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Abstract 

Recent advances in measurement technologies have significantly improved the accuracy of multi-scale 3D reconstruction, yet the 
resulting large-scale data with inherent redundancy pose challenges for storage and real-time rendering. This paper proposes a 
systematic framework for efficient lightweight processing of 3D real-scene mesh model, integrating planar feature extraction, point 
cloud classification, and semantics-driven simplification. The key scientific contributions include: (1) A preprocessing process for the 
reality 3D model is added for the plane segmentation algorithm; (2) A training-free point cloud classification method  employing 9 
complementary geometric-semantic features and probabilistic smoothing to achieve computationally efficient classification without 
the need for deep learning or annotated data; and (3) An innovative semantic-driven simplification strategy that dynamically adjusts 
processing priorities based on feature importance. Experimental results demonstrate the framework's effectiveness in preserving critical 
architectural features (e.g., façades and roofs) while aggressively compressing less significant elements (e.g., terrain and clutter), 
achieving balanced data reduction and information retention. At equivalent simplification ratios, our algorithm achieves a 23% 
improvement in model accuracy compared to the baseline method, with a 31% accuracy enhancement specifically for critical geometric 
features. When maintaining equivalent accuracy levels, the proposed method reduces face count by 23% relative to the baseline 
approach. The proposed methods advance 3D urban modeling by addressing both technical and practical challenges in large-scale 
scene processing. 

1. Introduction

1.1 Motivation 

The proliferation of low-altitude flight applications demands 
high-fidelity 3D environmental models enabled by recent 
advances in measurement technologies. While these advances 
have significantly improved the accuracy of multi-scale real-
scene 3D reconstruction, they concurrently generate massive data 
volumes with inherent redundancy. This poses critical 
bottlenecks for low-altitude platforms constrained by limited 
onboard storage and real-time rendering requirements. 

Existing mesh simplification techniques, including widely 
adopted QEM edge-collapse algorithms, prove inadequate for 3D 
real-scene data. Such data exhibits semantic-critical asymmetry: 
navigationally vital features require maximum retention, while 
non-essential terrain clutter permits aggressive compression. 
Current geometry-driven methods cause façade loss and roof 
distortions that directly jeopardize flight safety. Two domain-
specific gaps persist: 

1. Failure to Address Spatial Heterogeneity: Uniform
simplification degrades navigationally dense urban
features while under-utilizing compression potential in
open areas, violating low-altitude platforms’ need for
adaptive resource allocation.

2. Neglect of Feature-Specific Requirements: Mission-
critical vertical navigation features receive equal treatment
to non-essential ground clutter, disregarding operational
priorities for flight path planning and emergency response.

This work bridges these gaps through a semantics-driven  
simplification framework that dynamically prioritizes 
aeronautically significant features. By aligning compression 
intensity with navigational importance, our approach enables 
storage-efficient 3D models that maintain flight-critical 
fidelity—directly supporting 3D real scene of China goals for 
low-altitude digital infrastructure. 

1.2 Related Work 

Mesh simplification methods can be broadly categorized into 
static and dynamic approaches. Foundational work in static 
simplification includes: vertex clustering method (Rossignac, 
Borrel, 1993) pioneered a universal framework for spatial 
partitioning and vertex merging, though lacking in feature 
preservation, excels in efficiency; Surface region merging 
technique (Kalvin, Taylor, 1996) introduced the first rigorous 
error-bound control, preserving topological integrity through 
triangular face aggregation; Vertex decimation algorithm 
(Schroeder et al., 1992) established local geometric error metrics; 
Quadric Error Metric (QEM) (Garland, Heckbert, 
1997)revolutionized the edge collapse optimization process, 
becoming the algorithmic cornerstone for industrial-grade 
simplification; Wavelet-based multiresolution analysis 
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(Lounsbery et al., 1997) provided a theoretically rigorous 
hierarchical representation for regular grids.  

Core breakthroughs in dynamic simplification focus on: 
Progressive Meshes (PM) (Hoppe, 2023)  enabled lossless 
continuous LOD transitions via edge collapse/vertex split 
operation sequences, establishing the paradigm for dynamic 
methods; View-dependent simplification (Xia, Varshney, 1996) 
pioneered real-time control mechanisms incorporating view-
frustum constraints and screen-space error metrics; Edge collapse 
sequence approach (Ronfard, Rossignac, 1996) generated 
continuous simplification models based on geometric deviation 
ordering; Octree-based adaptive spatial partitioning (Pan et al., 
2001) combined with QEM significantly enhanced the 
engineering feasibility of vertex clustering by preserving 
geometric features while maintaining controllable simplification 
errors; View-dependent refinement (Hoppe, 1997) further 
integrated normal constraints and geometric error optimization 
into the PM framework. Out-of-core simplification algorithm 
(Lindström, 2000) addresses real-time processing of massive-
scale meshes, while simplification envelopes (Cohen et al., 1996) 
ensure globally controlled geometric deviations through error-
bound constraints. These contributions have laid the theoretical 
and technical foundations for the application of mesh 
simplification in storage, transmission, and real-time rendering.  

However, traditional simplification algorithms fail to adequately 
address the spatial heterogeneity of geographic entities and 
variations in their semantic significance. This results in two 
persistent challenges: 1) difficulty in processing unevenly 
distributed geographic data, and 2) inability to dynamically adapt 
simplification strategies according to feature categories. These 
limitations impede end-to-end lifecycle management of 3D real 
scene data. 

In this paper, by analyzing the problems arising from existing 
simplified ways of processing real-scene 3D data, a set of 
systematic processing frameworks ranging from planar feature 
extraction, point cloud classification to semantics-driven 
lightweighting are proposed. After an incremental research, 
efficient lightweighting of 3D real scene data is achieved. We 
validated the proposed method using multi-scale mesh data from 
a Chinese city. Quantitative evaluation via average distance and 
standard deviation metrics between simplified and original 
models confirms the method's efficacy in preserving critical 
structural characteristics during simplification. This capability 
directly supports applications of multidimensional urban models 
in low-altitude flight operations and urban management scenarios 
where retention of key architectural features is essential. 

2. Methodology

This paper presents a comprehensive technical framework for 
processing and analyzing 3D real-scene data, systematically 
addressing feature extraction, semantic classification, and 
semantically-guided simplification. Through progressive 
methodology, efficient processing and optimization of real-scene 
3D mesh models have been achieved. Figure 1 shows the 
pipeline of our method. 

In low-altitude flight applications, building roofs and façades in 
3D real-scene models significantly impact aircraft 
takeoff/landing and flight navigation. Variable vegetation, 
vehicles, and other low-lying clutter exhibit lesser influence on 
UAV operations, while terrain features demonstrate minimal 
impact. Balancing processing efficiency with these 
considerations, our algorithm simplifies data into four 

fundamental categories during processing: building roofs, 
building façades, clutter, and terrain. This classification scheme 
remains adjustable for complex application scenarios or mission-
specific requirements. Furthermore, as the algorithm processes 
real-scene 3D data—where geometric primitives maintain 
uniform scale characteristics—identical processing parameters 
deliver consistent performance across varying scene sizes. 

Figure 1. The pipeline of our method. 

2.1 Plane segmentation based on Region growing 

For existing multi-scale 3D real-scene geographic scene models 
constructed using conventional photogrammetry and emerging 
computer vision methods, preprocessing is essential before 
planar feature extraction. The preprocessing workflow consists 
of: triangulation, removal of duplicate geometric structures, and 
centroid normalization. Triangulation standardizes diverse data 
sources by converting all surface patches into triangles, ensuring 
compatibility across heterogeneous datasets for subsequent 
processing. Removal of duplicate geometric structures reduces 
data redundancy by scanning all points in the 3D file, prioritizing 
elimination of duplicate points and proximity-filtered points, 
followed by topology-preserving adjustments to edges/faces 
containing deleted vertices. Centroid normalization processes all 
vertices' 3D coordinates relative to the spatial centroid to enhance 
computational efficiency and mitigate precision errors caused by 
large geospatial coordinate values. 

Through the aforementioned process, vertex extraction from the 
processed model yields input vertex data. For planar feature 
extraction, each vertex requires surface fitting within a defined 
neighborhood range. The gradient direction of the fitted surface 
determines the vertex's normal vector. 

Figure 2. The left image displays the input  3D real-scene model; 
the right image shows vertex data after planar extraction, where 
points belonging to the same region share identical color. 

Subsequent region growing plane detection proceeds as follows: 

(1) Neighborhood identification: Using spherical
neighborhood search with radius 𝑟𝑟, the algorithm identifies 
proximal points around each vertex to detect potential
coplanar clusters;

(2) Dual-Threshold plane validation: Least-squares plane
fitting evaluates candidate points against dual thresholds:
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maximum distance-to-plane tolerance  and maximum 
normal deviation angle; 

(3) Region growing: Points satisfying both constraints
aggregate into planar regions;

(4) Region assignment: Each vertex associates with an
optimal planar region. For visualization, distinct colors
denote regions (Figure 2).

The algorithm outputs are vertex-to-plane region mapping, and a 
plane set which establishes the data base for subsequent 
classification. 

2.2 Point cloud classification 

Given that each vertex/face in the 3D real-scene data carries 
explicit semantic labels, this section defines four semantic 
classes: terrain, façade, roof, and clutter. In this part, the 
calculation methods for various feature metrics used in 
classification and their impact on classification will be elaborated, 
followed by an analysis of how to construct the discriminant 
energy equation for classification based on these feature metrics. 
Classification is ultimately achieved through probability 
maximization to enable rapid categorization of point cloud data. 
This classification framework requires no supervision or learning 
while yielding relatively accurate results. For point cloud feature 
metrics, considerations primarily encompass three aspects: local 
neighborhood features, geometric features, and elevation 
distribution features. The involved features include: distance to 
plane, vertical dispersion, elevation, vertical range, verticality, 
region size, curvature, planarity, anisotropy. The definitions for 
each feature and the necessary computational procedures for 
certain feature will be detailed individually below： 

(1) Distance to plane, a feature for point cloud classification,
represents the perpendicular distance between a point and
its locally fitted plane. This feature characterizes the
planarity of a point's region by analyzing its neighborhood, 
fitting a local plane, and computing the geometric distance
from the point to this plane.

(2) Vertical Dispersion quantifies the discrete degree of
elevation values within a point's neighborhood. It reflects
vertical undulation characteristics through statistical
elevation differences among neighboring points. Higher
values indicate more drastic elevation changes, implying
greater likelihood of being a non-ground point. Computed
as the proportion of unoccupied intervals in uniformly
partitioned elevation ranges:

Vertical Dispersion = 1 −
𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜
𝑀𝑀

(1) 

where 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 = occupied interval count ; 
 𝑀𝑀 = total intervals. 

𝑀𝑀 represents total intervals derived from: 

𝑀𝑀 = �
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

Δ𝑧𝑧 � + 1 (2) 

where Δ𝑧𝑧 = grid resolution; 
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 = the maximum elevation; 
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚  = the minimal elevation. 

(3) Elevation corresponds directly to the Z-coordinate in 3D
real-scene data, requiring no computation. Primarily
distinguishes roof planes from ground planes.

(4) Vertical range  represents the elevation span within a
local grid region ,which means difference between
maximum 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚  and minimum 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 . This feature

quantifies vertical height variations and is effective for 
distinguishing buildings with significant elevation changes 
from flat areas: 

Verticalrange = 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 (3) 

(5) Verticality quantifies surface orientation by measuring the 
deviation between a local normal vector and vertical
direction. This metric differentiates critical vertical
structures like façades from horizontal surfaces such as
ground planes:

Verticality = 1 − �ng ⋅ n𝑣𝑣� (4) 

where 𝑛𝑛𝑔𝑔 = ground normal vector; 
𝑛𝑛𝑣𝑣 = vertex normal vector. 

(6) Region Size  is the count of vertices (𝑥𝑥) within a planar
region, obtained through planar detection mapping.
Requires normalization due to its large numerical range:

RegionSize =
𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
(5) 

where 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = minimal vertex number; 
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = minimal vertex number. 

(7) Curvature  estimates vertex deviation using normal
vectors of one-ring adjacent faces. It detects ground clutter
and is computed from Planar region normal 𝑛𝑛𝑓𝑓which is
obtained from planar segmentation 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶𝐶𝐶 + 𝐷𝐷 =
0:

Curvature =
∑ �1 − 𝑛𝑛𝑓𝑓 ⋅ 𝑛𝑛𝑡𝑡𝑖𝑖�
m
i=1

m
(6) 

where m = one-ring face count; 
𝑛𝑛𝑡𝑡𝑖𝑖 = normal of one-ring adjacent faces. 

(8) Planarity indicates whether a neighborhood around a
vertex exhibits distinct planar characteristics. For each
vertex, the neighborhood point set is determined using K-
Nearest Neighbors (K-NN). Then the covariance
matrix 𝑀𝑀𝑘𝑘  of the point set is computed. Finally, eigen
decomposition of 𝑀𝑀𝑘𝑘 yields three eigenvalues (𝜆𝜆0 ≤ 𝜆𝜆1 ≤
𝜆𝜆2). Planarity is then calculated as:

Planarity =
𝜆𝜆2 − 𝜆𝜆0
𝜆𝜆0

(7) 

(9) Anisotropy indicates whether points in a vertex's
neighborhood are uniformly distributed. Higher values
correspond to more uniform distributions, while lower
values indicate greater disorder. Anisotropy likewise
utilizes the eigenvalues of covariance matrix 𝑀𝑀𝑘𝑘, defined
as:

Anisotropy =
𝜆𝜆1 − 𝜆𝜆0
𝜆𝜆0

(8) 

To classify vertices in the triangular mesh using the 
aforementioned 9 features, this paper constructs an energy 
equation that transforms the classification problem into a 
probability maximization problem. To prevent scale differences 
among features from biasing results, each feature requires an  
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(a) Input Mesh (b) Distance to plane (c) Vertical Dispersion (d) Elevation (e) Vertical range 

(f) Verticality (g) Region Size (h) Curvature (i) Planarity (j) Anisotropy 
Figure 3. Figure (a) shows the input Mesh model. Figures (b)-(j) visualize the nine features metrics computed from this model. In the 
visualizations, higher feature values are represented by colors closer to red, while lower values correspond to colors closer to blue. 

evaluation function 𝐹𝐹𝑗𝑗(𝑥𝑥𝑖𝑖) defined and computed as follows: 

𝐹𝐹𝑗𝑗(𝑥𝑥𝑖𝑖) =

⎩
⎪
⎨

⎪
⎧1 −𝑚𝑚𝑚𝑚𝑚𝑚 �𝑚𝑚𝑚𝑚𝑚𝑚 �1,

𝑓𝑓𝑗𝑗(𝑖𝑖)
𝑤𝑤𝑗𝑗

� , 0� ,if 𝑓𝑓𝑗𝑗  favors 𝑥𝑥𝑖𝑖

0.5,              if 𝑓𝑓𝑗𝑗  is neutral for 𝑥𝑥𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚 �𝑚𝑚𝑚𝑚𝑚𝑚 �1,
𝑓𝑓𝑗𝑗(𝑖𝑖)
𝑤𝑤𝑗𝑗

� , 0� ,if 𝑓𝑓𝑗𝑗  penalizes 𝑥𝑥𝑖𝑖

(9) 

where 𝑥𝑥 = (𝑥𝑥𝑡𝑡)𝑡𝑡=1..𝑁𝑁 is a latent classification result; 
𝑁𝑁 = number of input items;  
𝑥𝑥𝑡𝑡 = category of item 𝑖𝑖; 
𝑓𝑓𝑗𝑗(𝑡𝑡) = raw value of the 𝑗𝑗-th feature at the  𝑖𝑖-th 
item; 
𝑤𝑤𝑗𝑗 = weight of feature 𝑗𝑗; 
𝐹𝐹𝑗𝑗(𝑥𝑥𝑖𝑖) = normalized value of feature 𝑗𝑗 at item 𝑖𝑖. 

Three label influence types affect computation: 

FAVORING: Label prioritized when feature values 
are high; 
NEUTRAL: Label unaffected by feature values; 
PENALIZING: Label prioritized when feature values 
are low. 

On this defined basis, the discriminant energy 
function 𝐸𝐸𝑧𝑧(𝑥𝑥𝑖𝑖), 𝑖𝑖 = 1,2,3,4  for four categories is defined and 
computed as follows: 

𝐸𝐸𝑧𝑧(𝑥𝑥𝑖𝑖𝑛𝑛) = �𝐹𝐹𝑗𝑗(𝑥𝑥𝑖𝑖𝑛𝑛)
9

𝑗𝑗=1

(10) 

where  𝑥𝑥𝑛𝑛 = the 𝑛𝑛-th point of the original mesh model. 

Since points of the same type are often clustered in reality, 
neighborhood influences must be considered during 
classification. Therefore, discriminant energy requires smoothing 
within the points neighborhood range.  

𝐸𝐸𝑧𝑧(𝑥𝑥𝑖𝑖)∗ =
∑ 𝐸𝐸𝑧𝑧(𝑥𝑥𝑖𝑖𝑛𝑛)𝑘𝑘∈𝑁𝑁𝑁𝑁(𝑛𝑛)

|𝑁𝑁𝑁𝑁(𝑛𝑛)| (11) 

where 𝑁𝑁𝑁𝑁(𝑛𝑛) = point set of points in the neighborhood 
of the 𝑛𝑛-th point  

The total energy function 𝐸𝐸(𝑥𝑥𝑛𝑛) is computed as: 

𝐸𝐸(𝑥𝑥𝑛𝑛) = �𝐸𝐸𝑧𝑧(𝑥𝑥𝑖𝑖𝑛𝑛)∗
4

𝑖𝑖=1

(12) 

This paper transforms the minimization of the above energy into 
a probability maximization problem. After inputting point cloud 
data, an initial probability distribution is first generated using 
exponential decay of weighted feature sums. For the 𝑛𝑛-th point 
in the cloud, the weighted feature sum 𝑆𝑆(𝑛𝑛, 𝑖𝑖) for each category 
is calculated using: 

𝑆𝑆(𝑛𝑛, 𝑖𝑖) = �𝑤𝑤𝑗𝑗

9

j=1

⋅ 𝐹𝐹𝑗𝑗(𝑥𝑥𝑖𝑖𝑛𝑛) (13) 

where 𝑤𝑤𝑗𝑗 = weight of the 𝑗𝑗-th feature. 

Applying exponential decay transformation yields the initial 
probability 𝑃𝑃(𝑛𝑛, 𝑖𝑖) . This transformation converts weighted sums 
to positive values, with smaller sums indicating better feature 
matching and thus producing larger results. 

𝑃𝑃(𝑛𝑛, 𝑖𝑖) = 𝑒𝑒−𝑆𝑆(𝑛𝑛,𝑖𝑖) (14) 

Using this probability estimation method, 𝐸𝐸𝑧𝑧 is replaced by the 
exponentially transformed probability 𝑃𝑃. For each point, its label 
is adjusted based on classification results within its 
neighborhood—specifically through classification probability 
adjustment. After processing, each point's classification result 
incorporates probabilities 𝑃𝑃(𝑛𝑛, 𝑖𝑖)∗  that fully consider 
neighboring points: 

𝑃𝑃(𝑛𝑛, 𝑖𝑖)∗ =
∑ 𝑃𝑃𝑘𝑘∈𝑁𝑁𝑁𝑁(𝑖𝑖) (𝑛𝑛,𝑘𝑘)

|𝑁𝑁𝑁𝑁(𝑖𝑖)| (15) 

The category 𝐿𝐿𝑛𝑛 of the 𝑛𝑛-th point is the category corresponding 
to the maximum P: 

𝐿𝐿𝑛𝑛 = arg max
𝑖𝑖
𝑃𝑃 (𝑛𝑛, 𝑖𝑖)∗ (16) 

2.3 Semantic-aware simplification algorithm 

In this section, we implement an adaptive 3D model 
simplification strategy based on feature categories through the 
coupling of vertices with semantic information based on the 
QEM algorithm. Ultimately, it is possible to implement both 
conservative simplification of key elements such as façade and 
roof, as well as aggressive compression of secondary elements 
such as terrain and clutter, so that the data can be simplified while 
retaining the primary information. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025 
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-333-2025 | © Author(s) 2025. CC BY 4.0 License.

 
336



(a) Input Mesh (b) Classification Results
Figure 4. The left figure displays a 3D model of a residential building complex. The right figure shows the classification result, where 
vertices are categorized into four classes: Terrain (brown), Roofs (blue), Building façades (red), and Clutter (green). 

For each vertex pair processed by the QEM algorithm, the 
category of the first vertex is used as its category, and the simplif 
ication priority is adjusted according to the four categories 
obtained from the point cloud classification. 

The algorithm initiates by computing quadric error 
matrices 𝑄𝑄𝑖𝑖  for all vertices during initialization, followed by 
generating all collapsible vertex pairs  (𝑣𝑣1,𝑣𝑣2). For each pair, the 
optimal contraction target vertex 𝑣̅𝑣𝑇𝑇 is calculated to minimize the 
post-collapse error 𝑣̅𝑣𝑇𝑇(𝑄𝑄1 + 𝑄𝑄2) 𝑣̅𝑣 where 𝑄𝑄1 and 𝑄𝑄2 are quadric 
matrices of 𝑣𝑣1 and 𝑣𝑣2, with this error defining the collapse cost. 
Semantic-aware priority adjustment assigns each vertex pair a 
category. Terrain receives elevated priority due to its low 
informational value, while building façades/roofs receive 
suppressed priority given their geometric significance. However, 
when normal deviation exceeds the coplanarity threshold, 
priority increases to eliminate redundant features while 
preserving non-coplanar geometry through normal-consistency 
checks. Clutter priority is moderately raised to simplify non-
critical elements like vegetation or vehicles without structural 
compromise, whereas default categories retain original priorities. 
Vertex pairs are subsequently inserted into a min-heap priority 
queue ordered by collapse cost, triggering an iterative collapse 
process that sequentially extracts the top pair (𝑣𝑣1,𝑣𝑣2), collapses 
it into 𝑣̅𝑣𝑇𝑇 , and updates costs for 𝑣̅𝑣𝑇𝑇 -adjacent pairs until heap 
exhaustion, ultimately outputting the simplified mesh 𝑀𝑀. 

3. Experimental Results

3.1 Experimental data and platform 

The experiments were conducted on a workstation equipped with 
an Intel® Core™ i7-13700KF CPU @ 3.40 GHz and 64GB 
RAM. The test data consisted of OBJ models generated through 
3D reconstruction of oblique photogrammetry data. The 
proposed method was implemented using The Computational 
Geometry Algorithms Library (The CGAL Project, 2024) and 
Visualization and Computer Graphics Library (Cignoni et al., 
2023). 

3.2 Parameter Settings 

For the 9 features described in Section 2.2, positive and negative 
labels are assigned to their evaluation functions based on their 
influence on the four target categories: terrain, building 
façades/roofs, clutter, and default. The specific label assignments 
are shown in Table 1. 

The weights assigned to each feature are shown in Table 2. 
Notably, since the planar region size feature exhibits significantly 

larger magnitude, its weight is set to 0.01 times the maximum 
value to ensure it falls within a reasonable range after 
normalization. 

FEATURES Terrain Façade Roof Clutter 

Distance to plane N N N F 

Vertical Dispersion N N N F 

Elevation P F F P 

Vertical range P F P P 

Verticality P F P N 

Region Size F F F P 

Curvature P P P F 

Planarity F F F P 

Anisotropy F F F P 

Table 1. Feature Label Settings for Each Category (P: Penalizing, 
N: Neutral, F: Favoring) 

Features Weights 

Distance to plane 5.0 

Vertical Dispersion 5.0 

Elevation 5.0 

Vertical range 2.0 

Verticality 5.0 

Region Size 0.01*max 

Curvature 0.5 

Planarity 2.5 

Anisotropy 2.5 

Table 2. Weights of Features. 

3.3 Metrics 

This study employs the mean distance from the simplified model 
to the original model as the quantitative evaluation metric. This 
metric quantifies the overall geometric deviation introduced by 
simplification into a single scalar value. A smaller mean distance 
indicates that the vertices of the simplified model collectively 
adhere closer to the original surface, preserving more geometric 
details and achieving higher geometric fidelity. The calculation 
of meanDistance is as follows: 
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(a) Input Mesh

(b) Original method 10% (c) Our method 10%

(d) Original method 5% (e) Our method 5%
Figure 5. (a) Input 3D model; (b)(d) Results of the baseline method simplified to 10% and 5% ratios; (c)(e) Results of our method 
simplified to 10% and 5% ratios. Comparative analysis demonstrates that our method preserves critical geometric features more 
effectively than the uniform simplification strategy of the baseline approach. 

meanDistance =
1
𝑁𝑁� min

𝑦𝑦∈RefMesh
| 𝑥𝑥𝑖𝑖 − 𝑦𝑦|

𝑁𝑁

𝑖𝑖=1

(17) 

where 𝑥𝑥𝑖𝑖 = 𝑖𝑖-th vertex in the simplified model; 
RefMesh = reference model; 

min
𝑦𝑦∈RefMesh

 calculates the Euclidean distance to 

the closest point on RefMesh  from 𝑥𝑥𝑖𝑖; 
𝑁𝑁 = total vertices number on the simplified 
model. 

Additionally, the root mean square (RMS) is computed to assess 
the reasonableness of data fluctuations, calculated as: 

𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ 𝐷𝐷𝑖𝑖𝑁𝑁
𝑖𝑖=1
𝑁𝑁

(18) 

where 𝐷𝐷𝑖𝑖 = the distance form 𝑥𝑥𝑖𝑖 to RefMesh. 

3.4 Results 

To comprehensively evaluate our algorithm's improvement over 
the baseline, we tested simplification on 3D real-scene models at 
5% and 10% face retention ratios. The simplification results are 
shown in Figure 5. 

For the simplification results, the mean distance of the simplified 
model relative to the original model and the mean distance of key 
components relative to their original counterparts were calculated 
separately. Aggregated data are presented in Figure 6 and Figure 
7. In these figures, the proposed algorithm progressively reduces
the mean distance compared to the baseline method at equivalent
simplification ratios, improving the accuracy of simplified
models while showing no significant increase in RMS values.
When maintaining equivalent model accuracy (Figure 8), the
proposed algorithm reduces face count by approximately 23%
relative to the baseline method.
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Our method facilitates conservative simplification of key 
elements alongside aggressive compression of secondary 
elements like terrain and clutter, preserving primary information 
during data reduction. For roofs and building façades, the 
simplification algorithm in this paper is able to retain the details 
of the model while simplifying the planar areas in it, based on the 
semantic information and the planar extraction results, compared 
to the original simplification algorithm. For the ground and 
clutter, the approach in this paper adopts a more aggressive 
simplification strategy. The results are shown in Figure 9. 

(a) All points

(b) Points of important parts
Figure 6. Mean distance from simplified mesh to reference mesh. 

Figure 7. Root mean square of simplified mesh. 

Figure 8. Face Count at Equivalent Geometric Accuracy. 
Achieved by the baseline algorithm when matching the accuracy 
thresholds of our method at 10% and 5% simplification ratios. 

O
rigin M

ethod 

5% 

10% 

O
ur M

etho 

5% 

10% 

Figure 9. The figure shows the simplification results of the 
original method and our method for four classes at 5% and 10% 
simplification rates. From left to right are roof, building façade, 
ground, clutter 

4. Discussion and Conclusion

In this study, we propose an integrated approach to enhance 
lightweight processing of 3D mesh models by combining 
semantic information with QEM method. Our work extends the 
QEM algorithm—the most widely adopted mesh simplification 
method—through a semantics-guided priority adjustment 
mechanism. First, a region growing-based plane detection 
algorithm establishes a plane detection pipeline for triangular 
mesh data. Through input data triangulation, redundant vertex 
removal, and coordinate normalization, data quality and 
standardization are improved. On this basis, region growing via 
least-squares plane fitting extracts planar features using threshold 
conditions. Subsequently, a plane segmentation-based point 
cloud classification method is proposed. By integrating planar 
features with geometric attributes, nine geometric-semantic 
features are designed. Combined with a probability smoothing 
strategy, rapid classification without model training is achieved. 
Finally, semantic information is innovatively integrated into 
traditional edge collapse simplification, proposing semantics-
driven simplification. By combining semantic information with 
the simplification workflow, dynamic semantics-aware priority 
adjustment enables conservative simplification for critical 
elements and aggressive compression for secondary elements 
thus preserving essential information during simplification. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025 
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-333-2025 | © Author(s) 2025. CC BY 4.0 License.

 
339



Experiments demonstrate our method achieves higher model 
accuracy at equivalent simplification rates. However, region 
growing-based plane detection suffers from local over-
segmentation due to random seed distribution. Feature weighting 
in classification remains empirical. Future work will implement 
multi-source region growing to enhance robustness and develop 
automatic optimization and multi-scale features. 
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