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Abstract

Recent advances in measurement technologies have significantly improved the accuracy of multi-scale 3D reconstruction, yet the
resulting large-scale data with inherent redundancy pose challenges for storage and real-time rendering. This paper proposes a
systematic framework for efficient lightweight processing of 3D real-scene mesh model, integrating planar feature extraction, point
cloud classification, and semantics-driven simplification. The key scientific contributions include: (1) A preprocessing process for the
reality 3D model is added for the plane segmentation algorithm; (2) A training-free point cloud classification method employing 9
complementary geometric-semantic features and probabilistic smoothing to achieve computationally efficient classification without
the need for deep learning or annotated data; and (3) An innovative semantic-driven simplification strategy that dynamically adjusts
processing priorities based on feature importance. Experimental results demonstrate the framework's effectiveness in preserving critical
architectural features (e.g., facades and roofs) while aggressively compressing less significant elements (e.g., terrain and clutter),
achieving balanced data reduction and information retention. At equivalent simplification ratios, our algorithm achieves a 23%
improvement in model accuracy compared to the baseline method, with a 31% accuracy enhancement specifically for critical geometric
features. When maintaining equivalent accuracy levels, the proposed method reduces face count by 23% relative to the baseline
approach. The proposed methods advance 3D urban modeling by addressing both technical and practical challenges in large-scale
scene processing.

1. Introduction 2. Neglect of Feature-Specific Requirements: Mission-
critical vertical navigation features receive equal treatment
to non-essential ground clutter, disregarding operational
priorities for flight path planning and emergency response.
This work bridges these gaps through a semantics-driven
simplification  framework that dynamically prioritizes
aeronautically significant features. By aligning compression
intensity with navigational importance, our approach enables
storage-efficient 3D models that maintain flight-critical
fidelity—directly supporting 3D real scene of China goals for
low-altitude digital infrastructure.

1.1 Motivation

The proliferation of low-altitude flight applications demands
high-fidelity 3D environmental models enabled by recent
advances in measurement technologies. While these advances
have significantly improved the accuracy of multi-scale real-
scene 3D reconstruction, they concurrently generate massive data
volumes with inherent redundancy. This poses critical
bottlenecks for low-altitude platforms constrained by limited
onboard storage and real-time rendering requirements.

1.2 Related Work
Existing mesh simplification techniques, including widely

adopted QEM edge-collapse algorithms, prove inadequate for 3D Mesh simplification methods can be broadly categorized into

real-scene data. Such data exhibits semantic-critical asymmetry:
navigationally vital features require maximum retention, while
non-essential terrain clutter permits aggressive compression.
Current geometry-driven methods cause facade loss and roof
distortions that directly jeopardize flight safety. Two domain-
specific gaps persist:

1. Failure to Address Spatial Heterogeneity: Uniform
simplification degrades navigationally dense urban
features while under-utilizing compression potential in
open areas, violating low-altitude platforms’ need for
adaptive resource allocation.

static and dynamic approaches. Foundational work in static
simplification includes: vertex clustering method (Rossignac,
Borrel, 1993) pioneered a universal framework for spatial
partitioning and vertex merging, though lacking in feature
preservation, excels in efficiency; Surface region merging
technique (Kalvin, Taylor, 1996) introduced the first rigorous
error-bound control, preserving topological integrity through
triangular face aggregation, Vertex decimation algorithm
(Schroeder et al., 1992) established local geometric error metrics;
Quadric  Error Metric (QEM) (Garland, Heckbert,
1997)revolutionized the edge collapse optimization process,
becoming the algorithmic cornerstone for industrial-grade
simplification; ~ Wavelet-based  multiresolution  analysis
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(Lounsbery et al., 1997) provided a theoretically rigorous
hierarchical representation for regular grids.

Core breakthroughs in dynamic simplification focus on:
Progressive Meshes (PM) (Hoppe, 2023) enabled lossless
continuous LOD transitions via edge collapse/vertex split
operation sequences, establishing the paradigm for dynamic
methods; View-dependent simplification (Xia, Varshney, 1996)
pioneered real-time control mechanisms incorporating view-
frustum constraints and screen-space error metrics; Edge collapse
sequence approach (Ronfard, Rossignac, 1996) generated
continuous simplification models based on geometric deviation
ordering; Octree-based adaptive spatial partitioning (Pan et al.,
2001) combined with QEM significantly enhanced the
engineering feasibility of vertex clustering by preserving
geometric features while maintaining controllable simplification
errors; View-dependent refinement (Hoppe, 1997) further
integrated normal constraints and geometric error optimization
into the PM framework. Out-of-core simplification algorithm
(Lindstrom, 2000) addresses real-time processing of massive-
scale meshes, while simplification envelopes (Cohen et al., 1996)
ensure globally controlled geometric deviations through error-
bound constraints. These contributions have laid the theoretical
and technical foundations for the application of mesh
simplification in storage, transmission, and real-time rendering.

However, traditional simplification algorithms fail to adequately
address the spatial heterogeneity of geographic entities and
variations in their semantic significance. This results in two
persistent challenges: 1) difficulty in processing unevenly
distributed geographic data, and 2) inability to dynamically adapt
simplification strategies according to feature categories. These
limitations impede end-to-end lifecycle management of 3D real
scene data.

In this paper, by analyzing the problems arising from existing
simplified ways of processing real-scene 3D data, a set of
systematic processing frameworks ranging from planar feature
extraction, point cloud classification to semantics-driven
lightweighting are proposed. After an incremental research,
efficient lightweighting of 3D real scene data is achieved. We
validated the proposed method using multi-scale mesh data from
a Chinese city. Quantitative evaluation via average distance and
standard deviation metrics between simplified and original
models confirms the method's efficacy in preserving critical
structural characteristics during simplification. This capability
directly supports applications of multidimensional urban models
in low-altitude flight operations and urban management scenarios
where retention of key architectural features is essential.

2. Methodology

This paper presents a comprehensive technical framework for
processing and analyzing 3D real-scene data, systematically
addressing feature extraction, semantic classification, and
semantically-guided  simplification. ~Through progressive
methodology, efficient processing and optimization of real-scene
3D mesh models have been achieved. Figure 1 shows the
pipeline of our method.

In low-altitude flight applications, building roofs and fagades in
3D real-scene models significantly impact aircraft
takeoff/landing and flight navigation. Variable vegetation,
vehicles, and other low-lying clutter exhibit lesser influence on
UAV operations, while terrain features demonstrate minimal
impact. Balancing processing efficiency with these
considerations, our algorithm simplifies data into four

fundamental categories during processing: building roofs,
building fagades, clutter, and terrain. This classification scheme
remains adjustable for complex application scenarios or mission-
specific requirements. Furthermore, as the algorithm processes
real-scene 3D data—where geometric primitives maintain
uniform scale characteristics—identical processing parameters
deliver consistent performance across varying scene sizes.
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Figure 1. The pipeline of our method.
2.1 Plane segmentation based on Region growing

For existing multi-scale 3D real-scene geographic scene models
constructed using conventional photogrammetry and emerging
computer vision methods, preprocessing is essential before
planar feature extraction. The preprocessing workflow consists
of: triangulation, removal of duplicate geometric structures, and
centroid normalization. Triangulation standardizes diverse data
sources by converting all surface patches into triangles, ensuring
compatibility across heterogeneous datasets for subsequent
processing. Removal of duplicate geometric structures reduces
data redundancy by scanning all points in the 3D file, prioritizing
elimination of duplicate points and proximity-filtered points,
followed by topology-preserving adjustments to edges/faces
containing deleted vertices. Centroid normalization processes all
vertices' 3D coordinates relative to the spatial centroid to enhance
computational efficiency and mitigate precision errors caused by
large geospatial coordinate values.

Through the aforementioned process, vertex extraction from the
processed model yields input vertex data. For planar feature
extraction, each vertex requires surface fitting within a defined
neighborhood range. The gradient direction of the fitted surface
determines the vertex's normal vector.

foisinl 5

Figure 2. The left image displays the input 3D real-scene model;
the right image shows vertex data after planar extraction, where
points belonging to the same region share identical color.

Subsequent region growing plane detection proceeds as follows:

(1) Neighborhood identification:  Using  spherical
neighborhood search with radius 7, the algorithm identifies
proximal points around each vertex to detect potential
coplanar clusters;

(2) Dual-Threshold plane validation: Least-squares plane
fitting evaluates candidate points against dual thresholds:
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maximum distance-to-plane tolerance and maximum
normal deviation angle;

(3) Region growing: Points satisfying both constraints
aggregate into planar regions;

(4) Region assignment: Each vertex associates with an
optimal planar region. For visualization, distinct colors

denote regions (Figure 2).

The algorithm outputs are vertex-to-plane region mapping, and a
plane set which establishes the data base for subsequent
classification.

2.2 Point cloud classification

Given that each vertex/face in the 3D real-scene data carries
explicit semantic labels, this section defines four semantic
classes: terrain, fagade, roof, and clutter. In this part, the
calculation methods for various feature metrics used in
classification and their impact on classification will be elaborated,
followed by an analysis of how to construct the discriminant
energy equation for classification based on these feature metrics.
Classification is ultimately achieved through probability
maximization to enable rapid categorization of point cloud data.
This classification framework requires no supervision or learning
while yielding relatively accurate results. For point cloud feature
metrics, considerations primarily encompass three aspects: local
neighborhood features, geometric features, and elevation
distribution features. The involved features include: distance to
plane, vertical dispersion, elevation, vertical range, verticality,
region size, curvature, planarity, anisotropy. The definitions for
each feature and the necessary computational procedures for
certain feature will be detailed individually below:

(1) Distance to plane, a feature for point cloud classification,
represents the perpendicular distance between a point and
its locally fitted plane. This feature characterizes the
planarity of a point's region by analyzing its neighborhood,
fitting a local plane, and computing the geometric distance
from the point to this plane.

(2) Vertical Dispersion quantifies the discrete degree of
elevation values within a point's neighborhood. It reflects
vertical undulation characteristics through statistical
elevation differences among neighboring points. Higher
values indicate more drastic elevation changes, implying
greater likelihood of being a non-ground point. Computed
as the proportion of unoccupied intervals in uniformly
partitioned elevation ranges:

N,
Vertical Dispersion = 1 — % @
where N, = occupied interval count ;

M = total intervals.
M represents total intervals derived from:

Zmax — Zmin

le Az

j+1 @)

where Az = grid resolution;

Zmax = the maximum elevation;

Zmin = the minimal elevation.

(3) Elevation corresponds directly to the Z-coordinate in 3D
real-scene data, requiring no computation. Primarily
distinguishes roof planes from ground planes.

(4) Vertical range represents the elevation span within a
local grid region ,which means difference between
maximum Zzp,, and minimum Zz,;, . This feature

quantifies vertical height variations and is effective for
distinguishing buildings with significant elevation changes
from flat areas:

Verticalrange = Z,,4x — Zmin 3

(5) Verticality quantifies surface orientation by measuring the
deviation between a local normal vector and vertical
direction. This metric differentiates critical vertical
structures like fagades from horizontal surfaces such as
ground planes:

Verticality = 1 — |ng . n,,| 4)

where ngy = ground normal vector;

n, = vertex normal vector.

(6) Region Size is the count of vertices (x) within a planar
region, obtained through planar detection mapping.
Requires normalization due to its large numerical range:

X — Xpmi
RegionSize = —— ™ (5)

Xmax — Xmin
where Xmin = Minimal vertex number;

Xmax = Minimal vertex number.

(7) Curvature estimates vertex deviation using normal
vectors of one-ring adjacent faces. It detects ground clutter
and is computed from Planar region normal ngwhich is
obtained from planar segmentation Ax + By + Cz+ D =
0:

2?:11(1 — Ny nti)
m

(6)

Curvature =

where m = one-ring face count;

n;, = normal of one-ring adjacent faces.

(8) Planarity indicates whether a neighborhood around a
vertex exhibits distinct planar characteristics. For each
vertex, the neighborhood point set is determined using K-
Nearest Neighbors (K-NN). Then the covariance
matrix M; of the point set is computed. Finally, eigen
decomposition of M, yields three eigenvalues (15 < 44 <
A,). Planarity is then calculated as:

A, =2
Planarity = % (7)
0

(9) Anisotropy indicates whether points in a vertex's
neighborhood are uniformly distributed. Higher values
correspond to more uniform distributions, while lower
values indicate greater disorder. Anisotropy likewise
utilizes the eigenvalues of covariance matrix My, defined
as:

M=o
4o

®)

Anisotropy =

To classify vertices in the triangular mesh using the
aforementioned 9 features, this paper constructs an energy
equation that transforms the classification problem into a
probability maximization problem. To prevent scale differences
among features from biasing results, each feature requires an
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(a) Input Mesh (b) Distance to plane

(f) Verticality

(g) Region Size

evaluation function F;(x;) defined and computed as follows:

(1
1 —max (min (1]37()> , 0> Jif f; favors x;

j

Fi(x;)) =1 0.5, if f; is neutral forx;  (9)
(i

kmax (min <1, f]_u(/ )>, 0) Jif f; penalizes x;

J

x = (x;)¢=1.n is a latent classification result;

N = number of input items;

X, = category of item i;

fj() = raw value of the j-th feature at the i-th
item;

w; = weight of feature j;

F;(x;) = normalized value of feature j at item i.

where

Three label influence types affect computation:

FAVORING: Label prioritized when feature values
are high;

NEUTRAL: Label unaffected by feature values;
PENALIZING: Label prioritized when feature values
are low.

On this defined basis, the discriminant energy
function E,(x;),i = 1,2,3,4 for four categories is defined and
computed as follows:

9
E,G) = ) G (10)
j=1

where x™ = the n-th point of the original mesh model.
Since points of the same type are often clustered in reality,
neighborhood influences must be considered during
classification. Therefore, discriminant energy requires smoothing
within the points neighborhood range.

. Zkenp(m) Ez(x]")
E,(x;) =T N 11

where Nb(n) = point set of points in the neighborhood

of the n-th point

The total energy function E(x™) is computed as:

(¢) Vertical Dispersion

(h) Curvature

(e) Vertical range

(d) Elevation

(i) Planarity

(j) Anisotropy
Figure 3. Figure (a) shows the input Mesh model. Figures (b)-(j) visualize the nine features metrics computed from this model. In the
visualizations, higher feature values are represented by colors closer to red, while lower values correspond to colors closer to blue.

4
EGM) = ) B,()’ (12)
i=1

This paper transforms the minimization of the above energy into
a probability maximization problem. After inputting point cloud
data, an initial probability distribution is first generated using
exponential decay of weighted feature sums. For the n-th point
in the cloud, the weighted feature sum S(n, i) for each category
is calculated using:

9
SouD) = ) wy - Fyf) (13)
=1

where w; = weight of the j-th feature.

Applying exponential decay transformation yields the initial
probability P(n, i) . This transformation converts weighted sums
to positive values, with smaller sums indicating better feature
matching and thus producing larger results.

P(n,i) = e=S™D (14)

Using this probability estimation method, E, is replaced by the
exponentially transformed probability P. For each point, its label
is adjusted based on classification results within its
neighborhood—specifically through classification probability
adjustment. After processing, each point's classification result

incorporates  probabilities P(n,i)* that fully consider
neighboring points:
nP(nk
P(n‘i)*=2ker(l) (n, k) (15)

INb(DI

The category L,, of the n-th point is the category corresponding
to the maximum P:

L, = argmaxP (n,i)* (16)
12

2.3 Semantic-aware simplification algorithm

In this section, we implement an adaptive 3D model
simplification strategy based on feature categories through the
coupling of vertices with semantic information based on the
QEM algorithm. Ultimately, it is possible to implement both
conservative simplification of key elements such as facade and
roof, as well as aggressive compression of secondary elements
such as terrain and clutter, so that the data can be simplified while
retaining the primary information.
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(a) Input Mesh

For each vertex pair processed by the QEM algorithm, the
category of the first vertex is used as its category, and the simplif
ication priority is adjusted according to the four categories
obtained from the point cloud classification.

The algorithm initiates by computing quadric error
matrices Q; for all vertices during initialization, followed by
generating all collapsible vertex pairs (v;, v,). For each pair, the
optimal contraction target vertex ¥ is calculated to minimize the
post-collapse error 77 (Q; + Q,) ¥ where Q; and Q, are quadric
matrices of v; and v,, with this error defining the collapse cost.
Semantic-aware priority adjustment assigns each vertex pair a
category. Terrain receives elevated priority due to its low
informational value, while building fagades/roofs receive
suppressed priority given their geometric significance. However,
when normal deviation exceeds the coplanarity threshold,
priority increases to eliminate redundant features while
preserving non-coplanar geometry through normal-consistency
checks. Clutter priority is moderately raised to simplify non-
critical elements like vegetation or vehicles without structural
compromise, whereas default categories retain original priorities.
Vertex pairs are subsequently inserted into a min-heap priority
queue ordered by collapse cost, triggering an iterative collapse
process that sequentially extracts the top pair (v4, v,), collapses
it into #7, and updates costs for ¥7 -adjacent pairs until heap
exhaustion, ultimately outputting the simplified mesh M.

3. Experimental Results
3.1 Experimental data and platform

The experiments were conducted on a workstation equipped with
an Intel® Core™ i7-13700KF CPU @ 3.40 GHz and 64GB
RAM. The test data consisted of OBJ models generated through
3D reconstruction of oblique photogrammetry data. The
proposed method was implemented using The Computational
Geometry Algorithms Library (The CGAL Project, 2024) and
Visualization and Computer Graphics Library (Cignoni et al.,
2023).

3.2 Parameter Settings

For the 9 features described in Section 2.2, positive and negative
labels are assigned to their evaluation functions based on their
influence on the four target categories: terrain, building
fagades/roofs, clutter, and default. The specific label assignments
are shown in Table 1.

The weights assigned to each feature are shown in Table 2.
Notably, since the planar region size feature exhibits significantly

(b) Classification Results
Figure 4. The left figure displays a 3D model of a residential building complex. The right figure shows the classification result, where
vertices are categorized into four classes: Terrain (brown), Roofs (blue), Building facades (red), and Clutter (green).

larger magnitude, its weight is set to 0.01 times the maximum
value to ensure it falls within a reasonable range after
normalization.

FEATURES Terrain  Fagade  Roof  Clutter
Distance to plane N N N F
Vertical Dispersion N N N F
Elevation P F F P
Vertical range P F P P
Verticality P F P N
Region Size F F F P
Curvature P P P F
Planarity F F F P
Anisotropy F F F P

Table 1. Feature Label Settings for Each Category (P: Penalizing,
N: Neutral, F: Favoring)

Features Weights

Distance to plane 5.0
Vertical Dispersion 5.0
Elevation 5.0
Vertical range 2.0
Verticality 5.0

Region Size 0.01*max
Curvature 0.5
Planarity 2.5
Anisotropy 2.5

Table 2. Weights of Features.
3.3 Metrics

This study employs the mean distance from the simplified model
to the original model as the quantitative evaluation metric. This
metric quantifies the overall geometric deviation introduced by
simplification into a single scalar value. A smaller mean distance
indicates that the vertices of the simplified model collectively
adhere closer to the original surface, preserving more geometric
details and achieving higher geometric fidelity. The calculation
of meanDistance is as follows:

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIlI-4-W14-2025-333-2025 | © Author(s) 2025. CC BY 4.0 License. 337



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22—24 August 2025, Beijing, China

(a) Input Mesh

(d) Original method 5%

(e) Our method 5%

Figure 5. (a) Input 3D model; (b)(d) Results of the baseline method simplified to 10% and 5% ratios; (c)(e) Results of our method
simplified to 10% and 5% ratios. Comparative analysis demonstrates that our method preserves critical geometric features more
effectively than the uniform simplification strategy of the baseline approach.

N
. 1 .
meanDistance = Nz yeRin |2 — I a7
=1

x; = i-th vertex in the simplified model;
RefMesh = reference model,

min calculates the Euclidean distance to
y€ERefMesh

the closest point on RefMesh from x;;
N = total vertices number on the simplified
model.

where

Additionally, the root mean square (RMS) is computed to assess
the reasonableness of data fluctuations, calculated as:

18)

where D; = the distance form x; to RefMesh.

3.4 Results

To comprehensively evaluate our algorithm's improvement over
the baseline, we tested simplification on 3D real-scene models at
5% and 10% face retention ratios. The simplification results are
shown in Figure 5.

For the simplification results, the mean distance of the simplified
model relative to the original model and the mean distance of key
components relative to their original counterparts were calculated
separately. Aggregated data are presented in Figure 6 and Figure
7. In these figures, the proposed algorithm progressively reduces
the mean distance compared to the baseline method at equivalent
simplification ratios, improving the accuracy of simplified
models while showing no significant increase in RMS values.
When maintaining equivalent model accuracy (Figure 8), the
proposed algorithm reduces face count by approximately 23%
relative to the baseline method.
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Our method facilitates conservative simplification of key
elements alongside aggressive compression of secondary
elements like terrain and clutter, preserving primary information
during data reduction. For roofs and building fagades, the
simplification algorithm in this paper is able to retain the details
of the model while simplifying the planar areas in it, based on the
semantic information and the planar extraction results, compared
to the original simplification algorithm. For the ground and
clutter, the approach in this paper adopts a more aggressive
simplification strategy. The results are shown in Figure 9.
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Figure 6. Mean distance from simplified mesh to reference mesh.
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Figure 7. Root mean square of simplified mesh.
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Figure 8. Face Count at Equivalent Geometric Accuracy.
Achieved by the baseline algorithm when matching the accuracy

thresholds of our method at 10% and 5% simplification ratios.
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Figure 9. The figure shows the simplification results of the
original method and our method for four classes at 5% and 10%
simplification rates. From left to right are roof, building fagade,
ground, clutter

4. Discussion and Conclusion

In this study, we propose an integrated approach to enhance
lightweight processing of 3D mesh models by combining
semantic information with QEM method. Our work extends the
QEM algorithm—the most widely adopted mesh simplification
method—through a semantics-guided priority adjustment
mechanism. First, a region growing-based plane detection
algorithm establishes a plane detection pipeline for triangular
mesh data. Through input data triangulation, redundant vertex
removal, and coordinate normalization, data quality and
standardization are improved. On this basis, region growing via
least-squares plane fitting extracts planar features using threshold
conditions. Subsequently, a plane segmentation-based point
cloud classification method is proposed. By integrating planar
features with geometric attributes, nine geometric-semantic
features are designed. Combined with a probability smoothing
strategy, rapid classification without model training is achieved.
Finally, semantic information is innovatively integrated into
traditional edge collapse simplification, proposing semantics-
driven simplification. By combining semantic information with
the simplification workflow, dynamic semantics-aware priority
adjustment enables conservative simplification for critical
elements and aggressive compression for secondary elements
thus preserving essential information during simplification.
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Experiments demonstrate our method achieves higher model
accuracy at equivalent simplification rates. However, region
growing-based plane detection suffers from local over-
segmentation due to random seed distribution. Feature weighting
in classification remains empirical. Future work will implement
multi-source region growing to enhance robustness and develop
automatic optimization and multi-scale features.
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