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Abstract:

Accurate prediction of forest carbon sinks is crucial for achieving carbon neutrality, peak carbon emissions goals, and advancing the
Sustainable Development Goals (SDGs). Due to the complexity of forest ecosystems and the limited application and accessibility of
ChinaFLUX observation data, previous studies generating Net Ecosystem Exchange (NEE) products largely relied on global flux
observation data. The relatively sparse observations in China introduce significant uncertainties in regional carbon sink estimations.
While Long Short-Term Memory (LSTM) models have been widely applied to remote sensing image time-series analysis and
vegetation index prediction, their use in carbon sink prediction remains limited. This study assesses the ability of the LSTM model to
predict NEE dynamics in typical Chinese forest ecosystems using ChinaFLUX data and multi-source remote sensing data. Using long-
term Eddy Covariance (EC) observation data from 11 forest sites, alongside meteorological information and multi-source remote
sensing data, we analyzed the carbon sink characteristics of five typical forest types: Deciduous Broadleaf Forest (DBF), Deciduous
Needleleaf Forest (DNF), Evergreen Needleleaf Forest (ENF), Evergreen Broadleaf Forest (EBF), and Mixed Forest (MF). The results
indicate that the LSTM model effectively captures the main trends of NEE, though some fluctuations persist in predictions for certain
data points. During training and testing, the average R=alues between model-predicted NEE and EC-derived NEE were 0.83 and 0.73,
respectively, with RMSE values ranging from 9.75 to 31.04 g C m2 mon ™' .Furthermore, this study identifies key driving factors behind
NEE variations across forest types. Environmental factors and vegetation physiological conditions exhibit significantly differing
impacts on NEE. This study offers theoretical foundations and technical support for improving forest carbon sink assessments in China
and informing climate change responses. It also presents a novel approach for accurately predicting and evaluating forest carbon sink
dynamics.

enhance the accuracy of carbon flux estimates. The China
Terrestrial Ecosystem Flux Observation Research Network
(ChinaFLUX) comprises EC-based flux observation towers
distributed across forest ecosystems throughout China(Chu et al.,
2021). In recent years, commemorating the 20th anniversary of
ChinaFLUX, China has opened access to more site-scale flux
observation data from terrestrial ecosystems(Yu et al., 2024). This
newly released dataset includes 26 sites, 7 of which are forest sites
(https://www.nesdc.org.cn/, data as of June 2025). These latest
open-access ChinaFLUX data provide significant potential for
improving the simulation accuracy of NEE across China's
terrestrial ecosystems. However, due to limitations of the EC
method, such as demanding topographic requirements and
susceptibility to meteorological conditions, employing data
science approaches to analyze historical NEE observation data and
advance better NEE simulation methods represents a critical
current research trend.

1. Introduction

Forests, as the primary carbon sinks of terrestrial ecosystems,
cover approximately one-third of Earth's land surface and absorb
a net 2-3 Pg C annually (Harris et al., 2021; Pan et al., 2011).
Chinese forests, being the main carbon sinks in the East Asian
monsoon region, play a critical role in maintaining the global
carbon balance. However, current estimates of forest carbon sinks
exhibit substantial uncertainties, significantly limiting accurate
assessments for national carbon emission management and
climate change mitigation strategies(Zhu et al., 2023). Thus,
improving the accuracy of forest carbon sink predictions is
essential for achieving national carbon inventories and mitigating
climate change risks.

Net Ecosystem Exchange (NEE), defined as the net CO: flux
between an ecosystem and the atmosphere per unit area and time,
directly quantifies carbon balance(Chapin et al., 2006). Eddy
Covariance (EC) is the standard method for measuring NEE and a
cornerstone of micrometeorology(Baldocchi et al., 1996). The
eddy covariance (EC) observation method possesses a solid
physical foundation and requires minimal theoretical assumptions,
enabling long-term, continuous, and non-destructive monitoring
of water, heat, and carbon fluxes(Gong et al., 2020). Consequently,
an increasing number of researchers are utilizing EC observations
to investigate the dynamic changes of ecosystem carbon fluxes
and their relationships with environmental factors(Sun et al.,
2019) . Running (Running et al., 1999)emphasized that integrating
flux tower data, models, and remote sensing data can significantly

Currently, a significant volume of research and projects is
employing diverse machine learning (ML) and deep learning (DL)
methods to predict carbon fluxes in terrestrial ecosystems.
Commonly used models include Random Forests(Guo etal., 2023),
Artificial Neural Networks (ANNSs)(Kang et al., 2019), Support
Vector Machines (SVMs)(Xu et al., 2018), Convolutional Neural
Networks (CNNs)(Qian et al., 2024), and Long Short-Term
Memory networks (LSTMs)(Huang et al., 2024). Among these,
Long Short-Term Memory networks (LSTMs), a type of
Recurrent Neural Network (RNN) featuring specialized gating
mechanisms, incorporate feedback connections between neurons.
This architecture enables them to capture longer-term temporal
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dependencies and historical information far more effectively than
standard RNNs(Hochreiter and Schmidhuber, 1997).While LSTM
applications have been predominantly explored in domains such
as meteorological forecasting(Siami-Namini et al., 2018), Natural
Language Processing (NLP)(Liu, 2024), and time-series analysis
of remote sensing imagery(Reddy and Prasad, 2018), their
reliability has also been demonstrated in predicting vegetation
indices(Besnard et al., 2019; Nathaniel et al., 2023). Crucially, the
interannual variability (IAV) of ecosystem carbon fluxes is
strongly governed by the memory effects of climatic and
environmental drivers—phenomena rarely adequately represented
in conventional modeling approaches. The inherent design of
LSTMs, specifically their ability to learn and retain information
over extended sequences, makes them uniquely suited to
incorporate these critical climate-driven legacy effects on the
carbon cycle. This capability addresses a fundamental limitation
of traditional statistical and process-based models, which often
struggle to capture the complex, lagged responses of ecosystems
to antecedent conditions. Consequently, LSTMs hold substantial
promise for significantly improving the spatial and temporal
accuracy of regional forest carbon sink estimates, offering a more
robust data-driven framework for understanding carbon dynamics.
By explicitly modeling the temporal persistence of environmental
influences, LSTMs offer a powerful approach to overcome the
limitations of traditional methods and hold considerable promise
for enhancing the accuracy of regional forest carbon sink
quantification(Reichstein et al., 2019).

However, related simulation studies on predicting forest carbon
sinks are still relatively scarce. More importantly, studies focused
on the simulation and prediction of forest carbon sinks still suffers
from large uncertainties due to the complexity of forest
ecosystems and the limited application of purely ChinaFLUX
observations with difficulty in data accessibility. This study is
aimed to test the ability of LSTM in predicting Chinese forest NEE
dynamics using ChinaFLUX observations and multi-source
remote sensing data.

2. Study Area and Data
2.1 Study Area

The study area encompasses China’s forests (Figure 1), which
exhibit extensive spatial distribution and significant regional
heterogeneity. The total area of closed-canopy forests is
approximately 9.91 x 10° km?. By forest type, DBF occupies the
largest area (3.65 x 10° km?), followed by EBF (3.10 x 10° km?)
and MF (2.44 x 10° km?). ENF covers 6.50 x 10* km?, while DNF
is the least distributed (7.36 ><10=km=.

ENF predominantly occurs in high-altitude humid regions of
western Sichuan, northwestern Yunnan, and southeastern Tibet.
EBF is primarily distributed across subtropical to tropical
monsoon zones, including southern Yunnan, southern Guangxi,
Guangdong, Hainan, Taiwan, and low mountain areas of Fujian,
Jiangxi, Guizhou, Hunan, and southeastern Tibet. These forests
thrive in warm, humid climates with abundant rainfall, featuring
complex stand structures and high species diversity. EBF exhibits

the highest carbon storage and sink capacity among all forest types.

DNF is restricted to high-latitude cold-temperate zones, notably in
northern Heilongjiang (e.g., Mohe) and northeastern Inner
Mongolia (Hulunbuir). DBF displays distinct zonal characteristics
across temperate monsoon regions, forming extensive contiguous
stands in Northeast China (northern Heilongjiang, Jilin, and
Liaoning), supported by the Changbai Mountains and southern
Greater/Lesser Khingan ranges. MF primarily occurs in
transitional humid subtropical-temperate zones, concentrated in

Southwestern mountainous areas (Sichuan, Yunnan, Guizhou),
Central China (Hunan, Hubei, Jiangxi, southern Anhui), Eastern
hills (northern Fujian, Guangdong), and Southeastern Jilin and
Heilongjiang. Collectively, these distributions reflect substantial
spatial heterogeneity in China’s forest types.

Given the marked differences in geographical distribution,
climatic adaptation, and carbon sink functionality across forest
types, NEE prediction and driver analysis stratified by plant
functional types (PFTs) are essential. This approach enhances

model specificity and scientific rigor.
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Figure 1. Study Area
2.2 Data Sources

This study utilized publicly available Net Ecosystem Exchange
(NEE) data and selected 14 driving factors closely linked to NEE
dynamics based on prior simulation research. These factors
encompass both  vegetation structural properties and
environmental conditions.

To enhance simulation accuracy for Chinese forests, NEE data
were specifically sourced from forest site flux observations
publicly released by China’s National Science & Technology
Infrastructure (https://nesdc.org.cn/).

Drivers of NEE were categorized into two fundamental groups: (1)
external environmental factors, including climate variables (e.g.,
temperature, precipitation, solar radiation)(Dusenge et al., 2019)
and soil properties (e.g., soil moisture, soil temperature)(Lavergne
et al., 2020); and (2) internal vegetation state factors involving
structural and physiological characteristics such as Leaf Area
Index (LALI), forest age, and NDVI(Niinemets, 2023) . Crucially,
vegetation growth processes—including photosynthesis and
respiration—respond interactively to both environmental
conditions and vegetation state dynamics.

3. Methodology
3.1 Fundamental Principles of the LSTM

Long Short-Term Memory (LSTM), a specialized Recurrent
Neural Network (RNN) variant, overcomes the vanishing gradient
problem inherent in standard RNNs when modeling long-term
dependencies. While RNNs maintain sequential memory through
inter-time-step information transfer, their inability to learn distant
temporal relationships due to gradient attenuation is resolved by
LSTM's persistent cell state and gated mechanisms. This
architecture propagates information throughout sequences without
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constant modification via three critical components: the forget
gate determines obsolete information to discard, the input
gate regulates new relevant data integration, and the output
gate controls contextual information emission at each time step.
Thereby, LSTMs selectively retain essential features across
extended sequences, significantly outperforming standard RNNs
in long-dependency applications—including speech recognition,
language modeling, and time-series forecasting—through superior
capture of complex temporal patterns(Kaadoud et al., 2022).

3.2 Input Configuration of the LSTM Model: Feature
Variables and Hyperparameter Settings

This study investigates five typical forest ecosystems in China
using long-term EC observations from 11 forest sites,
complemented by meteorological parameters (e.g., temperature,
precipitation) and multi-source remote sensing data (e.g., forest
age, SIF, LAI, NDVI). The dataset comprises 8,820 individual
measurements aggregated into 588 site-month records. We
employed LSTM modeling to predict NEE for five major forest
types: DBF, DNF, MF, EBF, and ENF. For LSTM implementation,
key hyperparameters—including hidden layer dimensionality,
learning rate, weight decay coefficient, epoch count, batch size,
and dropout rate—were optimized through systematic grid search.
Approximately 3,600 hyperparameter combinations were
evaluated per forest type to identify optimal configurations prior
to prediction. The LSTM model is as follows:
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NEE, = LSTM 1)

where NEE, represents the NEE value at time t, LSTM(-) indicates
the LSTM model learning and predicting from the input
multivariate time series data, and t —w denotes the time series
input from the previous w time steps up to the current time t (time
window), which is used to capture temporal dynamics. (TEMP,
PRE, VPD, WD, WS, P, PAR, FAPAR, VWC, TS, AGE, SIF, LAI,
and NDVI represent temperature, precipitation, vapor pressure
deficit, wind direction, wind speed, atmospheric pressure,
photosynthetically active radiation, fraction of photosynthetically
active radiation, volumetric water content, soil temperature, forest
age, solar-induced chlorophyll fluorescence, leaf area index, and
normalized difference vegetation index, respectively).

3.3 Evaluation Metrics for Model Accuracy

We applied three metrics to evaluate the accuracy of the trained
LSTM-NEE models, including the coefficient of determination
(R%, mean absolute error (MAE), and root mean square error
(RMSE). The definitions of these metrics are given as follows:

it - 9:1)?

Rz =1L T 2
X = 9)? @
1 n
MAE=—>" 1y—51 ®
n i=1
1 n
RMSE = —Z' i — 9)? 4
n i=1

where y; represents the true value, §; represents the predicted
value, and y =% ™, y;represents the mean of the true values,
and n is the sample size.

3.4 SHAP-based Analysis of the Influencing Factors of NEE
for Different Vegetation Types

SHAP (SHapley Additive exPlanations) is a unified framework for
interpreting machine learning models by assigning feature
importance values to individual predictions. Grounded in
cooperative game theory's Shapley values, it establishes additive
feature attribution models where predictions are represented as
linear combinations of each feature's marginal contribution. The
SHAP framework satisfies three fundamental axioms: Local
accuracy, attribution values sum to the model's prediction;
Missingness, features not present in the input receive zero
attribution; Consistency, increased feature influence never
decreases attribution value. These properties ensure theoretically
consistent and practically feasible explanations for complex
models.

In this study, SHAP analysis identifies key drivers of Net
Ecosystem Exchange (NEE) across vegetation functional types.
We implement regression modeling for regional NEE prediction
coupled with SHAP to quantify attribution differences in climatic,
edaphic, hydrological, and structural factors. Through
comparative assessment of feature importance, this approach
reveals mechanistic controls on NEE variability while enhancing
model interpretability. The resulting quantitative evidence
advances understanding of ecosystem carbon balance drivers,
supporting improved ecological process modeling, carbon sink
assessment, and climate response research. The formal SHAP
formulation is as follows:

M
f(x)=<oo+z i (5)
i=1
S|t (IF| - IS| - D!
o = Z I1*- I :Fl!l I )[f(SU{i})—f(S)] ©
SCSF\{i}
Po = E[f(2)] @

where, f(x) denotes the predicted NEE value, ¢, represents the
baseline prediction (typically the mean output of training samples
when all features are marginalized), ¢; represents the marginal
contribution of the i-th feature to the model's prediction for the
current sample,Fdenotes the complete feature set, and S denotes
the subset of all features excluding the i-th feature. (Wang et al.,
2024)

To summarize the methodology, this study commenced with
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preprocessing raw data through screening, missing value
imputation, and variable extraction, followed by stratifying
samples into five vegetation functional types—EBF, ENF, DBF,
DNF, and MF—with each dataset partitioned into training and
testing subsets at an 80:20 ratio for LSTM modeling and
prediction; during model training, Grid Search optimization
identified optimal hyperparameter configurations (including
architecture and learning parameters) per vegetation type,
whereupon models trained with these configurations predicted
NEE with performance validated via accuracy metrics (MSE,
MAE, RZ to enhance interpretability, SHAP analysis was
subsequently implemented for feature attribution, identifying
dominant NEE drivers across vegetation types while quantifying
their relative importance and revealing divergent ecological
mechanisms—thus establishing theoretical foundations for
ecosystem  carbon  budget regulation and providing

methodological frameworks for climate-response ecological
modeling, as illustrated in the workflow diagram below.

| Precision

Evaluation SHAP |

Figure 2. Schematic Diagram of this Research

4. Results

4.1 Prediction Accuracy of NEE Across Different Forest
Types Using the LSTM Model

The LSTM model estimated monthly NEE for flux sites across
five Chinese forest types. Prediction accuracy varied among PFTSs,
as shown in Figure 3. DBF, DNF and MF achieved high accuracy,
with strong agreement between model-predicted and EC-derived
NEE in both training (R==0.87-0.91; RMSE =9.75-31.04 g C m™2
mon') and testing phases (R? = 0.77-0.81; RMSE = 16.38-32.33
g C m2 mon™). Conversely, EBF and ENF demonstrated lower
performance, particularly ENF in testing (R== 0.61-0.63; RMSE
= 11.73-22.81 g C m? mon™'). Collectively, mean R? values
reached 0.83 (training) and 0.73 (testing), with RMSE ranging
from 9.75 to 31.04 g C m2 mon'. These results indicate reliable
predictive capability across forest types, though minor
fluctuations persist in certain predictions.

4.2 Site-Level Evaluation of LSTM Predictive Performance
Across Forest Types

To comprehensively evaluate the fitting capability of the LSTM

model for Net Ecosystem Exchange (NEE) time series variations
across different forest ecosystems, this study selected five
representative sites encompassing diverse Plant Functional Types
(PFTs). It presents typical prediction results (Figure 4) illustrating
scenarios such as optimal performance, strong modeling stability,
favorable type-specific response, and instances of declining
predictive performance. Among all sites, the JFF site (Mixed
Forest, MF) demonstrated the best predictive performance. It
achieved a test set coefficient of determination (R as high as 0.99
and a Root Mean Square Error (RMSE) of only 1.69 gCm2?mon™".
This indicates that the LSTM model can capture the dynamic
changes of NEE in this region with exceptional precision, with
predicted values showing high consistency with observations in
both amplitude and timing. These results highlight the model's
maximum potential in areas with high-quality data and stable
environmental signals. The CBF site (Mixed Forest, MF),
covering a complete time series from 2003 to 2011, served as a
crucial sample for evaluating the model's ability to capture long-
term seasonal cycles. Predictions for this site were stable, with an
R=20of 0.92 and an RMSE of 13.79. The model successfully
captured interannual fluctuations and seasonal peaks/valleys,
validating the LSTM model's strong adaptability and robustness in
modeling NEE seasonal dynamics within mid-to-high latitude
mixed forests.

Among the different PFTs, the HZF site (Deciduous Needleleaf
Forest, DNF), representing a typical deciduous forest, displayed
good predictive performance (R20.91, RMSE=11.17). The model
accurately reproduced the seasonal fluctuation patterns and peak
timings of NEE, potentially attributable to the site's relatively
distinct phenological cycles and clear seasonal driving
mechanisms.

In contrast, predictive performance exhibited fluctuations at some
sites, highlighting limitations in the model's adaptability to
specific ecosystem types or time periods. At the BTF site
(Deciduous Broadleaf Forest, DBF), while the test period R2wvas
0.89, the RMSE reached 19.48 ¢ C m™2 mon™' — significantly
higher than the training period RMSE (9.17). This indicates a
notable prediction bias in 2018, particularly during the summer
carbon sink peak, where predictions showed clear underestimation.
This reflects the model's insufficient responsiveness to extreme
events or climatic anomalies.

Finally, the LDF (or QYF) site exhibited characteristics typical of
limited model generalization capability. Taking LDF as an
example, it performed well during the training period (R=0.94),
but its test period R=2sharply dropped to 0.39 and the RMSE
increased to 20.60, with predicted trends deviating from
observations. Similarly, the QYF site (Evergreen Needleleaf
Forest, ENF) consistently showed systematic underestimation
throughout its time series (test R=2only 0.30). This reflects the
model's weaker capacity to capture the seasonal rhythm and
underlying physiological mechanisms of carbon exchange in
evergreen forest types. This limitation may be related to the lower
intra-annual variability and more complex driving mechanisms
characteristic of evergreen forests.

4.3 SHAP Analysis of NEE Drivers in Forest Ecosystems

SHAP analysis revealed significant interspecific divergence in
dominant Net Ecosystem Exchange drivers across PFTs (Figure
5), reflecting distinct physiological adaptations to environmental
forcing mechanisms. Deciduous forests exhibited pronounced SIF
dominance, with contributions reaching 78.5% in DNF and 53.2%
in DBF. This overwhelming influence establishes photosynthetic
activity as the primary regulator of carbon dynamics in these
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ecosystems.  Conversely, evergreen forests demonstrated
contrasting controls: VPD dominated ENF at 40.9% contribution,
indicating water stress as a key constraint, while PAR governed
EBF with 19.5% contribution supplemented by precipitation at
13.4%. Notably, LAl in ENF and VWC in EBF showed marginal
effects of 1.7% and 1.4% respectively, demonstrating their limited
regulatory roles. Mixed forest displayed a hybrid regulatory
structure where air temperature functioned as the primary driver at
42.1% with SIF acting as significant secondary contributor at
19.9%. Wind speed and wind direction demonstrated minimal
influence at 0.8% each. Crucially, both MF and EBF exhibited
multiple key drivers, specifically TEMP and VPD in MF, and PAR
and precipitation in EBF, demonstrating synergistic control of
carbon exchange processes.

This study provides a new approach for simulating NEE in
Chinese forests by integrating multi-source data, which
contributes to a better understanding of the role of Chinese forest
ecosystems in the terrestrial carbon cycle.
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Figure 3. Model Performance Comparison Over Five Forest Types.
(DBF: Deciduous Broadleaf Forest, DNF: Deciduous Needleleaf
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Figure 4. Comparison of Observed and Predicted NEE Across Representative Sites of different PFTs using LSTM and EC observations.

(CBF: Changbai Mountain Station; HZF: Huzhong Station; JFF

: Jinfoshan Station; QYF: Qianyanzhou Station; LDF: Xiaolangdi

Station; BTF: Baotianman Station;). The gray dashed line indicates the start of the site testing period. It is important to note that in this
study, the input data from the first six months were used to train the LSTM model, so there are no NEE predictions for the initial six
months. The units for the RMSE and MAE are both grams of carbon per square meter per month (g C m2 mon™).
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Figure 5. The relative contributions of forest age, normalized
difference vegetation index, leaf area index, solar-induced
chlorophyll fluorescence, photosynthetically active radiation,
fraction of photosynthetically active radiation, temperature,
precipitation, vapor pressure deficit, wind direction, wind speed,
atmospheric pressure, soil temperature and volumetric water
content to monthly NEE from the SHAP method across five
Chinese typical forest ecosystems.

5. Conclusion

This study investigated carbon sink dynamics across five typical
Chinese forest types by integrating long-term EC observations
from 11 forest sites with meteorological parameters and multi-
source remote sensing data. The dataset comprised 8,820
individual measurements aggregated into 588 site-month records.
LSTM modeling was employed to predict NEE for DBF, DNF,
MF, EBF, and ENF.

Our results demonstrate robust predictive capability of LSTM
across forest types, with stable performance despite minor
fluctuations in isolated predictions. DBF, DNF, and MF exhibited
high accuracy, achieving training R== 0.87-0.91 and testing R==
0.77-0.81, with RMSE ranging from 9.75 t0 32.33 gC m2 mon™".
This confirms LSTM's effectiveness in simulating forest-type-
specific NEE dynamics. However, EBF and ENF showed
relatively lower precision, particularly ENF (testing R=2= 0.61;
RMSE = 11.73-22.81 g C m2 mon"), indicating potential for
model refinement in evergreen ecosystems.

SHAP-based driver analysis revealed significant vegetation-type-
dependent controls on NEE , EBF: Dominated by
photosynthetically —active radiation (PAR; 19.47%) and
precipitation (13.42%) ; ENF: Primarily regulated by vapor
pressure deficit (VPD; 40.88%); Deciduous forests: SIF-driven
(DBF: 53.21%; DNF: 78.52%), with negligible precipitation
effects (0.05-0.52%); MF: Temperature-controlled (42.07%),
supplemented by SIF (19.88%). These divergent driver hierarchies
reflect fundamentally distinct carbon-regulation mechanisms
across forest ecosystems.

While this work validates LSTM's site-level predictive capability
and identifies PFT-specific drivers, future research will scale to
China's entire forest domain. Incorporating additional ecological
zones and remote sensing layers will enhance model
generalizability, ultimately strengthening national carbon sink
assessments and supporting evidence-based climate mitigation
strategies.
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