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Abstract

The safe operation of supertall buildings urgently requires real-time, high-precision attitude monitoring. However, under the coupled
influence of complex operational loads and extreme environmental factors such as wind, earthquakes, temperature, and humidity,
GNSS-based deformation monitoring systems often face challenges such as discontinuous data acquisition, fluctuating accuracy, and
strong nonlinearity. These issues hinder the ability to meet the demands for real-time, high-precision, and high-frequency structural
health monitoring of supertall buildings. To address these challenges, this paper proposes an attitude monitoring method that
integrates Tunable Q-factor Wavelet Transform (TQWT) with a Temporal Convolutional Network—Long Short-Term Memory
(TCN-LSTM) hybrid neural network model. The model adopts a serial architecture to significantly enhance the capability of
processing attitude information. Additionally, a Global Attention Mechanism (GAM) is incorporated to improve the model’s
sensitivity, responsiveness, and representational accuracy for local anomalies and non-stationary features, thereby enabling real-time
and high-precision monitoring of torsional deformations in supertall buildings. Based on this approach, a spatiotemporal prediction
model for building attitude was developed. Validation experiments using a GNSS multi-antenna system demonstrated that the
proposed TQWT-TCN-LSTM-GAM model achieves significantly higher prediction accuracy under complex environmental

conditions compared to traditional neural network and machine learning methods.

1. Introduction

1.1 Background and Challenges of GNSS Multi-Antenna
Attitude Monitoring in supertall buildings

The structural safety of supertall buildings has become a critical
issue under long-term operational loads and extreme
environmental conditions such as strong winds, earthquakes,
temperature variations, and humidity. Accurate and real-time
monitoring of structural attitude, especially torsional
deformation, is essential for ensuring safety and serviceability
throughout the building’s lifecycle.

Multi-antenna Global Navigation Satellite System (GNSS)
technology has shown promise in attitude determination by
using carrier phase difference observations to calculate
high-precision relative vectors between a reference antenna and
multiple slave antennas (Liu and Ou, 2003). When antennas are
strategically deployed at key locations of a super high-rise
structure, the system can effectively monitor building attitude
changes. GNSS-based attitude determination methods are
typically divided into direct attitude solutions and least
squares-based approaches, depending on antenna configuration
(Chen et al., 2012). While both methods show comparable
accuracy under ideal conditions (Zhang et al., 2016), their
performance in complex environments is highly sensitive to
observational errors, such as atmospheric delays and multipath
interference, as well as external factors including antenna layout,
baseline length, and the number of antennas (Ballal and
Bleakley, 2014). To enhance short-baseline ambiguity
resolution, Teunissen (1999) introduced a baseline-constrained
approach for reliable ambiguity fixing. Zhang et al. (2020)
designed a single-receiver GNSS system supporting multiple

antennas and achieved static attitude accuracy better than 0.1°
by fixing single-difference ambiguities. In dynamic shipborne
tests, Wei et al. (2022) proposed a baseline-length-weighted
least squares method that improved roll angle accuracy by 13%,
providing new insights for GNSS-based systems in complex
motion platforms. Nevertheless, applications of GNSS
multi-antenna systems in supertall buildings remain rare. Unlike
mobile platforms, such buildings are subject to quasi-static
deformations and vibration responses under compound loads. In
such scenarios, GNSS-based monitoring systems are often
hindered by discontinuous data, accuracy fluctuations, and
strong nonlinearity (Liu et al., 2025), making it difficult to meet
the demands of high-frequency, high-precision real-time health
monitoring.

To overcome these challenges, this study introduces deep
learning techniques to enhance GNSS-based attitude monitoring.
The aim is to achieve real-time and high-precision prediction of
torsional deformation, enabling comprehensive structural
monitoring over the entire service life of supertall buildings.

1.2 Related Work:
Deformation Monitoring

Deep Learning in Structural

Recent studies have demonstrated the effectiveness of deep
learning models in modeling nonlinear and non-stationary time
series data in various structural monitoring scenarios. Wu (2025)
proposed a TCN-RBF hybrid architecture based on wavelet
packet decomposition for bridge settlement prediction. The
approach decouples the data into frequency components, where
Temporal Convolutional Networks (TCN) and Radial Basis
Function (RBF) networks separately model low-frequency
trends and high-frequency fluctuations. The model significantly
improved prediction accuracy on the Equator Bridge dataset. Lii
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et al. (2025) developed a three-stage architecture integrating
Variational Mode Decomposition (VMD), Atom Search
Optimization (AOA), and Bidirectional LSTM (BiLSTM) to
enhance dam deformation forecasting, achieving optimal
performance across all evaluation metrics. In landslide
displacement forecasting, Wang et al. (2021) introduced a
Mutual Information-IPSO-LSTM  framework, combining
environmental factor selection via mutual information with
LSTM optimization through Improved Particle Swarm
Optimization (IPSO), achieving sub-centimeter-level RMSE.
For ship attitude forecasting, Ma Chao (2023) designed a
VMD-TCN composite model, where each intrinsic mode
function (IMF) decomposed by VMD is modeled separately by
TCNs, enabling high-accuracy short-term motion prediction.
Furthermore, Ma et al. (2025) developed a robust
VMD-TCN-LSTM-NGO architecture combining TCN and
LSTM with NGO-based parameter tuning. Validated under sea
state 5 using the KCS benchmark model, the framework
achieved stable 10-second predictions for heave and pitch,
outperforming single models in robustness.

While hybrid models are used in dams, bridges, and ships, their

application to supertall building monitoring remains unexplored.

This study fills this gap by introducing a novel
TQWT-TCN-LSTM-GAM hybrid model, designed specifically
for real-time, high-precision prediction of torsional deformation
in supertall buildings based on GNSS multi-antenna time series
data.

2. Methodology
2.1 GNSS-Based Multi-Antenna Attitude Determination

2.1.1 Coordinate System Definitions: In GNSS-based
multi-antenna attitude determination, the key objective is to
establish the rotational relationship between the body-fixed
coordinate frame defined by the rigid platform (e.g., a supertall
building) and the local-level coordinate frame, often referred to
as the East-North-Up (ENU) system. This orientation
relationship, known as the attitude, is described via a sequence
of coordinate transformations and can ultimately be expressed
in the Earth-Centered, Earth-Fixed (ECEF) frame. The resulting
attitude parameters include yaw, pitch, and roll angles.

2.1.2  Attitude Angle Definition: The attitude of a rigid
body—such as a super high-rise building—is defined as the
orientation of its body-fixed coordinate system (B-frame)
relative to the local-level coordinate system (L-frame / ENU
frame). This orientation relationship is fully described by three
Euler angles: yaw, pitch, and roll, which together represent the
complete three-dimensional (3D) attitude of the structure. The
definitions of these attitude angles and their corresponding
rotational axes are summarized in Table 1.

Attitude o . Rotation Axis in

Angle Description of Rotation Body Frame

Angle between the body Rotation about the
Yaw Y-axis and geographic 7.-axis

North

Angle between the body .

Pitch Z-axis and the local Up Rotatl;)(r_laz:(bi(s)ut the
direction

Angle between the body Rotation about the

Roll X-axis and geographic Y-axis
East

Table 1. Definitions of Attitude Angles

2.1.3 Direct Method for Multi-Antenna GNSS Attitude
Determination: In the direct solution algorithm of GNSS
multi-antenna attitude determination, the spatial orientation of a
rigid body (such as a super high-rise building) is geometrically
derived from baseline vectors formed between multiple GNSS
receivers mounted on the structure. Let receivers 1 and 2 define
the baseline vector B2, and receivers 1 and 3 define another
baseline vector Bj3. Based on these vectors, the body-fixed
coordinate system (B-frame) is constructed as follows:

» The origin is located at the phase center of the master
antenna (receiver 1).

» The Y-axis (pitch axis) is defined to be parallel to the
baseline vector B».

» The Z-axis (yaw axis) is the normal vector perpendicular to
the plane defined by the three antenna phase centers, i.c.,
orthogonal to the plane formed by B;>and Bj3.

» The X-axis (roll axis) is perpendicular to the plane defined
by the Y-axis and Z-axis, and its direction is determined
according to the right-hand rule.

By solving the orientation based on the baseline vectors B;> and
Bjs, real-time attitude monitoring of the super high-rise
structure can be achieved. The yaw angle v, pitch angle o, and
roll angle B are computed using Equations 1 to 3:

= arctan (—i) (L

where 12 = East component of the baseline vector from
receiver 1 to receiver 2

12 = North component of the baseline vector from
receiver 1 to receiver 2

o = arctan <

#) (2)
V12?2 + ( 12)?

where 12 = Up component of the baseline vector from
receiver 1 to receiver 2

13€0S — 13Sin
B=— arctan( R _13 ) 3
- 13SInC(SIn - 13SIn(1COS + 13COSQ
where 13 = East component of the baseline vector from

receiver 1 to receiver 3

13 = North component of the baseline vector from
receiver 1 to receiver 3

13 = Up component of the baseline vector from
receiver 1 to receiver 3

In essence, the attitude angles represent the relative angular
displacements required to align the body-fixed coordinate
system with the ENU reference frame. The transformation
involves three sequential rotations around the body X-axis (roll),
Y-axis (pitch), and Z-axis (yaw), corresponding to the standard
Z-Y-X Euler rotation convention.

2.1.4 Coordinate Frame Transformations: To perform
accurate attitude estimation, it is essential to transform
GNSS-observed coordinates and baseline vectors across three
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coordinate systems: the ECEF frame, the local-level ENU frame,
and the body-fixed coordinate system.

The first step is the transformation from the ECEF coordinate
system to the local-level ENU coordinate system.

The baseline vector Xz obtained from GNSS differential
positioning is initially expressed in the ECEF coordinate system.
By applying a coordinate transformation matrix, this vector can
be converted into the local ENU coordinate system, yielding the
corresponding vector Xz, such that: X;- RXz The rotation matrix
R is calculated as shown in Equation 4.

—sin cos  —sin —CO0S COS
= [=sin sin cos —Cos sin 4
—CO0S 0 —sin

where A= Longitude of the observation site

@ = Latitude of the observation site

The second step is the transformation between the ENU
coordinate system and the B-frame.

Both the ENU coordinate system and the body-fixed coordinate
system used in this study are Cartesian coordinate systems. The
transformation from the local-level ENU frame to the body
frame is performed through a sequence of Euler rotations.
Assuming that the two frames share the same origin, each
elemental rotation can be represented by a rotation matrix. The
rotations about the X-, Y-, and Z-axes are denoted by the
matrices 1(a), 2(B), and 3(Y), respectively, as defined in
Equation 5 to 7. To transform the ENU coordinate system into
the body-fixed frame, a sequential rotation about the Z-, X-, and
Y-axes by angles vy, a, and B, respectively, is applied. The
resulting transformation matrix is given in Equation 8.
Conversely, to transform the body-fixed coordinate system back
into the ENU frame, a sequential rotation about the Y-, X-, and
Z-axes by angles B, a, and Yy, respectively, is applied. The
corresponding transformation matrix is shown in Equation 9.

[1 0 0 ]
1(@)=1]0 cosa sina (5)
[0 —sina  cosal
rcosB 0 —sinf
®=[0 1 o0 (6)
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where 0= pitch angle

3 =roll angle

Yy = yaw angle

Therefore, if a vector is represented as Xz in the body coordinate

system and as X; in the ENU coordinate system, their
transformation relationship can be expressed as follows:

= B B~ (10)

2.2 Tunable Q-factor Wavelet Transform (TQWT)

In the attitude monitoring of supertall buildings, GNSS-based
multi-antenna signals are often subject to strong nonlinearity,
non-stationarity, and significant noise interference due to the
coupling effects of wind loads, seismic excitations, operational
disturbances, and ambient temperature and humidity. These
disturbances may lead to short-term fluctuations and obscure
underlying structural deformation trends, thereby reducing the
accuracy and stability of downstream prediction models. To
address this issue, this study introduces the Tunable Q-Factor
Wavelet Transform (TQWT) as a signal preprocessing module,
which performs multi-scale decomposition and noise
suppression on GNSS attitude sequences. This enhances the
signal’ s stationarity and structural expressiveness.

2.2.1 Multi-Scale Denoising and Modeling Concept:
Unlike traditional wavelet transforms with fixed Q-factors,
TQWT allows dynamic adjustment of its frequency
decomposition structure to match the oscillatory characteristics
of the input signal. By tuning the Q-factor (which controls
oscillatory sensitivity), the redundancy factor r (which affects
frequency resolution), and the decomposition level J (which
determines the depth of analysis), TQWT can effectively retain
low-frequency structural trends while remaining sensitive to
high-frequency anomalies.

The following meteorology-adaptive TQWT parameter tuning
strategy is applied in this study to address the challenges posed
by variable environmental disturbances.

(1)Strong Wind Conditions: Q =19 - 2.2, r=3,J =10, to
enhance separation of low-frequency wind-induced vibrations.
(2)Rainy Weather: Q =2.1 - 2.5, r=4, J = 12, for suppressing
broadband noise caused by raindrop impacts.

(3)Temperature Fluctuations: Q =2.0, r =3, J =9, to balance
thermal expansion/contraction effects with full-spectrum feature
retention.

This adaptive strategy enables precise feature extraction and
noise reduction across diverse weather conditions by aligning
decomposition parameters with the spectral characteristics of
structural and environmental responses.

2.2.2  Integration into the Hybrid Model: In the proposed
TQWT-TCN-LSTM-GAM model, the TQWT module serves as
the initial preprocessing stage. It outputs multi-scale attitude
sub-signals with reduced noise and clearer structural trends,
which facilitate subsequent TCN-LSTM modules in capturing
temporal dependencies and enhance the Global Attention
Mechanism (GAM) in perceiving local anomalies and sudden
changes. By incorporating TQWT into the model, the overall
monitoring system achieves significantly improved sensitivity
and robustness to key deformation patterns in GNSS signals,
enabling high-precision, real-time prediction of torsional
deformation in supertall buildings.

2.3 Deep Sequence Modeling Using TCN-LSTM-GAM

2.3.1 Temporal Convolutional Network (TCN) Model:
The pose time-series data preprocessed by TQWT is first input
into the multi-scale Temporal Convolutional Network (TCN).
The TCN module specializes in extracting high-frequency
vibration features from ultra-high-rise building poses, as
illustrated in Figure 1.

The TCN module adopts a multi-layer residual block structure
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connected in series. The core of each block consists of causal
dilated convolutions (kernel length K=3, dilation factors
constrained only to d=1 and d=2), which strictly maintain
sequence length and causality through asymmetric
zero-padding.

The deliberate constraint to small dilation factors ensures the
convolutional receptive field tightly focuses on adjacent
timesteps (d=1 covers 3 points, d=2 covers 5 points). This
design significantly enhances the module's ability to capture
local dynamics, such as transient peaks induced by wind loads
and sudden phase transitions, while simultaneously avoiding
redundant calculations associated with long-term dependencies.
Within the residual pathway, 1x1 convolutions align channel
dimensions and stabilize gradient propagation, ensuring the
stackability of deep modules. A key synergistic design involves
the direct concatenation of the high-frequency features output
by the TCN with the low-frequency components derived from
TQWT decomposition along the channel dimension. This forms
a complementary feature flow integrating local vibrations and
global trends, providing structured input for subsequent
long-term modeling by the lightweight LSTM.

Input
High-frequency
data

Dilated Dilated

Data - - - Fully connected
normalization residual block residual block

layer

k=3,d=1 k=3,d=2
Output
Figure 1. Architecture of the Temporal Convolutional Network
(TCN) Model

2.3.2 Long Short-Term Memory (LSTM) Model: Long
Short-Term Memory (LSTM) networks are a specialized type of
Recurrent Neural Network (RNN) (Liu et al., 2025). Traditional
RNNs suffer from gradient explosion and vanishing issues
when processing long-term sequential data. To address this,
LSTM introduces three gating units and a memory cell (Zhao et
al., 2024) on the basis of standard RNNs. This architecture
enables effective capture of long-term dependencies in
ultra-high-rise  building attitude variations. Consequently,
LSTM is exceptionally well-suited for predicting long-term
attitude sequences in super-tall structures. The internal structure
of an LSTM neural unit is illustrated in Figure 2.

‘ Low-Frequency Attitude Data

Cia

Figure 2. Internal Structure of the LSTM Neural Unit

2.3.3 Global Attention Mechanism (GAM) Model: To
enhance the model's perception and representation capabilities

for localized abrupt attitude changes and non-stationary
vibration characteristics in ultra-high-rise structures under
extreme environmental loads (e.g., strong winds, earthquakes),
we introduce the Temporally Adaptive Global Attention
Mechanism (GAM) at the feature fusion layer. This mechanism
processes multi-scale temporal features extracted by TCN and
LSTM through the following steps for dynamic enhancement of
critical information:

(1) Attention Weight Generation: Applies 1D convolutional
operations along the temporal dimension to adaptively learn
feature importance at each timestep, generating normalized
attention weights via a Sigmoid function.

(2) Dynamic Feature Enhancement: Uses element-wise
multiplication to amplify features during abrupt events. (e.g.,
high-frequency vibration peaks, anomalous fluctuations).

(3) Residual Fusion Design: Incorporates skip connections to
transmit raw attitude data or shallow features to the output layer,
where they undergo weighted fusion with GAM-enhanced
features. This design preserves low-frequency trend information
(e.g., thermal deformation, long-term settlement) from the
original sequence while strengthening transient feature
extraction, preventing attenuation of long-period signals in deep
networks.

The GAM mechanism enables "extreme-environment focusing"
capability, substantially improving representation accuracy for
non-stationary transient vibration features. Its synergy with
residual architecture achieves decoupled enhancement and
complementary integration of high-frequency local details and
low-frequency global trends, providing critical assurance for
high-precision attitude prediction in complex environments.

2.3.4 Model Fusion Structure and Training Strategy: The
TQWT-TCN-LSTM-GAM model, which integrates TQWT,
TCN-LSTM, and GAM modules, constitutes the proposed
framework for attitude prediction in ultra-high-rise buildings
(see Figure 3). In the TQWT-TCN-LSTM-GAM hybrid neural
network model, the Tunable Q-factor Wavelet Transform
(TQWT) reduces the nonlinearity of deformation attitudes in
ultra-high-rise structures. The preprocessed attitude time-series
data is first fed into a multi-scale Temporal Convolutional
Network (TCN) module. This module employs a multi-layer
cascaded residual block structure with varying dilation rates
(d=1, d=2) to achieve cross-temporal-scale feature extraction.

The TCN specializes in capturing local dynamic features within
sequential data, making it particularly suitable for identifying
high-frequency vibration modes induced by factors such as
wind loads in super-tall buildings.

To address the TCN’s limitations in modeling long-term
dependencies, its output features are concatenated with
low-frequency data along the channel dimension and passed to a
lightweight Long Short-Term Memory (LSTM) module. The
LSTM further models low-frequency features and global trend
variations, thereby compensating for the TCN’s deficiencies in
long-term dependency modeling.

At the terminal stage of the model, a Temporal Adaptive Global
Attention Mechanism (GAM) is introduced. This module
processes the temporal features output by the LSTM and applies
a 1D convolutional operation along the time dimension to
generate an attention weight vector with the same length as the
original sequence. These weights are normalized via a Sigmoid
function to dynamically quantify the importance of features at
each timestep. The GAM adaptively focuses on critical
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vibration  characteristics  during abrupt events (e.g.,
high-frequency peaks under extreme wind conditions). By
assigning higher weights to these key timesteps, it significantly
enhances the model’s responsiveness and representational
accuracy for local anomalies and non-stationary features.
Simultaneously, the model incorporates skip connections that
directly transmit preprocessed raw attitude sequences or shallow
features to the fusion layer. This effectively preserves
low-frequency trend information from the original time series,
preventing the loss of critical long-cycle information during
deep feature extraction in complex networks. Consequently, the
model enhances its multi-scale representational capacity for
differentiating between vibration characteristics
(high-frequency/local) and trend variations
(low-frequency/global).

‘ GNSS Multi-Antenna Attitude Time-Series Data

[

TQWT <

High Wind Conditions:
Q=1.9-2.2, r=3, J=10

[

Rainy Weather:
Q=2.1-2.5, r=4, J=12

Temperature Variations:
Q=2.0, r=3, J=9

TCN v

Data ‘ Dilated - Dilated - Fully connected
normalization residual block residual block layer

k=3,d=1 k=3,d=2 ml

LSTM

Posture Prediction Values of Super High-Rise Buildings ‘

GAM [—>

Figure 3. Forecasting framework of the
TQWT-TCN-LSTM-GAM hybrid architecture

Finally, the feature maps dynamically enhanced by GAM
attention weights are fused at the element-wise level with the
original/shallow features delivered via skip connections. The
integrated composite features are consolidated through fully
connected layers and regressed to output high-precision
predictions of ultra-high-rise building attitude changes. This
enables real-time, high-accuracy attitude monitoring for
torsional deformation surveillance in super-tall structures.

2.4 Accuracy Evaluation Metrics

To evaluate the performance of the prediction model, error
analysis was conducted on the test set using the Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), Coefficient of
Determination (R?), and Symmetric Mean Absolute Percentage
Error (SMAPE). The expression is shown in Equation 11.

1
== - r
=1
2
g aC =)
2
:1( - )
1 |- 11
=1
=1 gx[()oﬂ/
REEE

where  Yi=true value

¥i=predicted value
Yi=mean of true values

n = sample size

RMSE reflects the magnitude of overall prediction errors, with
lower values indicating higher stability. R? measures the
model’s ability to explain the variance in observed data, where
values closer to 1 denote better fitting. MAE quantifies the
average absolute deviation between predicted and true values,
serving as a direct indicator of prediction accuracy. SMAPE, an
improved version of MAPE, uses the sum of predicted and
actual values in the denominator, providing a robust measure of
relative error. These metrics jointly assess the predictive
accuracy and reliability of different models under the same
dataset.

3. Experiments and Results
3.1 Experimental Setup
The device used in this study is a Windows 11 system with the
following basic configuration: Intel(R) Core(TM) i5-8300H

CPU @ 2.30GHz, GPU: NVIDIA GeForce GTX1650 4GB, and
RAM: 8G. The Python version used is Python 3.9.12.

The key hyperparameters of the deep learning network used in
this experiment are summarized in Table 2.

Parameter Setting
Dropout rate 0.1
Epoch 100
Batch size (train) 256
Batch size (test) 256
Learning rate 0.0005
Optimizer Adam
Loss function MSE
TCN layers 2

Table 2. Hyperparameter settings of the
TQWT-TCN-LSTM-GAM model used in this study.

3.2 Data Acquisition and Preprocessing

3.2.1 Data Acquisition: The experimental data used in this
study were collected from the GNSS-based structural health
monitoring system deployed on a supertall building located in
Tianjin, China. The configuration of the GNSS multi-antenna
layout is illustrated in Figure 4.
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Figure 4. GNSS Multi-Antenna Deployment Scheme on the
Supertall Building

3.22 TQWT Denoising Results Analysis: Based on the
baseline vectors B> and B;; constructed from the receivers, the
pitch and heading attitude angles were derived through solution
calculations. The heading and pitch angles obtained from the
baseline vector B;; solution are shown in Figure 5, while those
derived from the baseline vector B solution are presented in
Figure 6.
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Figure 5. Attitude angles derived from baseline vector B;: in the
local horizontal coordinate system. (a) Yaw; (b) Pitch.

(a) Yaw
127.95

0 2000 4000 6000 8000 10000 12000 14000 16000
Epoch (s)

(b) Pitch

o
2N
T

I
=

I
2

o
o
T

.
o
2

Attitude angles value (°)

&
g

2000 4000 6000 8000 10000 12000 14000 16000
Epoch (s)
Figure 6. Attitude angles derived from baseline vector B;; in the

local horizontal coordinate system. (a) Yaw; (b) Pitch.
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Since the dual-antenna GNSS direct attitude determination
method can only resolve two-dimensional attitudes (pitch and
heading angles), this study integrates the solutions from both
baselines to reconstruct a complete three-dimensional attitude
time series for the super-tall building. To address the
pronounced nonlinear characteristics of the attitude data, the
Tunable Q-factor Wavelet Transform (TQWT) was introduced
during the preprocessing stage, establishing a denoising model
that integrates trend separation and adaptive filtering. Figure 7
compares TQWT-processed and original signals.
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Figure 7. Comparison Between Original Signal and
Reconstructed Signal. (a) Yaw; (b) Pitch; (c)Roll.

3.3 TQWT-TCN-LSTM-GAM Model Accuracy Evaluation
Results

In the proposed hybrid model TQWT-TCN-LSTM-GAM, the
GNSS attitude time-series data are first preprocessed using
TQWT to suppress noise and enhance signal stationarity. The
processed data are then input into the TCN-LSTM-GAM
network for accurate prediction of high-rise building attitude
angles.

To comprehensively evaluate the model's performance, four
widely used metrics were adopted: Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), Symmetric Mean
Absolute Percentage Error (SMAPE), and the coefficient of
determination (R?). These indicators provide both absolute and
relative assessments of prediction accuracy.

As shown in Table 3, the TQWT-TCN-LSTM-GAM model
demonstrates excellent predictive performance across all three
attitude components—Yaw, Pitch, and Roll. The low MAE and
RMSE values indicate minimal prediction error, while the high
R? values (>92%) confirm strong consistency between predicted
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and actual attitude angles. In particular, the model achieved the
highest accuracy in Yaw angle prediction, with an MAE of only
0.0069 degrees and an R? of 94.21%, showcasing its
effectiveness in capturing subtle attitude variations.

These results collectively validate the robustness and accuracy
of the proposed hybrid model in attitude monitoring
applications under complex conditions commonly encountered
in supertall building environments.

MAE RMSE  SMAPE R

(Degree)  (Degree) (%) (%)
Yaw 0.0069 0.0197 0.59%  9421%
Pitch  0.0173 0.0483 L12%  9232%
Roll 0.0212 0.0518 1.19%  92.16%

Table 3. Analysis of Attitude Angle Accuracy Indicators Based
on the TQWT-TCN-LSTM-GAM Model

3.4 Comparative Experimental Results

To further validate the superiority of the proposed
TQWT-TCN-LSTM-GAM model, a set of comparative
experiments was conducted using three representative attitude
time series: Yaw, Pitch, and Roll. Four models were evaluated
in this study: Temporal Convolutional Network (TCN), Long
Short-Term Memory network (LSTM), eXtreme Gradient
Boosting (XGBoost), and the proposed hybrid model.

The prediction results of TCN, LSTM, XGBoost, and the
proposed TQWT-TCN-LSTM-GAM model are compared in
Figure 8, where all models are shown to capture the general
trend of attitude variations to varying degrees. However, a
closer inspection of the blue-shaded region in Figure 8 reveals
significant differences in prediction accuracy. Regardless of
whether the time series undergoes gentle fluctuations or abrupt
changes, the TQWT-TCN-LSTM-GAM model consistently
produces predictions that closely match the ground truth.

Compared with the baseline models, the hybrid model not only
achieves higher accuracy in smooth segments but also
demonstrates strong robustness during periods of rapid attitude
fluctuation. This is primarily attributed to three key
mechanisms:

()TQWT effectively eliminates high-frequency noise while
preserving essential signal characteristics, improving the signal
quality fed into the model;

(2)TCN is capable of effectively capturing local temporal
patterns and short-term fluctuations through stacked causal and
dilated convolutional layers, making it well-suited for modeling
high-resolution variations in attitude signals;

(3)LSTM excels at learning long-term dependencies in time
series, ensuring that contextual information is retained over
extended time horizons and contributing to the stability of
attitude prediction;

(4)GAM (Global Attention Mechanism) dynamically assigns
importance weights to different features and time steps,
allowing the model to focus on globally relevant patterns and
improving its interpretability and generalization.
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Figure 8. Comparison of Attitude Angle Prediction Results
Using Different Models (TCN, LSTM, XGBoost, and
TQWT-TCN-LSTM-GAM) (a) Yaw; (b) Pitch; (c)Roll.

Overall, the experiment results confirm that the proposed
TQWT-TCN-LSTM-GAM model significantly outperforms
traditional deep learning and machine learning models in both
prediction accuracy and generalization performance. It is
particularly well-suited for attitude monitoring in complex
environments typical of supertall buildings.

4. Conclusions

In response to the demand for real-time, high-precision, and
high-frequency health monitoring of torsional deformation in
supertall buildings under complex environmental conditions,
this study proposes a short-term attitude prediction method that
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integrates GNSS multi-antenna measurements with a deep
learning framework. The core of the method lies in a hybrid
neural network model based on TQWT and a TCN-LSTM
architecture, further enhanced by the introduction of a Global
Attention Mechanism (GAM). This design significantly
improves the model’s ability to capture local anomalies and
characterize non-stationary dynamic features, enabling accurate
spatiotemporal prediction of building attitude.

Experiments were conducted using attitude angle time
series—specifically yaw, pitch, and roll—as prediction targets.
Model performance was quantitatively evaluated using four
metrics: RMSE, MAE, SMAPE, and R? Results demonstrate
that the proposed TQWT-TCN-LSTM-GAM model consistently
outperforms baseline models including LSTM, TCN, and
XGBoost across all evaluation metrics.

The model offers practical potential for structural health
monitoring. It shows promising application prospects in
real-time deformation monitoring of supertall buildings,
particularly under dynamic and uncertain environmental
conditions.
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