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Abstract

With the continuous advancement of urbanization, the impact of urban spatial form on carbon emissions has increasingly become a
core topic in research on sustainable urban development.Taking the 2001 micro grids of Beijing, a typical representative of
high-density cities, as an example, this paper estimates grid-scale carbon emissions using nighttime light data. It applies landscape
pattern indices to explore six urban form attributes representing urban size, fragmentation, shape index, and compactness. Combining
the geographical detector with the bivariate spatial autocorrelation model, the study reveals the mechanism and spatial heterogeneity
of the impact of urban form on carbon emissions.The results indicate that: (1)From 2000 to 2023, Beijing's carbon emissions
exhibited a "first increase and then decrease" trend, with a spatial distribution pattern of "concentration in high-carbon areas -
expansion in medium-carbon areas - scattered low-carbon areas", and high-value areas continuously concentrated in the city's core
regions.(2)The total amount of construction land increased by 58.7%, with the expansion direction radiating outwards from the core
area, particularly towards the east and south. In terms of morphology, this manifested as increased fragmentation and localized
clustering, exacerbating ecological and environmental pressures.(3)The high concentration of construction land is the main factor
driving up carbon emissions (q=0.797), while patch density has a significant negative impact. The other morphological indices have a
positive effect. Scattered land use, disordered urban sprawl, and uneven distribution of construction land can lead to increased
transportation demand and resource consumption, resulting in a significant rise in carbon emissions.The article proposes carbon
emission reduction suggestions for high-density cities from the perspective of urban morphological development, and the research
results can provide scientific references for the spatial layout and low-carbon development of high-density urban areas.

* Corresponding author

1. Introduction

Global climate change is a major ecological and environmental
issue facing human society in the 21st century, with carbon
emissions being the primary culprit behind climate
change(Lv,et al., 2023). Cities occupying less than 1% of the
global area contribute to 71%-76% of global carbon emissions.
Cities are key areas for carbon emissions and even more so for
carbon reduction strategies(Cai,et al., 2021).As urbanization
continues to increase, the rising urban population means that
cities will continue to expand outward, leading to a further
intensification of carbon emissions(Wang,et al.,
2020).Research shows that high-density cities remain key areas
for net inflow of population nationwide(Wang,et al., 2019), and
the process of urban spatial expansion continues. Therefore,
high-density cities face multiple pressures in future urban
expansion, including continuously rising carbon
emissions,uneven distribution of construction land, and
complex ecological environmental governance.

Urban spatial morphology possesses inherent stability and
durability, and has a locking effect on various elements within
the city(Yang,et al., 2011).Scholars have conducted extensive
research on the correlation between urban spatial morphology
and carbon emissions..Research indicates that a series of urban
form and structure attributes, including urban
compaction(Mitchell,et al., 2011),land-transport

multifunctional coupling(Ye,et al., 2012), urban continuity(Y,et
al., 2024), and uniformity of construction land(Lan,et al., 2023),
can significantly reduce regional carbon emissions.In the
research subjects, due to the fact that carbon emissions are
often calculated based on large-scale administrative statistical
data(Liu,et al., 2024), the research scales for exploring the
correlation mechanism between urban form and carbon
emissions mainly focus on administrative scales such as urban
agglomerations(Li,et al., 2024), cities(Szu-Hua,et al., 2018),
and counties(Yan,et al., 2022), with less research conducted on
micro-scales such as grids.In terms of research methods,
scholars quantify the morphological characteristics of urban
space through techniques such as space syntax(Tang,et al.,
2023), fractal theory(Zhang,et al., 2023), and morphological
measurement(Yuan,et al., 2021).The morphological
measurement based on landscape pattern indices can
multi-dimensionally uncover urban morphological
characteristics, and is therefore widely used in the
quantification of urban morphology.In the process of analyzing
the correlation between urban form and carbon emissions,
methods such as regression analysis, Pearson correlation
analysis, geographically and temporally weighted regression
analysis(Liu,et al., 2023), random forest, geographical detector,
and spatial autocorrelation are used to explore the dynamic
coupling process of urban carbon emissions with changes in
urban form. The integration and coupling of multiple methods
can delve deeper into the correlation between the two, which is

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025 
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-353-2025 | © Author(s) 2025. CC BY 4.0 License.

 
353



of great significance for quantitative correlation research.

Overall, while research on the correlation between urban form
and carbon emissions is gradually enriching, there are also
some deficiencies. There is a lack of sufficient attention and
targeted consideration for high-density cities with continuous
population inflow at the research object level.Secondly, there is
a lack of research on urban form and carbon emissions at the
micro level in terms of research scale, and there is a lack of
guidance for the planning and development of low-carbon
urban form at the micro scale.Therefore, this paper selects
Beijing, a high-density city, as a typical research area and
conducts a study at a micro grid scale. It calculates carbon
emissions at the grid scale using nighttime light remote sensing
data. Six landscape metrics are selected to quantify urban form
across four dimensions: construction land size, fragmentation,
shape index, and compactness using landscape pattern indices.
The relationship between urban form and carbon emissions is
explored through the methods of geographical detectors and
bivariate spatial autocorrelation. Finally, carbon reduction
suggestions for high-density cities are proposed from the
perspective of urban form development. The research results
provide scientific references for urban land use planning and
low-carbon development.

2. Overview of the research area

2.1 Research Area

The research area of this paper is Beijing, the national capital,
which is one of the high-density cities with the highest
population density in the country and also a pilot city for
low-carbon urban construction. The paper divides Beijing into
2,001 grid units overall to explore the relationship between
urban form and carbon emissions at the grid scale.

Figure 1. Research Area

2.2 Research data

The primary data sources for this study are as follows: ①
Nighttime light remote sensing data, which is derived from
corrected nighttime light imagery from DMSP/OLS and
NPP/VIIRS for the years 2000-2023. The data is primarily
sourced from the National Centers for Environmental
Information (NCEI) under the National Oceanic and
Atmospheric Administration (NOAA)
(https://eogdata.mines.edu/products/vnl/), with a spatial
resolution of 500 meters.② Land use data is sourced from the
CLCD long-term land use/cover type dataset developed by the
Huang Xin & Li Jiayi team at the School of Remote Sensing
and Information Engineering, Wuhan University
(http://doi.org/10.5281/zenodo.4417809). ③ Statistical
yearbook data, primarily used for provincial carbon emission
data, fossil fuel data, and other data required for carbon
emission estimation and simulation in Beijing, is mainly
sourced from the "Beijing Statistical Yearbook" (2000-2023)
and the compiled "Beijing Carbon Emission Inventory" from
the China Emission Accounts and Datasets (CEADS). ④
Ancillary data: The vector file for Beijing is sourced from the
Geographic Information Center of the Ministry of Natural
Resources, with a map review number of GS(2020)4632.

3. Research Methods

3.1 Grid-based simulation of carbon emissions based on
nighttime lights

(1)Carbon emission accounting scheme for energy
consumption. Estimate carbon dioxide emissions using energy
consumption data from past Beijing Statistical Yearbooks.
Determine the carbon emission coefficients of various energy
sources based on the calculation method for carbon emissions
provided by the Intergovernmental Panel on Climate Change
(IPCC), and select 8 major energy sources consumed in Beijing
to calculate carbon dioxide emissions using the following
formula:

��2 = 44
12

× �=1
8 ����� （1）

In the formula, �� represents the coefficient for various energy
fuels, � represents all types of energy, and �� represents the
total consumption of energy fuels. The carbon emission
coefficients and standard coal conversion coefficients for the 8
fossil fuels are shown in Table 1.
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Carbon

Source

Coefficient of

standard coal

(t standard

coal/t)

Carbon

emission factor

(million tons of

carbon/million

tons of standard

coal)

gasoline 1.4714 0.5538

kerosene 1.4714 0.5743

diesel fuel 1.4574 0.5918

fuel oil 1.4286 0.6182

crude oil 1.4286 0.586

natural gas 1.33×10-3 0.4483

coal 0.7143 0.7559

coke 0.974 0.8556
Table1. Energy Conversion Coefficients For Standard Coal And

Carbon Emission Coefficients

(2)Carbon emission simulation.Firstly, the total nighttime light
values for each year from 2000 to 2023 in Beijing were
statistically analyzed and corrected. Secondly, the carbon
dioxide emissions estimated from fossil fuel consumption were
also statistically analyzed, in order to establish the relationship
between nighttime light and carbon emissions(Liu,et al.,
2015).In the process of reducing the overall scale of Beijing to
a grid scale, to address the errors arising from this, after
thorough comparison and analysis, a linear regression method
without an intercept was adopted to construct a relationship
model between carbon emissions and nighttime light.The study
found that the total amount of nighttime lighting in Beijing
continued to grow from 2000 to 2023, while carbon emissions
mainly showed an upward trend before 2010 and then
significantly declined driven by the "dual carbon" policy. There
are significant differences in the trends of the two. Therefore, it
is more reasonable to select 2010 as the time node for
segmented fitting. The fitting equations are as follows:

�� = ��� (2)

�� represents carbon emissions in the grid(ton), a represents
the fitting coefficient at different time periods(Determined by
linear regression fitting of Beijing's provincial carbon
emissions and the city's total nighttime light value), ��
represents the total nighttime light intensity in the
grid.Calibration process: segmented fitting with 2010 as the
time node (see Table 2).Due to the impact of the "dual carbon"
policy after 2010, there has been a significant decoupling
between carbon emissions and the growth trend of nighttime
light.The goodness of fit R ² of the regression models was
greater than 0.95 and passed the significance test of p <
0.01.This paper calculates the total nighttime light brightness
based on a 3km×3km grid cell.

Year a R²

2000 0.0336 0.96

2005 0.02836 0.96

2010 0.03311 0.97

2015 0.02707 0.96

2020 0.01461 0.95

2023 0.01219 0.96
Table 2. Simulated Carbon Emission Coefficient of Beijing

from 2000 to 2023

(3)Evaluation of data resolution error.To address the potential
issue of mixed pixels in 500-meter resolution nighttime light
data within the core area, a stratified sampling method is used
to quantify the error.In the core area (within the Fifth Ring
Road), 30 grids were randomly selected to compare the lighting
data with the actual energy consumption data,The calculated
RMSE is 12.3% (overestimated due to light saturation),In the
edge areas, RMSE=6.5% (affected by low-light noise).The
error range indicates that carbon emissions in the core area may
be overestimated, and future integration of Luojia 1 (130
meters) or Sentinel-2 (10 meters) data could improve accuracy.

3.2 Quantitative Analysis of Urban Spatial Morphology
Based on Landscape Pattern Indices

Quantifying the urban internal spatial structure and
morphological characteristics through landscape ecological
indices can effectively represent the compactness,
fragmentation, and shape features of the built-up area, thereby
revealing its coupling relationship with urban carbon
emissions.Existing research has predominantly focused on the
impact of the built environment within cities on carbon
emissions. To broaden the research perspective to the
macro-level development of built-up areas and explore the
contributions of factors such as urban development patterns,
edge structures, and shapes to the construction of "low-carbon
cities," this paper selects indicators including Total Area of
construction land patches (TA), Patch Density (PD), Largest
Patch Index (LPI), Landscape Shape Index (LSI), Patch
Adjacency (PLADJ), and Aggregation Index (AI) to
quantitatively analyze the evolutionary pattern of spatial
morphology of construction land in Beijing.Using Fragstats 4.2
software, the aforementioned indices were calculated at both
the landscape and grid levels to describe the spatial pattern
characteristics of construction land expansion in Beijing from
2000 to 2023.

Urban Form Index Abbreviation Unit

Landscape Shape Index LSI -

Largest Patch Index LPI %

Percentage of Like Adjacencies PLADJ %

Aggregation Index AI %

Total area TA hm²

Plaque density PD per/hm²
Table 3. Urban Form Index Tables
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The six landscape indices selected in this paper (TA, PD, LPI,
LSI, PLADJ, AI) are based on the four core dimensions of
urban form research:Scale (TA: The total area of construction
land within the region reflects the overall scale of the urban
built-up area.); Fragmentation (PD:The number of construction
land patches per unit area reflects the degree of urban spatial
fragmentation and compactness.),Landscape Shape Index (LSI):
The ratio (the ratio of the perimeter of all patches to their
minimum perimeter) quantifies the complexity of the landscape
shape, representing the complex and disordered degree of urban
boundary expansion.,Spatial aggregation (LPI/PLADJ/AI:
respectively representing the dominance of the dominant patch,
proximity, and aggregation),This indicator system has been
widely used in research on the correlation between high-density
urban forms and environmental effects(Teng,et al., 2022), and
can systematically reveal the driving mechanism of land use
patterns on carbon emissions.

3.3 The impact of urban spatial form on carbon emissions

3.3.1 Geodetector:As a typical representative of high-density
cities, there are significant differences in carbon emissions and
urban morphological structure between the main urban area of
Beijing and the areas outside it, resulting in spatial
heterogeneity in the impact of urban form on carbon emissions.
The geographical detector can effectively reveal the spatial
differentiation patterns and their degree of influence behind
geographical phenomena. Through factor detection in the
geographical detector, the explanatory power of various urban
form factors on the spatial differentiation of carbon emissions
can be quantified, and through interaction detection, the
enhancement or weakening effect of different factors on the
explanatory power of carbon emissions when they act together
can be assessed.The formula is as follows:

� = 1 − ℎ=1
� �ℎ�ℎ

2�
��2 (3)

h represents the stratification of urban form; � and �ℎ are
respectively the samples of the entire grid and the stratification
h; h represents the stratification of urban form; σ2 and σh

2

respectively represent the variances of the entire grid and the
stratification h; the value of q is within [0, 1], and the closer the
value is to 1, the greater the degree of influence, and vice versa.

3.3.2 Spatial autocorrelation analysis:The bivariate spatial
autocorrelation model can reveal the intensity and patterns of
spatial associations between urban morphological elements and
carbon emissions, mainly including global and local analyses.
Global analysis is used to identify the overall directional impact
of urban morphological elements on carbon emissions. Local
analysis describes the spatial association patterns between
morphology and carbon emissions within each grid unit in
Beijing and presents the results through LISA cluster maps.
LISA cluster maps classify association patterns into four types
of clusters based on spatial relationships: high-high (H-H),
high-low (H-L), low-high (L-H), and low-low (L-L). This
paper employs the bivariate spatial autocorrelation model in
GeoDa software to identify the spatial association
characteristics and clustering effects between carbon emissions
and various urban morphological elements, providing a basis
for formulating differentiated urban development and
improvement strategies tailored to local conditions.

4. Result

4.1 Carbon Emission Accounting in Beijing

As shown in Figure 2, the carbon emissions of Beijing in 2000,
2005, 2010, 2015, 2020, and 2023 were 63.4719 million tons,
95.3699 million tons, 96.8360 million tons, 83.3863 million
tons, 64.2482 million tons, and 61.5678 million tons
respectively. Overall, carbon emissions showed a significant
increase in the early stages, peaking in 2010, followed by a
significant downward trend.From 2000 to 2005, carbon
emissions increased by 50.25%. During this period, Beijing
was undergoing rapid urbanization and industrialization,
leading to a significant rise in carbon emissions due to rapid
urban expansion, increased resource consumption, and
heightened traffic volume. From 2005 to 2010, carbon
emissions saw a smaller increase, as the city continued to
experience rapid urbanization and industrialization. From 2010
to 2015, carbon emissions decreased by 13.9%. During this
period, Beijing implemented corresponding environmental
protection strategies and low-carbon urban development
measures, resulting in a significant reduction in carbon
emissions.From 2015 to 2023, carbon emissions decreased by
26.17%, during which Beijing underwent industrial structure
optimization, energy structure transformation, deep emission
reductions in the construction and transportation sectors, as
well as policy and market mechanism innovations.

From 2000 to 2023, the spatial distribution of carbon emissions
in Beijing mainly exhibited a pattern of "concentration in
high-carbon areas, expansion in medium-carbon areas, and
scattering in low-carbon areas". Specifically, the high-carbon
emission areas were primarily concentrated in the core regions
of Beijing across the six years, while the medium-carbon
emission areas were distributed around the high-carbon areas
and gradually expanded outward. The low-carbon emission
areas were mainly concentrated in the marginal regions with
lower population density and poorer urban construction
environments.From the perspective of yearly changes, between
2000 and 2005, the demand for urban construction land and
economic resources driven by urbanization and
industrialization continued to rise. High-emission areas
expanded from the city center to the outskirts, resulting in a
significant increase in carbon emissions. At the same time, the
contrast between high-emission and low-emission areas
became more pronounced, exacerbating spatial differentiation.
From 2010 to 2023, due to the implementation of policies
aimed at optimizing urban form and reducing carbon emissions,
as well as the optimization of industrial structure and energy
transformation, the area of high-emission regions decreased,
and the overall carbon emission level of the city declined.
Carbon emissions in marginal areas were effectively controlled,
and the contrast between high-emission and low-emission areas
weakened, leading to a mitigation of spatial differentiation.
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Figure 2. Spatial and Temporal Distribution Map of Carbon
Emissions in Beijing from 2000 to 2023

4.2 Urban spatial morphological characteristics

According to Figure 3, from 2000 to 2023, the construction
land in Beijing exhibited a significant expansion trend, with a
net increase in total area of 131,684.31 hectares. The core area
of construction land continued to expand outward, reflecting
the sustained rapid development of urban center construction.
In terms of spatial expansion patterns, the construction land
mainly expanded in a multi-center radial manner around the
core area, forming a prominent high-density urban center
agglomeration zone. At the same time, the direction of
expansion showed a noticeable eastward and southward shift,
particularly from 2010 to 2023, where the intensity of
development and construction in suburban and peripheral areas
increased significantly, indicating that the spatial expansion of
high-density urban areas has omnidirectional and
multi-directional characteristics. However, the analysis also
revealed an imbalance in spatial development: construction
land was excessively concentrated in the central urban area,
while the peripheral zones outside the main urban area lagged
behind in development. Furthermore, the spatial sprawl pattern
of construction land from 2000 to 2023 exhibited a high degree
of dispersion and disorder.

Figure 3. Spatial and Temporal Distribution Map of
Construction Land in Beijing from 2000 to 2023

According to the data in Table 4, the area of construction land
in Beijing has continued to grow from 2000 to 2023. However,
the patch density (PD) has significantly decreased from 16.27
to 9.05, reflecting the uneven characteristics of both

concentration and dispersion during the process of spatial
expansion.The Landscape Shape Index (LSI) only slightly
decreased from 189.67 to 188.28, indicating that the overall
morphological pattern of construction land remained relatively
stable without showing a significant trend of disorderly
sprawl.It is worth noting that the spatial agglomeration
evolution characteristics are prominent: the Largest Patch Index
(LPI) shows a fluctuating upward trend (for example,
increasing from 43.48% to 66.53%), reflecting an increase in
the dominance of the main patch and a decrease in the degree
of fragmentation.Meanwhile, the Proximity of Landscape
Adjacent (PLADJ) and Aggregation Index (AI) increased from
88.11% and 88.16% to 90.61% and 90.64% respectively,
further supporting the increased aggregation of construction
land in local areas. This enhancement of spatial aggregation,
coupled with the continuous expansion of the total construction
land area, may exert pressure on regional ecological
connectivity.

Year TA PD LPI LSI PLADJ AI

2000 229215.69 16.27 43.48 189.67 88.11 88.16

2005 274947.57 12.86 54.62 191.27 89.05 89.10

2010 313027.38 10.71 60.55 190.59 89.77 89.82

2015 346123.17 9.57 65.66 189.96 90.31 90.35

2020 358520.4 9.14 66.77 189.50 90.51 90.55

2023 361497.96 9.05 66.53 188.28 90.61 90.64

Table 4. Beijing Urban Spatial Morphology Index
Characteristics Table

According to Figure 4, the grid-level morphological index of
construction land in Beijing in 2023 exhibits significant spatial
differentiation characteristics. The total area (TA) of
construction land shows a pattern of gradual decrease from the
urban core to the peripheral areas. The highest TA value in the
core area reaches 899 hm², while the peripheral areas generally
range from 0-101 hm², indicating a significant core-periphery
difference.Patch Density (PD): The PD in core areas is
generally lower than 20 patches/hm², indicating relatively
concentrated land use; conversely, the PD in outer urban areas
is higher, reflecting the characteristics of dispersed construction
land distribution and increased fragmentation.The Largest
Patch Index (LPI) and Landscape Shape Index (LSI) exhibit
high overall spatial heterogeneity in their distribution. The
central area is characterized by high LPI (dominant patch
predominance) and low LSI (relatively regular patch
morphology). Patch Adjacency (PLADJ) and Aggregation
Index (AI) share highly similar spatial differentiation patterns.
They mainly demonstrate two trends: (a) a decrease from the
central urban area towards the south (high values in the
southern part of the center, and low values in the southwestern
and northern parts); (b) a decrease from the southeast towards
the northwest (high values in the southeast and low values in
the northwest).
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Figure 4. 2023 Morphological Index Map of Construction Land
in Beijing at 3km Grid Level

4.3 The impact of Beijing's urban spatial form on carbon
emissions

4.3.1 Analysis of the Impact of Beijing's Urban Form on
Carbon Emissions:This study, based on the geographical
detector method, analyzed the driving effects of urban
morphological factors on carbon emissions in Beijing for the
years 2000, 2005, 2010, 2015, 2020, and 2023 (see Table 5 for
factor detection results) and their interaction effects (see Figure
5 for interaction detection results).The main findings are as
follows: (1) Overall impact strength and significance. The
explanatory power (q-value) of various urban form factors on
carbon emissions is ranked as follows: TA (0.80) > PD (0.70) >
PLADJ (0.63) > AI (0.50) > LPI (0.42) > LSI (0.02). All factors
are significant at the p<0.01 level, indicating a statistical
correlation with carbon emissions. Among them, the total area
of construction land in grid units (TA) is the dominant factor
affecting carbon emissions, while the landscape shape index
(LSI) has the weakest impact.(2) Temporal dynamic
characteristics. Stable high-impact factors: The total area of
construction land (TA), patch density (PD), patch proximity
(PLADJ), and aggregation index (AI) have a consistently stable
and highly significant impact on carbon emissions across
various periods (p<0.01), highlighting the continuous strong
driving effect of urban expansion scale (TA) and spatial
connectivity/aggregation degree (PD, PLADJ, AI) on carbon
emissions.(3) Volatility influence factor. The impact intensity of
the Largest Patch Index (LPI) and Landscape Shape Index (LSI)
on carbon emissions exhibits significant fluctuations across
different years, reflecting the notable temporal heterogeneity in
the driving effects of urban spatial structure dominance (LPI)
and the complexity of construction land morphology (LSI) on
carbon emissions.

Urban

Form
2000 2005 2010 2015 2020 2023

Mea

n

TA 0.831 0.813 0.796 0.752 0.789 0.798 0.797

PD 0.719 0.711 0.7 0.653 0.712 0.708 0.701

LPI 0.402 0.432 0.415 0.41 0.416 0.415 0.415

LSI 0.02 0.013 0.016 0.013 0.016 0.016 0.016

PLADJ 0.595 0.648 0.63 0.608 0.637 0.663 0.63

AI 0.433 0.475 0.501 0.511 0.547 0.54 0.501

Table 5. Detection of factors influencing carbon emissions from
urban form in the period 2000-2023

Carbon emissions are often influenced by the coupling effects
of multiple urban forms. According to the results of factor
interaction detection, the combination of urban form factors
generally shows a linear enhancing effect on carbon emissions,
meaning that when multiple urban form factors are coupled to
affect carbon emissions, the effect is stronger. Specifically, the
factor combinations with the strongest interactions in 2000,
2010, and 2023 were TA and LSI, TA and LPI, and TA and PD,
respectively. The total area of regional construction land is the
factor with the strongest explanatory power for carbon
emissions. Meanwhile, the interaction results between LPI and
LSI factors in all three periods were nonlinear weakening,
indicating that the combined effect of these two variables on
carbon emissions is weaker than their individual effects.

Figure 5. Interactive detection of the impact of urban form on
carbon emissions from 2000 to 2023

4.3.2 Spatial heterogeneity of the impact of Beijing's urban
form on carbon emissions:As the GeoDetector analysis shows
that the impact of urban form factors on carbon emissions
remains generally stable across different periods and follows
the principle of planning based on current conditions, this
section further employs a bivariate spatial autocorrelation
model to uncover the spatial correlation pattern and
heterogeneity between urban form and carbon emissions (see
Table 6 and Figure 6 for results).The main findings are as
follows: (1) Significant positive driving force. Both the total
area of construction land (TA) and the largest patch index (LPI)
show significant positive spatial autocorrelation with carbon
emissions (bivariate Moran's I > 0.3).This indicates that areas
with large-scale construction land (high TA) or the presence of
dominant large patches (high LPI) are typically associated with
higher intensities of construction activity, construction density,
and energy consumption, leading to a significant increase in
carbon emissions. (2) Secondary positive drivers. Patch
adjacency (PLADJ) and aggregation index (AI) also show a
significant positive correlation with carbon emissions, but the
strength of the correlation is relatively lower (Moran's I is
lower than that of TA and LPI).Both of these indices represent
the degree of spatial agglomeration of construction land (high
PLADJ/AI indicates proximate and clustered patches). Such
areas are typically associated with higher levels of carbon
emissions. It is worth noting that, while spatial proximity may
theoretically reduce transportation carbon emissions by
shortening travel distances (creating an offsetting effect), in this
study, the overall resource consumption and increased activity
intensity resulting from the high concentration of construction
land are the dominant factors, leading to a positive correlation
in the net effect.(3) Weak positive driving force. There is only a
weak positive spatial autocorrelation between the Landscape
Shape Index (LSI) and carbon emissions (Moran's I < 0.1).
High LSI values reflect complex and irregular shapes of
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construction land, which may lead to increased construction
and maintenance costs, thereby contributing to a slight increase
in carbon emissions. (4) Significant negative driving force. In
contrast to other factors, Patch Density (PD) shows a
significant negative correlation with carbon emissions (i.e.,
high PD corresponds to low carbon emissions). This suggests
that areas with more fragmented and denser distributions of
construction land (high PD) may contribute to reducing carbon
emissions by lowering the average transportation demand or
construction activity intensity within specific regions.

Urban Form Moran'I P Z

TA 0.79 0.001 71.69

PD -0.223 0.001 -24.63

LPI 0.434 0.001 46.66

LSI 0.173 0.001 19.23

PLADJ 0.424 0.001 44.43

AI 0.362 0.001 39.03
Table 6. Bivariate results between urban form index

and carbon emissions

To deeply explore the spatial differentiation impact of urban
spatial morphological factors on carbon emissions, this study
constructs a bivariate Moran's I index based on 3km grid units
to quantitatively identify the spatial correlation between carbon
emissions and urban morphology in Beijing.

Figure 6. LISA Cluster Map of Urban Form Index-Carbon
Emissions

The LISA clustering map of bivariate variables reveals that the
spatial heterogeneity characteristics of the six landscape
metrics and carbon emissions are as follows: (1) Both total
construction land area (TA) and largest patch index (LPI)
exhibit a dominant pattern of "high-high (HH) clustering in
core areas and low-low (LL) clustering in peripheral areas".
Large-scale construction land (high TA) and dominant patch
aggregation areas (high LPI) drive significant spatial
agglomeration of carbon emissions through intense
construction activities and energy consumption. Among them,
TA has the most significant agglomeration effect on carbon
emissions.(2) The central area of Patch Density (PD) exhibits
"high carbon emissions-low PD" characteristics, while the
southeastern fringe area shows "high-high (HH) clustering".
The fragmentation of construction land (high PD) in the fringe
area is accompanied by robust transportation demand, leading

to an increase in carbon emission intensity in this region. (3)
The spatial differentiation of Landscape Shape Index (LSI) is
significant. The core area demonstrates "high-low (HL)"
clustering, the suburban ring is primarily characterized by
"high-high (HH)/low-high (LH)" clustering, and the outer
suburbs show "low-low (LL)" clustering. The complexity of
construction land morphology (high LSI) in the core peripheral
area exacerbates the difficulty of infrastructure allocation and
induces an increase in high-density urban transportation energy
consumption.(4) The spatial heterogeneity of Patch Adjacency
(PLADJ) and Aggregation Index (AI) is highly similar. The
core area exhibits "high-high (HH)" clustering, the suburban
transition zone is dominated by "high-low (HL)" clustering,
and the fringe area shows sporadic aggregation. In high-density
cities, the mismatch between residential and employment
spaces caused by insufficient land use compactness (low
PLADJ/AI) leads to increased carbon emissions through
prolonged commuting distances.

It should be noted that although factors such as LSI and AI
exhibit a weak positive effect overall, there is significant spatial
heterogeneity. Most samples in the core area belong to
high-carbon-emission types, while the frontier areas of
construction land expansion show a negative correlation
characterized by "high morphological complexity-low carbon
emission (LH)". This indicates that the fragmentation of newly
added land and spatially disordered expansion continuously
exacerbate carbon emission pressure by reducing land use
efficiency.

5. Conclusion and Discussion

5.1 Conclusion

(1) In terms of the spatiotemporal pattern characteristics of
carbon emissions, this study, based on high-precision nighttime
light remote sensing data inversion, reveals the spatiotemporal
pattern changes of carbon emissions in Beijing from 2000 to
2023: ①Temporal characteristics. A typical inverted U-shaped
evolution trajectory (with a peak in 2010); ② Spatial pattern.
A three-tier structure of single-center agglomeration
(high-carbon area) - circular diffusion (medium-carbon area) -
scattered edges (low-carbon area). The high-carbon area
remains anchored in the urban core, the medium-carbon area
spreads outward with urban expansion, and the low-carbon area
is discretely distributed in underdeveloped construction zones,
empirically demonstrating the spatial coupling between carbon
emission intensity and urban core development activities.

(2) Evolutionary patterns of urban spatial morphology. During
the study period, the construction land in Beijing experienced
significant expansion (with an increase of 58.7%). Its spatial
evolution characteristics are manifested as follows: ① The
expansion mode originated from the urban core area, forming a
multi-center radial expansion pattern predominantly towards
the east and south; ② The morphological structural
differentiation is reflected in the continuously increasing spatial
distribution imbalance (with a 44.4% decrease in patch density),
limited improvement in morphological complexity (with a
landscape shape index decrease of <1% and maintenance of
irregular features), and a significant increase in local spatial
aggregation (with synchronous increases in patch proximity
and aggregation indices). These spatial evolution characteristics,
coupled with the superposition effect of ecological space
encroachment and human activity intensity, significantly
exacerbate regional ecological environmental pressure.
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(3) In terms of the mechanism of the impact of urban form on
carbon emissions, urban spatial form is a key driver of carbon
emissions. The ranking of factor influence is as follows: total
area of construction land (TA) > patch density (PD) > patch
proximity (PLADJ) > aggregation index (AI) > largest patch
index (LPI) > landscape shape index (LSI). Among these, high
concentration of construction land (high TA values) is the
primary positive driver pushing up carbon emissions; whereas
patch density (PD) exhibits a significant negative impact
(Moran's I = -0.223), suggesting that higher patch density may
reduce transportation demand and thereby inhibit carbon
emissions; the remaining form factors (LPI, PLADJ, AI) all
show positive impacts.Spatial heterogeneity analysis reveals a
prevalent positive correlation clustering of "high carbon-high
construction land area/aggregation" in the core areas, while the
combination of "high carbon-high patch density" in the
peripheral areas highlights the core mechanism of non-compact,
disordered sprawl, and imbalanced distribution of land use,
which ultimately leads to a significant increase in carbon
emissions by increasing transportation demand and resource
consumption.

5.2 Discussion

5.2.1 The impact mechanism of high-density urban form on
carbon emissions:This study reveals that Beijing, as a typical
high-density city, exhibits unique pathways through which its
spatial morphology influences carbon emissions. The primary
finding is the emission-increasing effect driven by the
centralization of construction land. The high-intensity
clustering of construction land (high TA values) constitutes the
core driving force of carbon emissions (q=0.80, Moran's I >
0.3). This stems from an overloaded development model
constrained by scarce land resources—centralized industrial
layouts and high-density building clusters significantly elevate
regional energy consumption intensity (with building energy
consumption accounting for >40%).Secondly, the paradoxical
effect of patch density (PD) reduction on emissions. Patch
density exhibits a significant negative impact (Moran's I =
-0.223), indicating that in specific high-density urban
environments, moderate fragmentation of construction land
may promote functional mixing and work-life balance,
reducing the average commuting distance by 18% and thus
lowering transportation carbon emissions. This contradicts the
traditional understanding of "fragmentation increasing
emissions," highlighting the regional dependency of the
mechanism.Finally, the synergistic mechanism of urban form
factors. The multi-factor interaction detection reveals a
nonlinear enhancing effect between TA and PD (interaction
q-value > 0.90), confirming the existence of a compactness
threshold effect in carbon emission response: moderately
compact mixing (high PD) can suppress transportation-related
carbon emissions, but excessive concentration (high TA) can
increase fixed-source emissions due to scale effects, revealing
the dialectical relationship between scale control and structural
optimization in high-density cities.

The findings of this paper reveal that in a high-density city like
Beijing, moderate compactness can actually contribute to
reducing carbon emissions. Contrary to the
"compactness-energy consumption positive correlation"
paradigm proposed by Li X K et al., this empirical study
demonstrates that under the combined effects of a high-density
built environment and a mature public transportation system
(with Beijing's public transportation modal share exceeding
54%), a moderately compact layout (high population density)
generates net emission reduction benefits by reducing

dependence on private transportation.This may be related to the
specific urban environment and socioeconomic background of
high-density cities. In high-density cities, despite the greater
resource consumption and environmental pressure, the
relatively well-developed public transportation system and
compact layout can effectively reduce residents' reliance on
private transportation, thereby lowering the use of
transportation energy.Meanwhile, the negative correlation
between patch density and carbon emissions is inconsistent
with some existing studies. The "positive correlation between
PD and carbon emissions" discovered by Teng F and others
mainly stems from the demand for infrastructure expansion.
The negative effect of PD in the Beijing case confirms that
when fragmentation is accompanied by functional mixing, it
can be transformed into an advantage for traffic emission
reduction.The differences mainly stem from the variations in
land use patterns across different urban environments. Beijing's
compact urban structure can reduce transportation demands and
energy consumption, whereas in other studies, an increase in
patch density may imply land fragmentation, leading to
increased demand for infrastructure expansion and
subsequently elevating carbon emissions. Compared with other
studies, the uniqueness and regional dependency of the results
of this study are evident.Although the conclusions of this study
are based on the case of Beijing, comparisons with existing
literature reveal that in similar high-density cities (such as
Shanghai),The scale of construction land (TA) is also a core
driving factor for carbon emissions,The negative effect of
plaque density (PD) may vary in intensity depending on the
stage of urban development. It is suggested that future studies
apply the grid framework of this paper to cities such as
Shanghai and Guangzhou, and verify the generalizability of the
conclusions by combining their transportation structures (such
as the coverage rate of rail transit).

5.2.2 Suggestions for High-Density Urban Development
Towards Low-Carbon Goals:Based on the above-mentioned
impact mechanism and empirical evidence from Beijing,
suggestions for low-carbon development in high-density cities
are proposed.(1) Optimize the spatial layout of the land and
strictly control the unordered spread of construction land. The
key points are: Strengthen the control of development
boundaries, guiding the concurrent focus on "renewal and
quality improvement in core areas" and "intensive and
coordinated development in peripheral areas" to avoid
ecological and environmental pressures caused by excessive
concentration and lagging development in peripheral areas;
promote the compaction and functional mixing of construction
land by integrating fragmented plots, increasing plot density
(PD) and aggregation index (AI), shortening commuting
distances, reducing transportation demand and carbon
emissions, and alleviating the imbalance between residential
and employment areas.(2) Simplify the complexity of spatial
morphology by planning and integrating irregular land parcels,
reducing the Landscape Shape Index (LSI), and minimizing
infrastructure redundancy and maintenance energy
consumption. (3) Promote collaborative governance between
the center and peripheral areas: improve the efficient public
transportation network (especially rail transit), strengthen
connections between the central area and the outskirts, and
reduce dependence on private cars.(4) Develop multifunctional
complexes (integrating residences, employment, and services)
to promote complementary regional functions and reduce the
need for long-distance commuting from the source. By
optimizing multi-scale spatial forms and coordinating
infrastructure, the dilemma of high carbon emissions in dense
cities can be effectively addressed, supporting sustainable
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low-carbon transformation.

5.2.3 Research Limitations and Future Directions:Although
this study reveals the correlation between high-density urban
form and carbon emissions at a micro grid scale, it still has
certain limitations. Firstly, while the use of nighttime light data
for carbon emission accounting offers high accuracy, its spatial
resolution (500 meters) may not be sufficient to precisely
capture energy consumption differences within high-density
urban areas (such as at the scale of individual buildings or
neighborhoods), thereby affecting the granularity of the spatial
heterogeneity analysis of carbon emissions.Secondly, the
conclusion is based on the single case of Beijing as a
high-density city, and its specific stage of development, policy
environment (such as the "dual carbon" policy), and
geographical conditions may limit the generalizability of the
conclusion to other types of cities (such as emerging
high-density cities and low-density sprawl cities).

Future research can be expanded in the following directions:
First, integrate higher-resolution remote sensing data (such as
thermal infrared, Sentinel) with multi-source big data (such as
mobile signaling, energy consumption monitoring) to improve
the accuracy of carbon emission simulation and morphological
representation.The second is to conduct comparative studies
across regions and various types of cities to verify the
universality and differences in the relationship between urban
form and carbon emissions, and explore the moderating effects
of urban development stages, climate zones, and policy
backgrounds.The third is to deepen the tracking of long-term
effects of morphological dynamic evolution, evaluate the
carbon reduction effectiveness of different planning strategies
(such as polycentric development and job-housing balance),
and provide a long-term basis for formulating adaptive
plans.Fourthly, it is necessary to conduct comparisons among
multiple cities in the future (such as Beijing vs.
Shanghai/Guangzhou/Wuhan) to explore the moderating effects
of urban development stages and policy backgrounds on the
relationship between urban form and carbon emissions.
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