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Abstract: 

 

Accurate prediction of forest carbon sinks is crucial for achieving carbon neutrality, peak carbon emissions goals, and advancing the 

Sustainable Development Goals (SDGs). Due to the complexity of forest ecosystems and the limited application and accessibility of 

ChinaFLUX observation data, previous studies generating Net Ecosystem Exchange (NEE) products largely relied on global flux 

observation data. The relatively sparse observations in China introduce significant uncertainties in regional carbon sink estimations. 

While Long Short-Term Memory (LSTM) models have been widely applied to remote sensing image time-series analysis and 

vegetation index prediction, their use in carbon sink prediction remains limited. This study assesses the ability of the LSTM model to 

predict NEE dynamics in typical Chinese forest ecosystems using ChinaFLUX data and multi-source remote sensing data. Using long-

term Eddy Covariance (EC) observation data from 11 forest sites, alongside meteorological information and multi-source remote 

sensing data, we analyzed the carbon sink characteristics of five typical forest types: Deciduous Broadleaf Forest (DBF), Deciduous 

Needleleaf Forest (DNF), Evergreen Needleleaf Forest (ENF), Evergreen Broadleaf Forest (EBF), and Mixed Forest (MF). The results 

indicate that the LSTM model effectively captures the main trends of NEE, though some fluctuations persist in predictions for certain 

data points. During training and testing, the average R² values between model-predicted NEE and EC-derived NEE were 0.83 and 0.73, 

respectively, with RMSE values ranging from 9.75 to 31.04 g C m⁻² mon⁻¹.Furthermore, this study identifies key driving factors behind 

NEE variations across forest types. Environmental factors and vegetation physiological conditions exhibit significantly differing 

impacts on NEE. This study offers theoretical foundations and technical support for improving forest carbon sink assessments in China 

and informing climate change responses. It also presents a novel approach for accurately predicting and evaluating forest carbon sink 

dynamics. 

 

 

1. Introduction 

 

Forests, as the primary carbon sinks of terrestrial ecosystems, 

cover approximately one-third of Earth's land surface and absorb 

a net 2–3 Pg C annually (Harris et al., 2021; Pan et al., 2011). 

Chinese forests, being the main carbon sinks in the East Asian 

monsoon region, play a critical role in maintaining the global 

carbon balance. However, current estimates of forest carbon sinks 

exhibit substantial uncertainties, significantly limiting accurate 

assessments for national carbon emission management and 

climate change mitigation strategies(Zhu et al., 2023). Thus, 

improving the accuracy of forest carbon sink predictions is 

essential for achieving national carbon inventories and mitigating 

climate change risks.  

 

Net Ecosystem Exchange (NEE), defined as the net CO₂ flux 

between an ecosystem and the atmosphere per unit area and time, 

directly quantifies carbon balance(Chapin et al., 2006). Eddy 

Covariance (EC) is the standard method for measuring NEE and a 

cornerstone of micrometeorology(Baldocchi et al., 1996). The 

eddy covariance (EC) observation method possesses a solid 

physical foundation and requires minimal theoretical assumptions, 

enabling long-term, continuous, and non-destructive monitoring 

of water, heat, and carbon fluxes(Gong et al., 2020). Consequently, 

an increasing number of researchers are utilizing EC observations 

to investigate the dynamic changes of ecosystem carbon fluxes 

and their relationships with environmental factors(Sun et al., 

2019) . Running (Running et al., 1999)emphasized that integrating 

flux tower data, models, and remote sensing data can significantly 

enhance the accuracy of carbon flux estimates. The China 

Terrestrial Ecosystem Flux Observation Research Network 

(ChinaFLUX) comprises EC-based flux observation towers 

distributed across forest ecosystems throughout China(Chu et al., 

2021). In recent years, commemorating the 20th anniversary of 

ChinaFLUX, China has opened access to more site-scale flux 

observation data from terrestrial ecosystems(Yu et al., 2024). This 

newly released dataset includes 26 sites, 7 of which are forest sites 

(https://www.nesdc.org.cn/, data as of June 2025). These latest 

open-access ChinaFLUX data provide significant potential for 

improving the simulation accuracy of NEE across China's 

terrestrial ecosystems. However, due to limitations of the EC 

method, such as demanding topographic requirements and 

susceptibility to meteorological conditions, employing data 

science approaches to analyze historical NEE observation data and 

advance better NEE simulation methods represents a critical 

current research trend.  

 

Currently, a significant volume of research and projects is 

employing diverse machine learning (ML) and deep learning (DL) 

methods to predict carbon fluxes in terrestrial ecosystems. 

Commonly used models include Random Forests(Guo et al., 2023), 

Artificial Neural Networks (ANNs)(Kang et al., 2019), Support 

Vector Machines (SVMs)(Xu et al., 2018), Convolutional Neural 

Networks (CNNs)(Qian et al., 2024), and Long Short-Term 

Memory networks (LSTMs)(Huang et al., 2024). Among these, 

Long Short-Term Memory networks (LSTMs), a type of 

Recurrent Neural Network (RNN) featuring specialized gating 

mechanisms, incorporate feedback connections between neurons. 

This architecture enables them to capture longer-term temporal 
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dependencies and historical information far more effectively than 

standard RNNs(Hochreiter and Schmidhuber, 1997).While LSTM 

applications have been predominantly explored in domains such 

as meteorological forecasting(Siami-Namini et al., 2018), Natural 

Language Processing (NLP)(Liu, 2024), and time-series analysis 

of remote sensing imagery(Reddy and Prasad, 2018), their 

reliability has also been demonstrated in predicting vegetation 

indices(Besnard et al., 2019; Nathaniel et al., 2023). Crucially, the 

interannual variability (IAV) of ecosystem carbon fluxes is 

strongly governed by the memory effects of climatic and 

environmental drivers—phenomena rarely adequately represented 

in conventional modeling approaches. The inherent design of 

LSTMs, specifically their ability to learn and retain information 

over extended sequences, makes them uniquely suited to 

incorporate these critical climate-driven legacy effects on the 

carbon cycle. This capability addresses a fundamental limitation 

of traditional statistical and process-based models, which often 

struggle to capture the complex, lagged responses of ecosystems 

to antecedent conditions. Consequently, LSTMs hold substantial 

promise for significantly improving the spatial and temporal 

accuracy of regional forest carbon sink estimates, offering a more 

robust data-driven framework for understanding carbon dynamics. 

By explicitly modeling the temporal persistence of environmental 

influences, LSTMs offer a powerful approach to overcome the 

limitations of traditional methods and hold considerable promise 

for enhancing the accuracy of regional forest carbon sink 

quantification(Reichstein et al., 2019). 

 

However, related simulation studies on predicting forest carbon 

sinks are still relatively scarce. More importantly, studies focused 

on the simulation and prediction of forest carbon sinks still suffers 

from large uncertainties due to the complexity of forest 

ecosystems and the limited application of purely ChinaFLUX 

observations with difficulty in data accessibility. This study is 

aimed to test the ability of LSTM in predicting Chinese forest NEE 

dynamics using ChinaFLUX observations and multi-source 

remote sensing data.  

 

2. Study Area and Data 

 

2.1 Study Area 

 

The study area encompasses China’s forests (Figure 1), which 

exhibit extensive spatial distribution and significant regional 

heterogeneity. The total area of closed-canopy forests is 

approximately 9.91 × 10⁵ km². By forest type, DBF occupies the 

largest area (3.65 × 10⁵ km²), followed by EBF (3.10 × 10⁵ km²) 

and MF (2.44 × 10⁵ km²). ENF covers 6.50 × 10⁴ km², while DNF 

is the least distributed (7.36 × 10³ km²). 

 

ENF predominantly occurs in high-altitude humid regions of 

western Sichuan, northwestern Yunnan, and southeastern Tibet. 

EBF is primarily distributed across subtropical to tropical 

monsoon zones, including southern Yunnan, southern Guangxi, 

Guangdong, Hainan, Taiwan, and low mountain areas of Fujian, 

Jiangxi, Guizhou, Hunan, and southeastern Tibet. These forests 

thrive in warm, humid climates with abundant rainfall, featuring 

complex stand structures and high species diversity. EBF exhibits 

the highest carbon storage and sink capacity among all forest types. 

DNF is restricted to high-latitude cold-temperate zones, notably in 

northern Heilongjiang (e.g., Mohe) and northeastern Inner 

Mongolia (Hulunbuir). DBF displays distinct zonal characteristics 

across temperate monsoon regions, forming extensive contiguous 

stands in Northeast China (northern Heilongjiang, Jilin, and 

Liaoning), supported by the Changbai Mountains and southern 

Greater/Lesser Khingan ranges. MF primarily occurs in 

transitional humid subtropical-temperate zones, concentrated in 

Southwestern mountainous areas (Sichuan, Yunnan, Guizhou), 

Central China (Hunan, Hubei, Jiangxi, southern Anhui), Eastern 

hills (northern Fujian, Guangdong), and Southeastern Jilin and 

Heilongjiang. Collectively, these distributions reflect substantial 

spatial heterogeneity in China’s forest types. 

 

Given the marked differences in geographical distribution, 

climatic adaptation, and carbon sink functionality across forest 

types, NEE prediction and driver analysis stratified by plant 

functional types (PFTs) are essential. This approach enhances 

model specificity and scientific rigor. 

 
Figure 1. Study Area 

 

2.2 Data Sources 

 

This study utilized publicly available Net Ecosystem Exchange 

(NEE) data and selected 14 driving factors closely linked to NEE 

dynamics based on prior simulation research. These factors 

encompass both vegetation structural properties and 

environmental conditions.  

 

To enhance simulation accuracy for Chinese forests, NEE data 

were specifically sourced from forest site flux observations 

publicly released by China’s National Science & Technology 

Infrastructure (https://nesdc.org.cn/). 

 

Drivers of NEE were categorized into two fundamental groups: (1) 

external environmental factors, including climate variables (e.g., 

temperature, precipitation, solar radiation)(Dusenge et al., 2019) 

and soil properties (e.g., soil moisture, soil temperature)(Lavergne 

et al., 2020); and (2) internal vegetation state factors involving 

structural and physiological characteristics such as Leaf Area 

Index (LAI), forest age, and NDVI(Niinemets, 2023) . Crucially, 

vegetation growth processes—including photosynthesis and 

respiration—respond interactively to both environmental 

conditions and vegetation state dynamics. 

 

3. Methodology 

 

3.1 Fundamental Principles of the LSTM 

 

Long Short-Term Memory (LSTM), a specialized Recurrent 

Neural Network (RNN) variant, overcomes the vanishing gradient 

problem inherent in standard RNNs when modeling long-term 

dependencies. While RNNs maintain sequential memory through 

inter-time-step information transfer, their inability to learn distant 

temporal relationships due to gradient attenuation is resolved by 

LSTM's persistent cell state and gated mechanisms. This 

architecture propagates information throughout sequences without 
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constant modification via three critical components: the forget 

gate determines obsolete information to discard, the input 

gate regulates new relevant data integration, and the output 

gate controls contextual information emission at each time step. 

Thereby, LSTMs selectively retain essential features across 

extended sequences, significantly outperforming standard RNNs 

in long-dependency applications—including speech recognition, 

language modeling, and time-series forecasting—through superior 

capture of complex temporal patterns(Kaadoud et al., 2022). 

 

3.2 Input Configuration of the LSTM Model: Feature 

Variables and Hyperparameter Settings 

 

This study investigates five typical forest ecosystems in China 

using long-term EC observations from 11 forest sites, 

complemented by meteorological parameters (e.g., temperature, 

precipitation) and multi-source remote sensing data (e.g., forest 

age, SIF, LAI, NDVI). The dataset comprises 8,820 individual 

measurements aggregated into 588 site-month records. We 

employed LSTM modeling to predict NEE for five major forest 

types: DBF, DNF, MF, EBF, and ENF. For LSTM implementation, 

key hyperparameters—including hidden layer dimensionality, 

learning rate, weight decay coefficient, epoch count, batch size, 

and dropout rate—were optimized through systematic grid search. 

Approximately 3,600 hyperparameter combinations were 

evaluated per forest type to identify optimal configurations prior 

to prediction. The LSTM model is as follows: 

 

𝑁𝐸𝐸𝑡 = 𝐿𝑆𝑇𝑀

(

 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑇𝐸𝑀𝑃𝑡−𝑤:𝑡

𝑃𝑅𝐸𝑡−𝑤:𝑡

𝑉𝑃𝐷𝑡−𝑤:𝑡

𝑊𝐷𝑡−𝑤:𝑡

𝑊𝑆𝑡−𝑤:𝑡

𝑃𝑡−𝑤:𝑡

𝑃𝐴𝑅𝑡−𝑤:𝑡

𝐹𝐴𝑃𝐴𝑅𝑡−𝑤:𝑡

𝑉𝑊𝐶𝑡−𝑤:𝑡

𝑇𝑆𝑡−𝑤:𝑡

𝐴𝐺𝐸𝑡−𝑤:𝑡

𝑆𝐼𝐹𝑡−𝑤:𝑡

𝐿𝐴𝐼𝑡−𝑤:𝑡

𝑁𝐷𝑉𝐼𝑡−𝑤:𝑡 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

 

where 𝑁𝐸𝐸𝑡 represents the NEE value at time t, LSTM(⋅) indicates 

the LSTM model learning and predicting from the input 

multivariate time series data, and 𝑡 − 𝑤 denotes the time series 

input from the previous w time steps up to the current time t (time 

window), which is used to capture temporal dynamics. (TEMP, 

PRE, VPD, WD, WS, P, PAR, FAPAR, VWC, TS, AGE, SIF, LAI, 

and NDVI represent temperature, precipitation, vapor pressure 

deficit, wind direction, wind speed, atmospheric pressure, 

photosynthetically active radiation, fraction of photosynthetically 

active radiation, volumetric water content, soil temperature, forest 

age, solar-induced chlorophyll fluorescence, leaf area index, and 

normalized difference vegetation index, respectively).  

 

3.3 Evaluation Metrics for Model Accuracy 

 

We applied three metrics to evaluate the accuracy of the trained 

LSTM-NEE models, including the coefficient of determination 

(R²), mean absolute error (MAE), and root mean square error 

(RMSE). The definitions of these metrics are given as follows: 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦‾)2𝑛
𝑖=1

 (2) 

 

𝑀𝐴𝐸 =
1

𝑛
∑ ∣ 𝑦𝑖 − 𝑦̂𝑖 ∣

𝑛

𝑖=1
 (3) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2
𝑛

𝑖=1
 (4) 

 

 

where  𝑦𝑖  represents the true value, 𝑦̂𝑖  represents the predicted 

value, and 𝑦‾ =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 represents the mean of the true values, 

and 𝑛 is the sample size. 

 

3.4 SHAP-based Analysis of the Influencing Factors of NEE 

for Different Vegetation Types 

 

SHAP (SHapley Additive exPlanations) is a unified framework for 

interpreting machine learning models by assigning feature 

importance values to individual predictions. Grounded in 

cooperative game theory's Shapley values, it establishes additive 

feature attribution models where predictions are represented as 

linear combinations of each feature's marginal contribution. The 

SHAP framework satisfies three fundamental axioms: Local 

accuracy, attribution values sum to the model's prediction; 

Missingness, features not present in the input receive zero 

attribution; Consistency, increased feature influence never 

decreases attribution value. These properties ensure theoretically 

consistent and practically feasible explanations for complex 

models. 

 

In this study, SHAP analysis identifies key drivers of Net 

Ecosystem Exchange (NEE) across vegetation functional types. 

We implement regression modeling for regional NEE prediction 

coupled with SHAP to quantify attribution differences in climatic, 

edaphic, hydrological, and structural factors. Through 

comparative assessment of feature importance, this approach 

reveals mechanistic controls on NEE variability while enhancing 

model interpretability. The resulting quantitative evidence 

advances understanding of ecosystem carbon balance drivers, 

supporting improved ecological process modeling, carbon sink 

assessment, and climate response research. The formal SHAP 

formulation is as follows: 

 

𝑓(𝑥) = 𝜑0 + ∑  

𝑀

𝑖=1

𝜑ᵢ (5) 

𝜑ᵢ = ∑  

𝑆⊆𝐹∖{𝑖}

|𝑆|! ⋅ (|𝐹| − |𝑆| − 1)!

|𝐹|!
[𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)] (6) 

𝜑₀ =  𝐸[𝑓(𝑧)] (7) 

 

where, 𝑓(𝑥) denotes the predicted NEE value, 𝜑0 represents the 

baseline prediction (typically the mean output of training samples 

when all features are marginalized), 𝜑ᵢ represents the marginal 

contribution of the i-th feature to the model's prediction for the 

current sample,𝐹denotes the complete feature set, and 𝑆 denotes 

the subset of all features excluding the i-th feature. (Wang et al., 

2024) 

 

To summarize the methodology， this study commenced with 
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preprocessing raw data through screening, missing value 

imputation, and variable extraction, followed by stratifying 

samples into five vegetation functional types—EBF, ENF, DBF, 

DNF, and MF—with each dataset partitioned into training and 

testing subsets at an 80:20 ratio for LSTM modeling and 

prediction; during model training, Grid Search optimization 

identified optimal hyperparameter configurations (including 

architecture and learning parameters) per vegetation type, 

whereupon models trained with these configurations predicted 

NEE with performance validated via accuracy metrics (MSE, 

MAE, R²); to enhance interpretability, SHAP analysis was 

subsequently implemented for feature attribution, identifying 

dominant NEE drivers across vegetation types while quantifying 

their relative importance and revealing divergent ecological 

mechanisms—thus establishing theoretical foundations for 

ecosystem carbon budget regulation and providing 

methodological frameworks for climate-response ecological 

modeling, as illustrated in the workflow diagram below. 

 
Figure 2. Schematic Diagram of this Research 

 

4. Results  

 

4.1 Prediction Accuracy of NEE Across Different Forest 

Types Using the LSTM Model 

 

The LSTM model estimated monthly NEE for flux sites across 

five Chinese forest types. Prediction accuracy varied among PFTs, 

as shown in Figure 3. DBF, DNF and MF achieved high accuracy, 

with strong agreement between model-predicted and EC-derived 

NEE in both training (R² = 0.87-0.91; RMSE = 9.75-31.04 g C m⁻² 

mon⁻¹) and testing phases (R² = 0.77-0.81; RMSE = 16.38-32.33 

g C m⁻² mon⁻¹). Conversely, EBF and ENF demonstrated lower 

performance, particularly ENF in testing (R² = 0.61-0.63; RMSE 

= 11.73-22.81 g C m⁻² mon⁻¹). Collectively, mean R² values 

reached 0.83 (training) and 0.73 (testing), with RMSE ranging 

from 9.75 to 31.04 g C m⁻² mon⁻¹. These results indicate reliable 

predictive capability across forest types, though minor 

fluctuations persist in certain predictions. 

 

4.2 Site-Level Evaluation of LSTM Predictive Performance 

Across Forest Types 

 

To comprehensively evaluate the fitting capability of the LSTM 

model for Net Ecosystem Exchange (NEE) time series variations 

across different forest ecosystems, this study selected five 

representative sites encompassing diverse Plant Functional Types 

(PFTs). It presents typical prediction results (Figure 4) illustrating 

scenarios such as optimal performance, strong modeling stability, 

favorable type-specific response, and instances of declining 

predictive performance. Among all sites, the JFF site (Mixed 

Forest, MF) demonstrated the best predictive performance. It 

achieved a test set coefficient of determination (R²) as high as 0.99 

and a Root Mean Square Error (RMSE) of only 1.69 g C m⁻² mon⁻¹. 

This indicates that the LSTM model can capture the dynamic 

changes of NEE in this region with exceptional precision, with 

predicted values showing high consistency with observations in 

both amplitude and timing. These results highlight the model's 

maximum potential in areas with high-quality data and stable 

environmental signals. The CBF site (Mixed Forest, MF), 

covering a complete time series from 2003 to 2011, served as a 

crucial sample for evaluating the model's ability to capture long-

term seasonal cycles. Predictions for this site were stable, with an 

R² of 0.92 and an RMSE of 13.79. The model successfully 

captured interannual fluctuations and seasonal peaks/valleys, 

validating the LSTM model's strong adaptability and robustness in 

modeling NEE seasonal dynamics within mid-to-high latitude 

mixed forests. 

 

Among the different PFTs, the HZF site (Deciduous Needleleaf 

Forest, DNF), representing a typical deciduous forest, displayed 

good predictive performance (R²=0.91, RMSE=11.17). The model 

accurately reproduced the seasonal fluctuation patterns and peak 

timings of NEE, potentially attributable to the site's relatively 

distinct phenological cycles and clear seasonal driving 

mechanisms. 

 

In contrast, predictive performance exhibited fluctuations at some 

sites, highlighting limitations in the model's adaptability to 

specific ecosystem types or time periods. At the BTF site 

(Deciduous Broadleaf Forest, DBF), while the test period R² was 

0.89, the RMSE reached 19.48 g C m⁻² mon⁻¹ – significantly 

higher than the training period RMSE (9.17). This indicates a 

notable prediction bias in 2018, particularly during the summer 

carbon sink peak, where predictions showed clear underestimation. 

This reflects the model's insufficient responsiveness to extreme 

events or climatic anomalies. 

 

Finally, the LDF (or QYF) site exhibited characteristics typical of 

limited model generalization capability. Taking LDF as an 

example, it performed well during the training period (R²=0.94), 

but its test period R² sharply dropped to 0.39 and the RMSE 

increased to 20.60, with predicted trends deviating from 

observations. Similarly, the QYF site (Evergreen Needleleaf 

Forest, ENF) consistently showed systematic underestimation 

throughout its time series (test R² only 0.30). This reflects the 

model's weaker capacity to capture the seasonal rhythm and 

underlying physiological mechanisms of carbon exchange in 

evergreen forest types. This limitation may be related to the lower 

intra-annual variability and more complex driving mechanisms 

characteristic of evergreen forests. 

 

4.3 SHAP Analysis of NEE Drivers in Forest Ecosystems 

 

SHAP analysis revealed significant interspecific divergence in 

dominant Net Ecosystem Exchange drivers across PFTs (Figure 

5), reflecting distinct physiological adaptations to environmental 

forcing mechanisms. Deciduous forests exhibited pronounced SIF 

dominance, with contributions reaching 78.5% in DNF and 53.2% 

in DBF. This overwhelming influence establishes photosynthetic 

activity as the primary regulator of carbon dynamics in these 
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ecosystems. Conversely, evergreen forests demonstrated 

contrasting controls: VPD dominated ENF at 40.9% contribution, 

indicating water stress as a key constraint, while PAR governed 

EBF with 19.5% contribution supplemented by precipitation at 

13.4%. Notably, LAI in ENF and VWC in EBF showed marginal 

effects of 1.7% and 1.4% respectively, demonstrating their limited 

regulatory roles. Mixed forest displayed a hybrid regulatory 

structure where air temperature functioned as the primary driver at 

42.1% with SIF acting as significant secondary contributor at 

19.9%. Wind speed and wind direction demonstrated minimal 

influence at 0.8% each. Crucially, both MF and EBF exhibited 

multiple key drivers, specifically TEMP and VPD in MF, and PAR 

and precipitation in EBF, demonstrating synergistic control of 

carbon exchange processes. 

 

This study provides a new approach for simulating NEE in 

Chinese forests by integrating multi-source data, which 

contributes to a better understanding of the role of Chinese forest 

ecosystems in the terrestrial carbon cycle. 

 

 
Figure 3. Model Performance Comparison Over Five Forest Types. 

(DBF: Deciduous Broadleaf Forest, DNF: Deciduous Needleleaf 

Forest, MF: Mixed Forest, EBF: Evergreen Broadleaf Forest, and 

ENF: Evergreen Needleleaf Forest). The units of RMSE are g C 

m-2 mon-1. 

 

 

 

 

 
Figure 4. Comparison of Observed and Predicted NEE Across Representative Sites of different PFTs using LSTM and EC observations. 

(CBF: Changbai Mountain Station; HZF: Huzhong Station; JFF: Jinfoshan Station; QYF: Qianyanzhou Station; LDF: Xiaolangdi 

Station; BTF: Baotianman Station;). The gray dashed line indicates the start of the site testing period. It is important to note that in this 

study, the input data from the first six months were used to train the LSTM model, so there are no NEE predictions for the initial six 

months. The units for the RMSE and MAE are both grams of carbon per square meter per month (g C m⁻² mon⁻¹). 
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Figure 5. The relative contributions of forest age, normalized 

difference vegetation index, leaf area index, solar-induced 

chlorophyll fluorescence, photosynthetically active radiation, 

fraction of photosynthetically active radiation, temperature, 

precipitation, vapor pressure deficit, wind direction, wind speed, 

atmospheric pressure, soil temperature and volumetric water 

content to monthly NEE from the SHAP method across five 

Chinese typical forest ecosystems. 

 

5. Conclusion  

 

This study investigated carbon sink dynamics across five typical 

Chinese forest types by integrating long-term EC observations 

from 11 forest sites with meteorological parameters and multi-

source remote sensing data. The dataset comprised 8,820 

individual measurements aggregated into 588 site-month records. 

LSTM modeling was employed to predict NEE for DBF, DNF, 

MF, EBF, and ENF. 

 

Our results demonstrate robust predictive capability of LSTM 

across forest types, with stable performance despite minor 

fluctuations in isolated predictions. DBF, DNF, and MF exhibited 

high accuracy, achieving training R² = 0.87–0.91 and testing R² = 

0.77–0.81, with RMSE ranging from 9.75 to 32.33 g C m⁻² mon⁻¹. 

This confirms LSTM's effectiveness in simulating forest-type-

specific NEE dynamics. However, EBF and ENF showed 

relatively lower precision, particularly ENF (testing R² = 0.61; 

RMSE = 11.73–22.81 g C m⁻² mon⁻¹), indicating potential for 

model refinement in evergreen ecosystems. 

 

SHAP-based driver analysis revealed significant vegetation-type-

dependent controls on NEE ， EBF: Dominated by 

photosynthetically active radiation (PAR; 19.47%) and 

precipitation (13.42%) ； ENF: Primarily regulated by vapor 

pressure deficit (VPD; 40.88%)；Deciduous forests: SIF-driven 

(DBF: 53.21%; DNF: 78.52%), with negligible precipitation 

effects (0.05–0.52%)；MF: Temperature-controlled (42.07%), 

supplemented by SIF (19.88%). These divergent driver hierarchies 

reflect fundamentally distinct carbon-regulation mechanisms 

across forest ecosystems. 

 

While this work validates LSTM's site-level predictive capability 

and identifies PFT-specific drivers, future research will scale to 

China's entire forest domain. Incorporating additional ecological 

zones and remote sensing layers will enhance model 

generalizability, ultimately strengthening national carbon sink 

assessments and supporting evidence-based climate mitigation 

strategies. 
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