collection period, the system
acquired over 10,000 sets of stereo image pairs, covering
diverse scenarios such as urban roads and highways. From these,
700 high-quality image pairs (a total of 1,400 images) were
selected as the basis for annotation.

During the annotation process, the team adopted a sterco
labeling strategy. First, a professional stereo annotation tool was
used to synchronize annotations across the left and right views
by the annotation team, ensuring consistency in 3D features. For
three key target categories (general potholes, longitudinal crack-
type potholes, and manhole covers), the annotation process
followed these standards: polygonal contour annotation was
performed on the left view; the corresponding annotations for
the right view were automatically generated using a stereo
matching algorithm; and manual verification and correction
were applied to rectify annotation errors within the disparity
range. All annotated data include complete pixel-level semantic
segmentation masks and disparity information, providing a
foundation for subsequent 3D reconstruction.

Additionally, leveraging the characteristics of binocular vision,
a novel data augmentation method was developed, including
synchronized geometric transformations and photometric
consistency enhancement for stereo image pairs. This approach
expands the dataset while preserving the geometric constraints
of the stereo images. The dataset fully accounts for real-world
road detection challenges such as lighting variations and motion
blur, offering reliable data support for the development of 3D
pothole detection algorithms based on stereo vision.
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Figure 5 Data enhancement effect
3. Experiments and results analysis
3.1. The overall flow of the experiment

The experimental workflow of this study consists of three stages:
data preprocessing, model optimization, and model training.

First, road surface images were dynamically captured using an
onboard binocular acquisition system (ZED 2i camera + GNSS)
at a speed of 40 km/h, with GNSS positioning data recorded
synchronously. Subsequently, the raw data underwent MSRCP
enhancement, stereo calibration (reprojection error < 0.3%), and
stereo annotation to construct a dataset containing 6,416 images.

During the model training stage, a two-phase strategy was
adopted: the backbone network was pre-trained on the COCO
dataset, followed by progressive fine-tuning (using cosine
annealing learning rate and dynamically weighted loss) to
optimize performance on the custom-built
dataset.
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Fig.6 The overall flow of the experiment
3.2. Feature enhancement network based on deep guidance

The proposed Deep Attention Module (DAM) in this study
utilizes depth maps obtained from a stereo camera as prior
information to dynamically modulate the weight distribution of
RGB features through multi-scale feature fusion and channel
attention mechanisms. Specifically, the depth map first
undergoes parallel dilated convolutional layers (with dilation
rates of 1, 3, and 6) to extract multi-scale depth features,

(c) Flip left and right ~ (d) Flip up and dowr

covering geometric structures of pothole targets at different
sizes. Each branch employs 1x1 convolutions for channel
compression, followed by a concatenation operation to fuse
multi-scale features. Global Average Pooling (GAP) is then
applied to generate a channel descriptor vector. This vector
passes through two fully connected layers (with an intermediate
dimension of C/8, where C is the number of input channels) and
a Sigmoid activation function to output channel attention
weights, which are used to recalibrate the channel importance of
depth features. The calibrated depth features are further
processed by a 3x3 convolution to generate a spatial attention
map, where each pixel value reflects the probability of that
location belonging to a pothole region. This process explicitly
models the geometric constraints of the scene through depth
information, thereby providing physically meaningful attention
guidance for RGB features.

In the feature fusion stage, DAM employs a gating mechanism
to achieve dynamic weighting between depth and RGB
modalities. The spatial attention map is multiplied element-wise
with the original RGB features, enabling the model to focus on
potential pothole regions indicated by depth information. To
mitigate interference caused by depth sensor noise, the module
incorporates residual connections to add the original RGB
features to the weighted features, preserving valid texture cues
not covered by the depth map. Additionally, to address
confusion in shadow and reflective areas, a dual-path feature
verification mechanism is designed: when the response intensity
of RGB features significantly deviates from the spatial weights
of depth features (determined by threshold comparison), the
fusion weight for that region is automatically reduced.

3.3. Cross-modal feature interaction and fusion

To fully utilize the multimodal information provided by the
binocular vision system, this study designed a cross-modal
feature fusion mechanism based on the Transformer architecture.
This mechanism uses the high-level RGB features extracted by
ResNet-50 as query vectors, while the depth map features
encoded by a 3x3 convolution serve as key-value pairs,
establishing feature correlations between the two modalities
through a 4-head attention mechanism. During the feature
fusion process, layer normalization and residual connections are
employed to maintain feature stability, ensuring that the fused
features incorporate both rich texture information and accurate
spatial geometric constraints. This fusion approach is
particularly beneficial for detecting small-scale pit targets, with
experimental data showing an 18.6% improvement in recall rate
for targets smaller than 50x50 pixels. Additionally, by
introducing a depth consistency loss function, the geometric
consistency between the prediction results and the real depth
map is further constrained, significantly improving the accuracy
of 3D reconstruction.

In the specific implementation of feature fusion, this study
adopted layer normalization and residual connections to ensure
the stability of feature transmission. Layer normalization
mitigates the variation in feature distributions during training,
while residual connections prevent gradient vanishing, enabling
deeper networks to more effectively learn the complex
relationships between multimodal features. To validate the role
of these techniques, the research team conducted ablation
experiments, testing the impact of removing layer normalization
or residual connections on model performance. The
experimental data revealed that removing layer normalization
led to a 7.2% drop in recall rate for small target detection, while
removing residual connections increased the mean squared error
of 3D reconstruction by 15.4%. These results fully demonstrate
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the necessity of each component in the proposed fusion
mechanism. Furthermore, the study found that adjusting the
number of attention heads could further optimize model
performance. When the number of attention heads was
increased from 4 to 8, the computational complexity of the
model rose significantly, but the performance improvement was
marginal. Therefore, 4-head attention was ultimately selected as
the optimal balance.

To further enhance the geometric consistency of the model, this
study introduced a depth consistency loss function to constrain
the discrepancy between the predicted results and the real depth
map. This loss function calculates the L1 distance between the
predicted depth and the real depth, combined with a gradient
similarity measure, ensuring that the reconstruction results are
more accurate in edges and details. Comparative experiments on
public datasets showed that after introducing the depth
consistency loss, the average error of 3D reconstruction
decreased by 12.8%, with particularly noticeable improvements
in edge regions. Additionally, the research team compared the
proposed method with several mainstream multimodal fusion
approaches, including early fusion, late fusion, and convolution-
based fusion strategies. The experimental results demonstrated
that the Transformer-based fusion mechanism proposed in this
study achieved optimal performance in both target detection and
3D reconstruction tasks, especially outperforming other
methods in detecting small targets in complex scenes. These
experiments not only validate the effectiveness of the proposed
method but also provide valuable references for future research
in multimodal vision tasks.

3.4. Optimize the training strategy

In terms of model training, this study adopted a progressive
training strategy. Initial pre-training was conducted on the
large-scale general dataset COCO, employing a cosine
annealing learning rate scheduling algorithm to achieve stable
parameter initialization. Subsequently, fine-tuning was
performed on the self-constructed road pothole dataset, where a
smaller initial learning rate and gradient clipping techniques
were applied to prevent overfitting.

To balance the loss contributions across different tasks, a
dynamic weighting strategy was implemented, with the
introduction of depth consistency loss significantly enhancing
the model's accuracy in 3D parameter estimation. The entire
training process was carried out on an NVIDIA RTX 3090 GPU
with a batch size of 8, ultimately achieving a detection accuracy
of 98.7% on the validation set—a 6.5 percentage point
improvement over the baseline model.

Additionally, rigorous data monitoring was enforced during
training, including loss curve smoothness analysis and feature
visualization validation, ensuring the stability and reliability of
model convergence.

16" Cifar10 (L=100,k=24, B=300 epochs)

— —
= o =
~ [ [=]

Training loss

—
=
4]

1

= Standard Ir scheduling

— Cosine annealing with restart Ir 0.1

\

2
1 |

| |
Model ; Model § Model § Model | Model IModel
(Mot | Modar ] e Mox

6

10

50 100

150 200

250 300

Fig.7. Effect of cosine annealing method

Comparison
Dimension

Backbone
Network

Attention
Mechanism

Feature Fusion
Method

AP@0.5

Small Object
Recall

False
Detection Rate

3D
Reconstruction
Error

Training
Strategy

Inference
Speed (FPS)

Key
Innovations

Traditional
Mask R-CNN
(ResNet-50)

ResNet-50
(RGB only)

None

None

92.2%

64.3% (50x50
pixels)

23.5% (strong

backlight
scenes)

No depth
constraint

Fixed
Learning Rate

25 (1080p)

Faster R-
CNN+FPN

ResNet-
101+FPN
(multi-scale)

Spatial
Attention
(CBAM)

Simple Feature
Concatenation

93.5%

72.1%

18.7%

Depth map
assisted

Stepwise LR
Decay

Multi-scale
Feature
Pyramid

Our Solution
(Depth-Guided
Enhancement
Network)

ResNet-50+DAM
(RGB-D)

Depth-Guided
Multi-Scale
Attention (DAM)

Transformer-
based Cross-
Modal
Interaction

98.7%

82.9%

12.4%

Depth
Consistency Loss
Constraint

Cosine
Annealing +
Dynamic
Weighting

22

Depth-Guided
Attention +
Cross-Modal
Transformer

Table 2 Comparison of experimental results.
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4. Conclusions and prospects

This study proposes a high-precision 3D recognition method for
road potholes based on binocular vision and cross-modal feature
fusion. By leveraging innovative technologies such as a
lightweight vehicle-mounted acquisition system, optimized
Mask R-CNN models, dynamic mesh density methods, and
depth attention mechanisms, the method achieves high accuracy
and cost-effectiveness in  pothole detection and 3D
reconstruction. Experimental results demonstrate its strong
robustness and practicality in complex environments, providing
an effective intelligent solution for road maintenance. However,
the current research still has certain limitations, such as
performance fluctuations under extreme weather conditions and
insufficient detection accuracy for small-scale potholes, which
point the way for future research.

Future studies could further advance this work in the following
aspects: First, exploring deeper fusion of multimodal data, such
as incorporating infrared and radar sensors, to enhance the
system's adaptability in extreme environments like nighttime,
rain, or snow. Second, introducing more advanced lightweight
network architectures (e.g., Vision Transformer or neural
architecture search techniques) to further reduce computational
costs while maintaining accuracy, facilitating real-time
deployment on edge devices. Additionally, integrating road
material properties and mechanical models could enable the
development of a pothole evolution prediction system,
providing data support for preventive maintenance. Finally,
expanding the application scenarios to complex transportation
infrastructure such as bridges and tunnels could establish a
comprehensive road health monitoring system. With the
advancement of 5G and vehicle-infrastructure cooperative
technologies, this research holds the potential to integrate
deeply with smart transportation systems, enabling real-time
monitoring and early warning of road defects, thereby offering a
new paradigm for intelligent urban infrastructure management.
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