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Abstract

This study presents a dual-strategy approach to monitor urban environmental stressors, conducted within the ASI-MUR-funded
Space It Up! project, focusing on atmospheric pollution and the urban heat island (UHI) effect. First, we developed a scalable
machine learning (ML) framework for estimating ground-level concentrations of NO2, SO», and CO in Milan using Sentinel-5P
satellite data, ERAS reanalysis, CAMS forecasts, and ARPA Lombardia ground measurements. Data preprocessing pipelines were
optimized by switching to Google Earth Engine, reducing retrieval times and enabling operational scalability. Despite known satel-
lite retrieval limitations in winter months for SOz, model performance remained robust, with normalized RMSE values consistently
below 0.85. For CO, a Deep Attention Network achieved the best results (NRMSE = 0.4879), demonstrating the adaptability of
the framework across pollutants. Additionally, a comparative analysis of low-cost air quality sensors showed high performance
from AirGradient devices, particularly for PM3 5 and temperature, though significant inter-brand discrepancies were observed for
CO,. Second, we implemented an advanced LCZ classification method integrating hyperspectral PRISMA imagery, Sentinel-2
data, and urban canopy parameters (UCPs). Applied to the Metropolitan City of Milan, the proposed workflow achieved substantial
improvements over existing methods, with an overall accuracy increase up to 16% when utilizing PRISMA data compared to the
state-of-art LCZ Generator approach. We also presented ongoing efforts to further improve the proposed methodology, including
the automation of data retrieval and training and test sample creation. The methodology is being applied across multiple urban
areas worldwide by also testing other ML techniques. Together, these methodologies provide a comprehensive and reproducible

framework for urban environmental monitoring.

1. Introduction

Urban environments are increasingly challenged by environ-
mental stressors such as air pollution and the urban heat island
(UHI) effect, which threaten public health, urban livability, and
climate resilience. The rapid growth of cities, coupled with
climate change, exacerbates these phenomena, particularly in
dense metropolitan areas where anthropogenic emissions and
impervious surfaces are concentrated. Monitoring and mitigat-
ing these effects require spatially explicit and temporally con-
sistent data.

Monitoring trace atmospheric pollutants such as carbon monox-
ide (CO), nitrogen dioxide (NO2), and sulfur dioxide (SO2) al-
lows scientists and policy makers to assess both environmental
quality and public health risks. These gases, primarily emitted
through fossil fuel combustion, industrial processes, and bio-
mass burning, play a central role in urban air pollution, photo-
chemical smog formation, and climate forcing (Manisalidis et
al., 2020). Due to their significant impacts on respiratory and
cardiovascular health (WHO, 2024), regulatory bodies have de-
veloped air quality standards to limit ambient concentrations.
However, dense monitoring networks are generally limited to
high-income regions, while large parts of the globe, particu-
larly in Africa, Latin America, and parts of Asia, remain under-
instrumented (Smith et al., 2025). This disparity impacts neg-
atively global-scale air quality assessment and the development
of equitable pollution mitigation strategies.

On the other hand, understanding and mitigating UHI is essen-
tial for sustainable urban development and improving the qual-
ity of life for citizens and ecosystem well-being (Irfeey et al.,
2023). However, traditional approaches that simply compare

urban and rural areas often fail to capture the complex spa-
tial variability and morphological influences on UHI intensity
(Liu et al., 2023). The Local Climate Zone (LCZ) classifica-
tion system offers a robust and standardized framework to ana-
lyze urban climate by categorizing landscapes based on surface
structure, land cover, and human activity, thus enabling precise
mapping of UHI patterns and their drivers (Zhou et al., 2022).

This paper, conducted within the framework of the Space It
Up! (SIU) project funded by the Italian Space Agency (ASI)
and the Italian Ministry of University and Research (MUR),
presents two complementary lines of research: (1) the estim-
ation of ground-level concentrations of air pollutants using ma-
chine learning (ML) techniques, satellite data (Sentinel-5P),
and ERAS reanalysis data, and (2) the classification of LCZs to
characterize urban morphology and its relationship with urban
thermal patterns. The proposed work uses recent advances in
Earth Observation (EO) technologies and data-driven methodo-
logies to produce results on both fronts, which can be further ex-
plored in the future to investigate potential interactions between
these two phenomena.

The remainder of the paper is structured as follows. Section 2
describes the satellite data and ML methodology for pollutant
estimation, including the evaluation of low-cost sensors. Sec-
tion 3 details the LCZ classification approach and the ongoing
improvements in the methodology. Section 4 presents the con-
clusions from both research lines.

2. Satellite data and air quality monitoring

Earth observation (EO) platforms have become essential tools
for addressing global air quality data gaps by delivering con-
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sistent, large-scale atmospheric measurements. The Sentinel-
5 Precursor (Sentinel-5P) mission, launched by the European
Space Agency (ESA) in 2017, allowed scientists to monitor at-
mospheric pollutant concentrations with higher resolution than
before. Its onboard TROPOspheric Monitoring Instrument
(TROPOMI) detects NO2, SO2, CO, and other trace gases at
high spatial resolution (5.5 x 3.5 km?) with daily revisit capab-
ility (Veefkind et al., 2012). Compared to earlier missions such
as OMI or SCIAMACHY, TROPOMI offers enhanced spatial
detail, enabling improved monitoring of pollution patterns in
urban and industrial areas (Gu et al., 2025).

Sentinel-5P has been used in many applications, includ-
ing tracking COVID-19 lockdown-related NO, reductions in
Europe, South America, and India (Levelt et al., 2021), identi-
fying SO emission hotspots (Fioletov et al., 2016), and detect-
ing CO from biomass burning in tropical forests (Landgraf et
al., 2016). However, since TROPOMI measures total column
densities rather than surface concentrations, translating these to
ground-level values remains challenging. Retrieval limitations
and atmospheric complexity can result in discrepancies with in
situ data, particularly in regions with clouds or low emissions
(Griffin et al., 2019, Van Geffen et al., 2020). To address this,
integration with meteorological reanalysis and ML is required,
an approach explored in the following sections.

2.1 Machine Learning Approaches for Surface-Level Es-
timation

As specified before, although satellite instruments such as
Sentinel-5P offer high spatial coverage of trace gas distri-
butions, they primarily retrieve total or tropospheric vertical
column densities. These must be transformed to estimate near-
surface concentrations, which are more relevant for health as-
sessments and regulatory policies. Given the complexity of this
translation, ML methods offer a flexible, data-driven alternative
for mapping satellite-based columns to ground-level pollutant
concentrations (Zhou et al., 2024). As shown in previous work
(Cedeno Jimenez and Brovelli, 2023), ML models can combine
satellite retrievals, meteorological reanalysis, and in-situ meas-
urements to capture nonlinear relationships between predictors
and surface levels. Algorithms such as Random Forests (RF),
Support Vector Regression (SVR), and Gradient Boosting (GB)
have been used for this task, while deep learning approaches
continue to grow for modeling spatiotemporal dependencies (Li
et al., 2017, Cai et al., 2025). A study in China found that an
XGBoost model using TROPOMI NO-, meteorological inputs,
population density, and road networks reached an R? of 0.83,
with an RMSE of 7.58 g/m® and a mean error of 5.56 g/m?®
(Liu, 2021).

Cedefio Jimenez and Brovelli (2024) demonstrated the feasibil-
ity of estimating ground-level NO using only remote sensing
inputs, including Sentinel-5P and ERAS5 meteorological vari-
ables (https://cds.climate.copernicus.eu/datasets
/reanalysis-erab-single-levels). The model, validated
over the Metropolitan City of Milan (MCM) and transferred to
Mexico City, incorporated boundary layer height (ABLH), sur-
face temperature, and wind dynamics to produce robust estim-
ates. Comparative tests against TimeGPT (https://www.ni
xtla.io/docs) confirmed that traditional ML models, when
well-tuned, outperform generative time series methods in this
application.

2.1.1 Data Access Optimization. Given the success of this
framework in estimating ground-level NOa, the first phase of

this study focused on improving the existing Python-based geo-
spatial pipeline for data collection and pre-processing, with the
goal of enhancing its scalability to other regions. Although
previously tested in Mexico City (Cedeno Jimenez and Brov-
elli, 2023), challenges remained in the data acquisition process.
The Copernicus Browser’s API (https://dataspace.cope
rnicus.eu/analyse/apis) was initially used to download
Sentinel-5P data, but this method posed limitations in terms
of time, storage, and processing requirements. Moreover, user
quotas (https://documentation.dataspace.copernic
us.eu/Quotas.html) restricted request frequency, concur-
rent sessions, and parallel downloads. Additionally, Copernicus
only provides Level-2 data, which demands further processing
such as pixel quality filtering and binning.

To address this, the study compared the Copernicus Browser
with Google Earth Engine (GEE, https://earthengine.go
ogle.com), a cloud-based geospatial platform offering Level-
3 Sentinel-5P data binned at 1 km x 1 km. DIAS platforms
like CREO DIAS and WekEO were excluded as they provide
only Level-2 data and lack bulk download options. A com-
parative analysis was performed between Copernicus and GEE
data: Copernicus data was processed from Level-2 to Level-3
using a 75% quality assurance threshold, while GEE data was
upscaled to 5.5 km x 3.5 km to match the original resolution.
After temporal and spatial alignment by pixel ID and date, a
merged dataset enabled the computation of relative errors. Res-
ults showed an average difference of 5% and a Pearson correl-
ation of 98.30%. The discrepancies were mainly due to GEE’s
unpublished processing algorithm and a 1.20 km grid shift.

To evaluate the impact on model performance, we applied the
ML model trained on Copernicus data using GEE as input. The
resulting average NRMSE was 58%, compared to 56% with Co-
pernicus, indicating only a minor degradation. This confirmed
that GEE remains a valid and efficient alternative for opera-
tional NO estimation, reducing resource demands while main-
taining reliable performance.

2.1.2 Framework extension to additional trace gases. By
improving the processing framework to use a data source other
than the Copernicus Browser, the time required to access satel-
lite data was drastically reduced. This enhancement enabled the
Python pipeline to be used for trace gases beyond NOo, elimin-
ating the need for the previously cumbersome data download
and processing procedure. We expanded our analysis to in-
clude CO and SO, alongside NO» due to their environmental
and health relevance. CO, resulting from incomplete combus-
tion, has a longer atmospheric lifetime and more uniform spatial
distribution compared to NO2, and has been linked to respir-
atory mortality even at ambient levels below regulatory limits
(Allred et al., 1989). Additionally, SO is typically emitted
in brief, concentrated plumes from stationary sources such as
power plants and volcanic activity, and short-term exposure has
been associated with neural and respiratory effects (Meo et al.,
2024). Including both pollutants allowed the framework to ad-
dress trace gases with varying behaviors and impacts on urban
populations, increasing its scalability and applicability for real-
world air quality monitoring.

The ML pipeline was first adapted for the estimation of ground-
level sulfur dioxide (SO2). This followed the same scalable
data acquisition and pre-processing structure previously imple-
mented for NO2, incorporating daily SO total column retriev-
als from Sentinel-5P via GEE, meteorological variables from
ERAS, Copernicus Atmosphere Monitoring Service (CAMS)
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reanalysis SO estimations, and in-situ measurements from Re-
gional Environmental Protection Agency (ARPA) Lombardia.
All variables were harmonized temporally with the satellite
overpass window. The model incorporated derived features
such as boundary layer height, surface pressure, and solar ra-
diation to capture temporal variability and vertical atmospheric
structure. These additions helped correct for the limited ver-
tical sensitivity of satellite-derived SO2 measurements. Among
all the wide variety of ML models that were trained and tested,
the best-performing configuration was an ensemble of Random
Forest and Gradient Tree Boosting combined using a voting
mechanism.

A key challenge encountered in modeling SO, was the sea-
sonal absence of valid satellite retrievals year by year during
the months of December and January for the MCM. Figure 1,
shows there an example of the data gap in the SO, measure-
ments retrieved from GEE in Europe for the months of Decem-
ber 2024 and January 2025. This data gap is primarily caused
by increased noise and reduced measurement quality at high
solar zenith angles and swath edges, leading to frequent qual-
ity flag rejections in the standard SO product (Fioletov et al.,
2020). Retrieval noise increases substantially at zenith angles
greater than 75°, producing consistent wintertime gaps across
years (Fioletov et al., 2020). Despite this issue, the SO model
demonstrated robust performance, achieving NRMSE values
consistently below 0.85 when validated against ARPA ground
stations. Although the future inclusion of predictors such as
NO2 may further enhance performance, as explored in other
studies (Yang et al., 2022), the current model’s accuracy falls
within the standard deviation of ground-based measurements,
supporting its use under partial data availability.
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Figure 1. SO Sentinel-5P image gaps during the winter period
from Google Earth Engine from December 1* 2024 till January
15" 2025.

In parallel, the framework was also adapted to estimate ground-
level carbon monoxide (CO) concentrations. Following the
same structure, we integrated Sentinel-5P GEE data, ERAS
meteorological indicators, CAMS reanalysis products, and
ARPA Lombardia in-situ measurements. These datasets were
harmonized to the same spatial grid and temporally aligned with
the Sentinel-5P overpass window. Additional temporal and de-
rived features, such as normalized CO and solar-thermal con-
trast, were computed to enrich the dataset and account for at-
mospheric memory effects. This configuration ensured that the
model could account for both short-term and persistent spatial
patterns typical of CO distribution.

The modeling process was conducted using both random and
chronological validation splits. Among untuned models, the
Random Forest initially provided the best performance, with a
test NRMSE of 0.6363. Performance improved with the inclu-
sion of CAMS CO reanalysis and meteorological variables like
boundary layer height and surface radiation. An ensemble com-
bining Support Vector Regression (SVR) and Gradient Boost-
ing (GB) reduced the NRMSE to 0.5819. SHAP-based fea-
ture importance analysis confirmed the high predictive value of
CAMS CO, boundary layer height, and solar-thermal indicat-
ors. After eliminating low-contribution features, the Deep At-
tention Network (DAN) achieved the best overall performance,
with an NRMSE of 0.4879 validated through 20 shuffle-split
iterations. While small improvements were seen after remov-
ing extreme values, these were retained to preserve the model’s
ability to detect peak pollution events. These results confirm the
reliability and adaptability of the framework for pollutants with
different emission profiles, reinforcing its value for large-scale
and scalable air quality monitoring.

2.2 Low-cost ground sensors

Traditional air quality monitoring systems rely on static stations
equipped with certified reference instruments, which provide
highly accurate data. However, these stations are expensive to
install and maintain, resulting in sparse geographic coverage
that often fails to capture localized pollution gradients - espe-
cially in smaller cities or underdeveloped regions where health
risks may be underestimated (Brauer et al., 2016). To address
these limitations, there has been a rapid rise in the use of low-
cost, compact, and user-friendly air pollution sensors (Jiao et
al., 2016, Castell et al., 2017). These new platforms enable
more widespread and frequent monitoring, offering high spatial
and temporal resolution data in near-real-time. Such capabil-
ities can supplement existing networks, support the creation of
detailed air quality maps, facilitate personal exposure assess-
ments, and encourage greater public participation in environ-
mental monitoring. Despite these advantages, low-cost sensors
face significant challenges regarding data quality and reliabil-
ity. Their performance can vary widely between units and un-
der different environmental conditions. Issues such as chemical
interference, cross-sensitivity to other gases, and sensitivity to
meteorological factors like temperature and humidity can affect
sensor accuracy. As a result, field calibration against reference-
grade instruments is essential to ensure data validity (Castell et
al., 2017). While low-cost sensors may not yet meet the strict
data quality requirements for regulatory compliance or precise
scientific exposure assessments, they provide valuable relat-
ive and aggregated information. However, a significant chal-
lenge associated with these emerging technologies is their often
questionable data quality and highly variable performance, both
between different sensor units and under varying environmental
conditions (Jiao et al., 2016, Castell et al., 2017). Low-cost
sensors can suffer from chemical interference, cross-sensitivity
to other gases, and are notably affected by meteorological con-
ditions such as temperature and relative humidity, which can
alter particle properties or sensor response, necessitating the
critical need for field calibration against reference instrument
(Raheja et al., 2023).

2.2.1 Comparative assessment of low-cost sensor meas-
urements To complement satellite-based approaches, low-
cost ground-sensors were deployed together to monitor CO2,
NO,, PMs 5, and PMjo. As an initial step, we collocated
these sensors and systematically evaluated their performance
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relative to one another for the shared measured parameters.
For this purpose, we deployed four sensors: two AirGradient
units (https://www.airgradient.com/) and two Temtop M2000C
units (https://www.temtopus.com). The AirGradient sensors
are open-source, low-cost devices designed for indoor and out-
door air quality monitoring, capable of measuring PMs 5, CO2,
temperature, and humidity. The Temtop M2000C sensors are
portable commercial monitors widely used for real-time air
quality assessment, also providing measurements of PMs 5,
COa, temperature, and humidity. By deploying all four sensors
together at the same location, we were able to directly compare
their measurements for these common parameters and assess
their relative performance under identical environmental condi-
tions.

To evaluate the reliability and agreement of low-cost envir-
onmental sensors across multiple physical parameters, a com-
parative analysis was performed for four measured variables:
PM3 5, CO2, Temperature, and Humidity. The analysis covered
two sensor models from each brand AirGradient (AG01, AG02)
TemTop (TTO1, TT02), employing a range of statistical met-
rics including Root Mean Square Error (RMSE), Normalized
RMSE (NRMSE), Mean Absolute Error (MAE), Mean Bias Er-
ror (MBE), Pearson correlation coefficient, and paired t-tests to
quantify inter- and intra-brand agreement.

Particulate Matter (PM 5) - The PM3 5 comparisons revealed
excellent intra-brand consistency, especially for AG sensors
(AGO1-AG02), with a remarkably low RMSE (1.31 pg/mg),
low relative error (NRMSE = 0.09), and near-perfect correla-
tion (Pearson =0.998). TT sensors (TT01-TT02) also exhibited
strong agreement, though with higher RMSE (2.35 pug/m®) and
NRMSE (0.16). The inter-brand comparisons showed gener-
ally strong correlations (Pearson > 0.969), but higher RMSEs
and significant biases, particularly involving TT02. Notably,
AGO1-TT02 yielded the highest RMSE (3.70 ug/m®) and a stat-
istically significant mean difference (p < 0.0001), suggesting
a systematic offset. These findings emphasize that, while trend
agreement between brands is high, absolute PM 5 values may
vary considerably and require calibration.
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Figure 2. PM> 5 time series from AirGradient and TemTop
Sensors.

Carbon Dioxide (CO-) - In contrast to PMs 5, CO2 comparis-
ons revealed substantial discrepancies across and within brands,
particularly among TT sensors. The AGO1-AGO02 pair showed

strong agreement (RMSE = 4.87 ppm, NRMSE = 0.01, Pear-
son = 0.970) and no significant mean difference (p = 0.078), in-
dicating good internal consistency. TTO1-TT02, however, dis-
played poor correlation (Pearson = 0.005), despite a relatively
low NRMSE (0.05), likely due to high noise or inconsisten-
cies in signal dynamics. Inter-brand comparisons showed large
RMSEs (up to 30.85 ppm), low or negligible correlation coef-
ficients, and highly significant mean differences (p < 0.001),
highlighting a lack of agreement and potential incompatibility
between AG and TT CO» measurements in their current uncal-
ibrated form.

Temperature was the most consistent variable across all sensor
pairs, with low RMSEs, high correlations (Pearson > 0.846),
and minimal bias. The AG01-AGO02 comparison again per-
formed best (RMSE = 0.35 °C, NRMSE = 0.02), supported by
nearly perfect correlation (0.999) and only a slight bias (p =
0.041). TTO1-TTO02 followed with slightly higher RMSE (0.59
°C) but no significant difference in mean (p = 0.984). Inter-
brand comparisons (AG vs TT) showed higher RMSEs (1.73-
1.84 °C), though still within acceptable ranges for general en-
vironmental monitoring. The strong correlation and minimal
bias errors across all pairs confirm that temperature is robustly
measured by all sensor models, with only minor calibration dif-
ferences.

Humidity comparisons revealed moderate to high agreement,
with the best performance observed again in the AGO1-AG02
pair (RMSE = 0.90%, NRMSE = 0.02, Pearson = 0.992).
TTO1-TTO02 showed lower relative accuracy (RMSE = 2.47%,
NRMSE = 0.17) and more notable deviation. Inter-brand com-
parisons were characterized by high RMSEs (up to 7.74%) and
statistically significant differences (p < 0.001), although cor-
relations remained reasonably strong (Pearson = 0.882-0.902).
The consistently higher mean values for TT sensors sug-
gest systematic overestimation of humidity compared to AG
sensors, reinforcing the need for cross-sensor calibration in
multi-sensor deployments.

3. Local Climate Zones (LCZs) for urban heat island
analysis

The UHI is the phenomenon that describes how urban areas
have higher temperatures compared to their surroundings. The
initiation of this phenomenon can be dated to the start of urb-
anization and industrialization of human habitats. Solar radi-
ation absorbed by surfaces and buildings creates re-radiation,
while anthropogenic activities are also sources of heat (Shah-
mohamadi et al., 2011). These heat sources are considered the
main reason for recording higher temperatures in urban areas
(Rizwan et al., 2008), where human presence is more constant
and dense, compared to their surroundings.

Traditionally, the UHI effect has been studied by relying on
the simple urban-rural dichotomy. However, this simple di-
vision lacks sufficient detail to establish an adequate relation-
ship between the complex urban environment and the UHI ef-
fect. For example, an urban area, which is usually considered a
city or town, has diverse morphological features and land cover
types, and each could have a different impact on the thermal
environment. It is therefore often inappropriate to classify all
these land cover types into the same category. To enable more
detailed analysis, the LCZ classification system was developed
by I. D. Stewart and T. R. Oke in 2012. The system com-
prises 17 standard classes, each characterized by uniform sur-
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face cover, material properties, structure, and human activity
(Stewart and Oke, 2012).

3.1 LCZ Classification

To study the thermal regime of urban areas, the LCZ classific-
ation system has been increasingly utilized in recent years. For
LCZ map production, methodologies can be categorized into
three distinct approaches: Remote Sensing (RS) based, Geo-
graphic Information System (GIS) based, or hybrid combina-
tions of both techniques (Huang et al., 2023). Vavassori et al.
(2024) proposed a novel hybrid GIS and Remote Sensing based
workflow (Figure 3) for LCZ mapping leveraging hyperspec-
tral satellite imagery, a data source that has received limited
attention for this application. The proposed methodology integ-
rates hyperspectral PRISMA imagery, multispectral Sentinel-2
data, and urban canopy parameters (UCPs), including building
height, impervious surface fraction, and sky view factor, to gen-
erate comprehensive LCZ maps (Vavassori et al., 2024).
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Figure 3. Workflow of proposed LCZ map generation
methodology by Vavassori et al. (2024)

The first step of the methodology involves the preprocessing
of Sentinel-2 Level-2A and PRISMA Level-2D bottom-of-
atmosphere reflectance products. Due to the known georeferen-
cing accuracy in PRISMA imagery (nominally better than 200
m), co-registration with temporally corresponding Sentinel-2
data represents a critical preprocessing step. For this purpose,
Sentinel-2 bands B02-B07, BSA, B11, and B12, provided at 20
m spatial resolution by the Copernicus program, are resampled
to 30 m to achieve resolution compatibility with PRISMA im-
agery. The open-source GeFolki algorithm, implemented in Py-
thon, is employed to correct geometric distortions in PRISMA
image georeferencing. This process requires spectral bands
with comparable wavelengths from both sensors. Specific-
ally, the Sentinel-2 red band is paired with the corresponding
PRISMA band at 575.49 nm central wavelength. The algorithm
generates a displacement matrix containing vertical and hori-
zontal pixel corrections, which is subsequently applied to all
Short-Wave Infrared (SWIR) and Visible-Near Infrared (VNIR)
PRISMA bands. Following geometric correction, PRISMA im-
agery undergoes Principal Component Analysis (PCA) using
the scikit-learn Python library to reduce dimensionality and
eliminate redundant spectral information to optimize compu-
tational efficiency for the next processing steps.

Five UCPs, describing the urban morphology and impervious-
ness, are computed at 20 m and 30 m resolution (to match the

spatial resolution of Sentinel-2 and PRISMA imagery, respect-
ively), and integrated to the satellite spectral data. UCPs com-
prise Sky View Factor, Impervious Surface Fraction, Building
Surface Fraction, Tree Canopy Height, and Building Heights,
each contributing essential morphological information for LCZ
discrimination. Sky View Factor is computed with the SAGA
GIS software from the ALOS Digital Surface Model (DSM)
processed through SAGA GIS software. Impervious Surface
Fraction is derived from the Copernicus Imperviousness Dens-
ity layer, providing validated soil sealing information across
European territories. Building-related parameters are extrac-
ted from regional geo-topographic databases (DBGT), while
Tree Canopy Height data is obtained from the Global Sentinel-2
Canopy Height product. All UCP layers undergo normalization
to the [0-1] range to ensure compatibility with satellite reflect-
ance data.

Training and validation samples are systematically collected by
relying on multi-source ancillary data, to ensure an accurate
representation of each LCZ class. The sampling strategy em-
ploys 30 m resolution RGB PRISMA imagery for land cover
interpretation, 5 m panchromatic PRISMA data for precise
boundary delineation, and building height information for built-
up class discrimination. Sample distribution adheres to spa-
tial and thematic balance principles, ensuring fair represent-
ation across LCZ classes and the study area extent. Spectral
separability of LCZs is also assessed by computing the Jeffries-
Matusita (JM) distance metric. JM values approach 2.0 for
completely separable spectral signatures and 0.0 for identical
signatures. To mitigate issues arising from high inter-band cor-
relation in PRISMA data that may result in singular covariance
matrices, spectral signatures are sampled at 10-band intervals.

The RF ensemble learning algorithm serves as the classifica-
tion approach, applied consistently to both datasets (PRISMA
and Sentinel-2) using the training sample polygons. PRISMA
classification is based on the first 10 principal components,
accounting for approximately 100% of original spectral vari-
ance; Sentinel-2 classification incorporates all selected spectral
bands. In both cases, satellite data is augmented with UCP lay-
ers as supplementary feature vectors. Hyperparameter tuning
follows a systematic grid search approach using GridSearchCV
with repeated 5-fold cross-validation. The optimization proced-
ure evaluates multiple parameter combinations, including es-
timator quantity, maximum features per split, and split quality
criteria (Gini impurity versus information entropy). Training
data is split into 80% training and 20% validation subsets for
cross-validation.

Classification outputs undergo postprocessing using a 3x3 pixel
median filter to reduce classification noise and merge isolated
LCZ pixels into spatially coherent class regions. This smooth-
ing procedure enhances map continuity while preserving over-
all classification accuracy. Comprehensive accuracy assessment
employs standard metrics derived from confusion matrices, in-
cluding Overall Accuracy (OA), precision, recall, and F1-score.
Inter-comparison analysis between PRISMA and Sentinel-2 de-
rived maps, and LCZ Generator reference maps, shows agree-
ment. For comparative analysis, all products are resampled to
10 m resolution using nearest-neighbor interpolation and geo-
metrically aligned to a common reference grid. Statistical val-
idation implements stratified random sampling protocols, se-
lecting 1,500 pixel pairs per comparison based on Cochran’s
formula for large population statistics. This sampling frame-
work ensures adequate representation across LCZ classes while
maintaining statistical significance and validity.
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Results obtained for the Metropolitan City of Milan demon-
strate significant improvements in LCZ classification accur-
acy through the proposed methodology. PRISMA hyperspec-
tral data yielded superior performance compared to Sentinel-
2 multispectral imagery, achieving an average OA increase of
5% and exhibiting reduced confusion between built-up LCZ
classes, which aligns with the higher spectral separability ob-
served in PRISMA data. The integration of UCPs proved bene-
ficial for enhancing classification accuracy, particularly when
combined with Sentinel-2 data. Furthermore, the proposed
workflow demonstrated superior performance compared to the
existing LCZ Generator methodology for both built-up and land
cover LCZ types, with improvements reaching up to 16% in OA
when utilizing PRISMA data compared to the LCZ Generator
approach. Figure 4 represents an LCZ map obtained for Milan
using the PRISMA image of June 17th 2023.

The complete methodological implementation and source code
are publicly available through the GitHub repository (https:
//github.com/gisgeolab/LCZ-0DC).
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Figure 4. LCZ map over Milan relative to 17th June 2023.

3.2 Ongoing Improvements of LCZ Classification Meth-
odology

The mentioned methodology is being successfully utilized to
derive LCZ maps for different urban regions such as Milan,
Wuhan (China), Cairo (Egypt), Toronto (Canada), and Ho Chi
Minh City (Vietnam). However, there are ongoing efforts to en-
hance some critical steps of the workflow. Although the code
pipeline is designed to be as automatic as possible, there are
still steps that can be improved to enhance automation. More
specifically, the data retrieval phase and creation of training and
test samples are the main steps that could be further enhanced
to reduce time consumption and complexity.

3.2.1 Automate Data Retrieval Satellite data acquisition
is an essential component of the LCZ classification workflow
mentioned above. It can be time-consuming for retrieval and
complex for integration into the code pipeline. GEE is a cloud-
based platform that contains a vast catalogue of satellite im-
agery and other geospatial datasets. Additionally, it provides

a powerful computing infrastructure that allows for manipula-
tion of large datasets within short timeframes. This centralized
data source enables more robust access to data from different
sources, and by utilizing the functionalities of the GEE API, it
is possible to integrate satellite data directly into the LCZ clas-
sification code pipeline. It should be noted that as of the time of
writing this manuscript, only Sentinel-2 and UCPs can be ac-
cessed via the GEE database, while PRISMA has not yet been
integrated.

3.2.2 Automate Training/Test Samples Creation Training
samples allow the model to learn patterns in the data, while test
samples evaluate the model’s performance on unseen data. It is
crucial to provide high-quality samples to avoid overfitting and
develop a predictive model with high accuracy. These factors
highlight the importance of this step in the methodology and re-
quire precise attention. However, this step is performed manu-
ally, which can introduce human errors in the samples and does
not guarantee that the user can observe all scene characteristics
accurately.

As a solution, we propose to use urban spatial indices (USI),
which are quantitative measures used to analyze and understand
the spatial patterns and characteristics of urban areas. Since
we already have LCZ maps available for Milan, we will calcu-
late the USI for this city. By utilizing statistical measures, it is
possible to determine whether any relationships exist between
specific LCZ classes and the USI. Once these relationships are
established, it becomes possible to use the USI to programmat-
ically identify regions that represent good candidates for inclu-
sion in training and test samples.

3.2.3 Training/Test Samples Quality Check To ensure ac-
curate classification results, it is essential to have reliable train-
ing and test samples. Therefore, it is necessary to establish a
standard framework for assessing the quality of samples. In
this regard, samples should meet the following criteria to be
accepted. As mentioned in Stewart et al. (2012), the geomet-
ric and surface cover parameters have specific thresholds within
each class. Therefore, UCP values within each training and test
sample should fall within the standard threshold ranges. Cur-
rently, a study is being conducted to examine the distribution of
UCPs in existing training and test samples for the Milan case
study. Secondly, individual polygons should have an aspect ra-
tio below 3, and the area of the samples should be greater than
0.04 km? (Demuzere et al., 2021). Lastly, it is essential to en-
sure that the polygons are balanced across classes so that the al-
gorithm receives an adequate number of samples for each class.

3.24 Trying Other Machine Learning Methods Al-
though RF is a valid and widely used method for classifying
LCZs, offering advantages such as high flexibility and the abil-
ity to handle complex, multivariable data without strong as-
sumptions about input distributions, it can be limited in captur-
ing spatial patterns, especially when compared to deep learning
approaches like convolutional neural networks (CNNs) (Fung et
al., 2022). To address these limitations and ensure that our clas-
sification results are robust and potentially more accurate, we
are also testing other methods, including CNNs and geospatial
foundation models. By comparing these different approaches,
we aim to identify the most effective method for our specific
application and data characteristics.
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4. Conclusion

The satellite-based modeling framework developed in this study
with the integration of GEE data, enabled the estimation of
ground-level NO2, SO», and CO concentrations using Sentinel-
5P data, ERAS5 meteorology, and CAMS reanalysis, demon-
strating robust and scalable performance across multiple pol-
lutants. Additionally, AirGradient sensors showed excellent in-
ternal consistency across all variables, outperforming TemTop
sensors particularly for CO,. Temperature was the most reliably
measured parameter, followed by PM2 5. CO, and humidity
exhibited the greatest inter-sensor variability, especially across
brands. Future research should focus on clarifying the causes of
the poor CO, performance of TemTop sensors, as current results
indicate significant discrepancies and low correlation compared
to AG sensors. Overall, these results emphasize the need for
sensor-specific calibration when integrating multi-sensor data,
particularly for gases, where measurement uncertainty may be
more pronounced.

The second line of research in this work demonstrates the ef-
fectiveness of an advanced, hybrid GIS and Remote Sensing
based workflow for LCZ classification, leveraging hyperspec-
tral PRISMA imagery, multispectral Sentinel-2 data, and UCPs.
The proposed methodology yielded significant improvements in
classification accuracy in Milan, particularly through the integ-
ration of PRISMA data and UCPs, and outperformed existing
approaches such as the LCZ Generator. Activities are ongo-
ing for data retrieval automation, training/test sample creation,
implementation of robust quality control frameworks, further
enhance the reproducibility and reliability of the results. Ini-
tial experiments with alternative ML methods, including deep
learning models, show promise for further advancements. The
workflow has been successfully applied to diverse urban con-
texts and is adaptable for future expansion.
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