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Abstract

With the rapid development of low-altitude economy in China, path planning for low-altitude aircraft faces challenges such as strong
environmental dynamics, complex constraints, and difficult real-time decision-making. To achieve efficient and universal path
planning capabilities, this paper proposes a three-layer Spatiotemporal knowledge graph(3L-STKG) architecture comprising a
conceptual layer, an instance layer, and a spatiotemporal layer. Guided by ontological spatiotemporal knowledge, this architecture
enables efficient route planning in complex scenarios and addresses the challenges of path planning in low-altitude environments.
The proposed method pre-matches the maneuverability constraints from the conceptual layer with the grid traversal attributes of the
spatiotemporal layer through a cross-layer semantic association mechanism, dynamically constructing an accessible correlation
network. On this basis, the path planning problem is transformed into a minimum weighted connected subgraph search problem in
the ontology-constrained spatiotemporal network, and an improved A* algorithm is used to solve for the global optimal path. The
experimental results show that the planning time in specific scenarios is reduced by 88.54% compared with traditional methods,
while supporting rapid adaptation to multiple aircraft types. The research results provide a theoretical framework for intelligent
decision-making of low-altitude aircraft in complex environments and have broad application prospects in fields such as emergency

rescue and urban logistics.

1. Introduction
1.1 Research Background and Significance

With the continuous advancement of low-altitude reform
policies and the vigorous development of the digital economy in
China, the large-scale application of low-altitude vehicles
represented by rotorcraft and unmanned aerial vehicles (UAVS)
in scenarios such as emergency rescue, urban logistics, and
intelligent inspection has become a reality (Zhang et al, 2022,
Smith et al, 2021). How to achieve efficient path planning and
intelligent decision-making for low-altitude vehicles in complex
dynamic environments has become an interdisciplinary research
hotspot in the aerospace and intelligent transportation fields,
which is of great theoretical significance and engineering value
for improving airspace resource utilization, ensuring mission
execution efficiency, and flight safety.

The main objective of low-altitude vehicle path planning is to
construct an optimal feasible path from the starting point to the
endpoint based on cost functions (such as the shortest voyage,
minimum energy consumption, and minimum risk), while
satisfying the vehicle’s dynamic constraints (such as maximum
overload and minimum turning radius), task priority
requirements, airspace control rules (such as no-fly zones and
restricted flight altitudes), and passability conditions (such as
obstacle distribution and meteorological impacts). Relevant
studies have shown that efficient path planning can reduce flight
energy consumption by 22%-35% and shorten mission time by
15%-28% (Chen et al, 2020), and its importance is particularly
significant in complex dynamic environments.

1.2 Research Status and Challenges

Existing research achievements mainly focus on static or slowly
varying environments such as indoor spaces and airport clear
zones, predominantly employing geometric modeling combined
with heuristic search algorithms like swarm and ant colony
algorithms (Zhang et al, 2010, Pal et al, 2022, Wang et al, 2019).
Experiments show that when wind speed fluctuations exceed
20%, traditional pre-planning methods based on static maps
require an average of 4.2 replanning attempts to reach the target
point, with the mission failure rate increasing to 18% (Brown et
al, 2021). Literature indicates that when the number of
constraint dimensions exceeds five, the probability of
guaranteeing the global optimality of planning solutions drops
below 65%, primarily due to the lack of joint modelling of
maneuverability and airspace rules (Smith et al, 2020).

In typical complex scenarios such as urban low-altitude

logistics, path planning technology faces three core challenges:
1. Strong environmental dynamics, such as real-time
meteorological changes in flight zones, obstacle
movements, or other aircraft activities, which can cause
abrupt changes in path passability.
2. Complex constraint conditions, including aircraft
maneuverability, no-fly zone restrictions, and other factors
that influence path planning results.
3. High real-time decision-making requirements, as
dynamic environmental impacts necessitate real-time
updates during flight, with planning time controlled within
the 100ms level.
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To address the above challenges, this paper proposes a three-
layer spatiotemporal knowledge graph-based path planning(3L-
STKG-PP) framework. The 3L-STKG comprises a concept
layer, instance layer, and spatiotemporal layer, which achieves
rapid path reasoning, planning, and dynamic optimization in
complex environments. The research results will provide a new
technical pathway for the autonomous navigation of low-
altitude vehicles in complex scenarios and facilitate the deep
integration of low-altitude economy and smart cities.

2. A Three-Layer Spatiotemporal Knowledge Graph-
Based Path Planning (3L-STKG-PP) Method

2.1 Three-Layer
Architecture

Spatiotemporal Knowledge Graph

Traditional knowledge graphs are predominantly attribute
graphs, focusing on expressing "entity-relationship-entity" triple
relationships. To transform complex and dynamic path planning
problems into spatiotemporal network minimum connected
subgraph path search problems based on ontology constraints,
this paper proposes a three-layer knowledge graph architecture
comprising a concept layer, instance layer, and spatiotemporal
layer. It innovates a cross-layer spatiotemporal knowledge
fusion analysis mechanism of "ontological knowledge-
spatiotemporal knowledge" to achieve efficient path matching

and dynamic optimization planning based on graph computation.

1) Cross-Layer Spatiotemporal Analysis
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Figure 1. Three-Layer Spatiotemporal Knowledge Graph
Acrchitecture.

2.1.1 Concept Layer: The concept layer primarily
represents ontological concepts related to low-altitude vehicles
and flight missions. Among them, the ontological concepts of
low-altitude vehicles mainly include data attributes such as
basic information, physical structure, and maneuverability
performance; ontological concepts of flight missions mainly
include data attributes such as basic information, mission
resources, mission time, mission area, mission route, and
constraint conditions. Detailed Low-Altitude Vehicle and Flight
Mission Ontology are shown in Figure 2.
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Figure 2. Ontological Information of Low-Altitude Vehicles
and Flight Missions

2.1.2 Instance Layer: The instance layer primarily consists
of entity sets of low-altitude vehicles and flight missions, along
with their corresponding associative relationships. The
characters includes not only the attribute elements defined in the
ontology (e.g., basic information, physical structure) but also
real-time state data such as current position, remaining fuel,
remaining battery, and associated flight mission information.
Flight missions emphasize details such as mission time,
operation area, flight route, and constraint conditions, which are
critical for dynamic path adjustment.

This layer bridges abstract ontological definitions with real-
world operational data, enabling the knowledge graph to
support time-sensitive reasoning (e.g., calculating remaining
flight range based on battery level) and constraint enforcement
(e.g., verifying mission routes against no-fly zone boundaries in
real time). By integrating both static ontology attributes and
dynamic sensor data, the Instance Layer ensures the path
planning framework remains grounded in empirical reality
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while maintaining semantic consistency with higher-level
conceptual models.

2.1.3 Spatiotemporal Layer: The spatiotemporal layer
constructs a hierarchical spatiotemporal knowledge graph based
on spatiotemporal grid encoding. First, a 4D spatiotemporal grid
model G(S,T,V,E) is established, defined as:

G(S,T.V,E) =
S ={s,|s, € GEOSOT 3D grid codes,i =1,2,---,N}
tlt;el ", j=12-,M} @

{
{v | attributes of grid s, at timet; }
{

i

T=
V=
E

(s St |spat|al adjacency or temporal between s;,s, at t; }

where:
1. The spatial dimension S adopts hierarchical grid
encoding by GEOSOT . The low-altitude area (0-1000 m
above sea level) is divided into cubic grid cells (e.g., Level
10 grid encoding: G3D1039.9N116.3E0050, with a cell
size of 10m <10 m <10 m).
2. The temporal dimension T is discretized into equal-
interval time slices, each associated with a unique temporal
code (e.g., hourly slots from 09:00-10:00 UTC).
3. The attribute set V of each grid cell includes:
a) Static Terrain: Roads, water systems, vegetation,
pipelines, buildings, obstacles, etc.
b) Dynamic Constraints: Rainfall intensity, wind speed,
temporary restricted zones, etc.
¢) Passability  Metrics:  Passable,  Non-passable,
Conditionally passable (e.g., passable only below 50 m
altitude).

Finally, spatiotemporally adjacent grid cells are connected via
adjacency relationships E, completing the construction of

spatiotemporal knowledge graph triples: (G,,E;,G,) . This

encoding scheme enables efficient querying of spatial-temporal
correlations (e.g., "find all passable grids within 500 m of
[116.49F, 39.91N] between 10:00-10:30 UTC") and dynamic
constraint propagation across adjacent cells.

2.2 Cross-Layer Knowledge Fusion Framework

This paper proposes a novel cross-layer knowledge Fusion
Framework that addresses the coupling problem between
ontological constraints and spatiotemporal environments in
vehicle path planning. By fusing the low-altitude vehicle
ontological knowledge from the concept layer with
spatiotemporal ~ environmental  knowledge  from  the
spatiotemporal layer, a multi-dimensional constraint passability
model is constructed to generate a passable spatiotemporal
hidden layer, enabling efficient path planning.

2.2.1 Spatiotemporal Grid Level Adaptation: The
spatiotemporal grid coding divides the Earth's space into
different sizes of spatiotemporal grids based on the size of
different levels. Firstly, based on the ontological attribute
parameter set of the vehicle P ={l,r,d} (representing fuselage
length, minimum turning radius, and safety buffer distance,
respectively), a grid level adaptation criterion is defined as:
S =max{l +2d,2r} , where 3 denotes the side length of a
single grid cell, ensuring it satisfies the minimum spatial
constraints for vehicle passage. The spatio-temporal grid
division hierarchy is established based on the cell size required
for the movement of unmanned aerial vehicles. Further,
according to the vehicle’s flight parameters (e.g., flight altitude,
operational range), the flight area G ={g;,level}", , is delimited

to form the basic spatiotemporal search space.

2.2.2  Multi-Constraint Passability Modeling and Hidden
Layer Representation: Secondly, a set of spatiotemporal grid

cells G, :{gi,level}i“i1

within the flight area is filtered, where static constraints include
hard constraints such as obstacle avoidance and no-fly/control
zone. Further, vehicle maneuverability parameters (e.g., wind
resistance, rain resistance) and dynamic environmental factors
(wind speed, rainfall intensity, conflict index, etc.) are
introduced to construct a fuzzy comprehensive evaluation

Zk 4 kﬂk( 1)

W
k=1 K

4, 1s the passability evaluation function for the k-th factor. The

satisfying static passage conditions

model:p(s,t): , Where w, are factor weights,

resulting passability value p e(O,l] serves as a soft constraint,
generating the actual passable spatiotemporal grid cell set

K
G, ={g;.level}
hidden layer H .

and constructing the passable spatiotemporal

Additionally, to achieve numerical representation of this hidden
layer, graph neural networks (GNNs) are used for vectorization.
Treating Gp as a node set, each node is endowed with a feature

vector containing its passability value p. Neighborhood
information is  aggregated layer-by-layer via  graph
convolutional networks (GCNs):

" =0[ > i () ?(“)w‘”J @

Aty [NG)
where:
1. h" is the feature vector of node i at the I-th GCN
layer,

2. N(i) denotes the set of neighboring nodes of i,

3. WY is he learnable weight matrix and bias vector at
layer I,
4. (3 isthe activation function (e.g., ReLU).

This hierarchical aggregation enables the hidden layer to
capture spatiotemporal correlations between grid cells, such as
the impact of wind speed gradients on adjacent cells' passability.
The vectorized hidden layer H is then integrated into path
planning algorithms (e.g., A*) as a dynamic cost map, allowing
real-time adaptation to multi-constraint environments.
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2.3 Path Search Based On Improved A* Algorithm:

Lastly, In the passable spatiotemporal hidden layer H , a
heuristic search algorithm weighted by passability values is
designed. The search cost function is defined as:

f(m)=g(n)+ 220) @

g(n) is the cumulative cost from the starting point to node n

(including time cost and energy consumption), h(n) is a

heuristic cost function using Manhattan distance, which
represents the distance from the current node to the destination.

A is a weight coefficient greater than 1, and p(n) is the

passability value of the node. By reducing the cost of high-
passability areas, the path search is guided to converge toward
the optimal path with high passability values.

After path generation, a caching mechanism M ={(V,R)} is

established to associatively store the optimal path P with its
corresponding passable hidden layer feature vector. When
processing similar tasks, similarity matching is performed based
on conditions such as regional passability features, start and end
points, to support rapid retrieval of historical path planning
results. Additionally, local conflict areas can be fine-tuned to
form a closed-loop optimization mechanism of "planning-
caching-reusing-fine-tuning", ensuring the validity of planning
results while improving planning efficiency.

3. Simulations and Results
3.1 Simulation Environment

Simulation Platform: Python
Hardware Configuration: Intel(R) Core(TM) Ultra 7
265KF 3.90 GHz, 32GB RAM, NVIDIA RTX 5080

Test Scenario: The test scenario simulates the low-altitude
airspace over urban blocks, generating corresponding
spatiotemporal knowledge graph data. The spatial dimension
employs GeoSOT global subdivision encoding, while the
temporal dimension uses a 1-hour interval, comprehensively
considering the regular monitoring cycles of meteorological
elements (e.g., wind speed, precipitation) and the average
execution  duration of low-altitude missions. Each
spatiotemporal node is associated with simulated attributes such
as obstacles, restricted zones, and meteorological conditions.
Specifically, considering the differentiated distribution
characteristics of urban functions:

1. 20% of nodes are randomly designated as impassable

regions, simulating hard constraints like high-rise buildings

and restricted airspace.

2. 60% of nodes are designated as conditionally flyable

regions, simulating soft constraints such as pipelines, wind

speeds, and rainfall.

3. The remaining nodes are classified as passable

regions.

This configuration ensures a realistic representation of urban
low-altitude environments, enabling comprehensive testing of
path planning algorithms under complex constraints.

3.2 Evaluation Metrics

To comprehensively assess the performance of the proposed
algorithm in  complex low-altitude environments, three
evaluation metrics are defined from three perspectives: planning
efficiency, spatial optimization, and environmental adaptability.

Planning Time(s): The time consumed from initiating path
computation at the start node to obtaining the optimal path at
the end node. A shorter duration indicates higher computational
efficiency.

Path Efficiency Ratio: The ratio of the total length of the
planned path to the Manhattan distance between the start-node
and end-node. A lower ratio signifies better spatial utilization
efficiency.

Efficiency Ratio = Total Length of Planned Path 4
Manhattan Distance between Start Node and End Node
Avg Traversal Cost: Calculated by dividing the total length of
the planned path by the sum of their passability values. A lower
value indicates better overall passability:

Tatal Length of Planned Path

5
S o) (5)

Avg Traversal Cost =

These metrics collectively evaluate the algorithm's efficiency,
spatial optimality, and adaptability to dynamic environmental
constraints in urban low-altitude scenarios.

3.3 Experiment Results

Randomly generated simulation datasets containing 10*, 10°,
4x10°, 25x10°, 10° spatiotemporal grid cells were tested.
For each dataset size, 100 random <start point, end point> pairs
were generated. The performance of the traditional A*
algorithm was compared against the proposed 3L-STKG-PP
path planning method. Evaluation metrics including planning
duration, path efficiency ratio, and passage cost were computed
and analyzed as mentioned in Section 3.2. N in figure 3 is the
unilateral length in the square map.

Panning Efficiency: The 3L-STKG-PP approach demonstrated
significant improvements, especially with increasing grid cell
counts. The average planning time can be reduced to 0.033s, at
10° nodes, which can meet the needs of dynamic planning for
unmanned aerial vehicles. At 10° nodes, the time could even be
reduced by 88.54% compared to the traditional A* algorithm,
achieving sub-1 second response times suitable for real-time
decision-making.

Path Quality: The 3L-STKG-PP approach marginally
outperformed the traditional approach in both path efficiency
ratio (optimized spatial utilization) and passage cost (smoother
traversal through high-passability regions).

These results show that the 3L-STKG-PP approach has two
advantages:
1. Scalability: The STKG method's efficiency advantage
grows exponentially with dataset size, maintaining real-
time performance even at 10° nodes.
2. Adaptability: By leveraging  spatiotemporal
knowledge graphs, the algorithm effectively balances path
optimality and computational speed under dynamic
constraints..
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Figure 3. Comparison of Test Results between 3L-STKG-PP
and Traditional A*.

In addition, this study compares three heuristic cost functions—
Euclidean distance, Manhattan distance, and passability-
weighted Manhattan distance using identical start and end
points within the same regional scope. The evaluation focuses
on pre-planning time, path efficiency ratio, and passage cost.
Results indicate that while the Euclidean distance heuristic
yields marginally better path efficiency and passage cost metrics,
its pre-planning time grows exponentially with node count,
rendering it unsuitable for rapid iteration. In contrast, the
proposed passability-weighted Manhattan distance heuristic
demonstrates optimal performance across all metrics,

particularly in large-scale scenarios, making it better suited for
practical applications requiring real-time adaptability.
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4. Conclusions and Future Work
4.1 Research Findings

The three-layer knowledge graph architecture proposed in this
study, consisting of a conceptual layer, instance layer, and
spatiotemporal  layer, effectively integrates ontological
knowledge of low-altitude aircraft with spatiotemporal
constraints through cross-layer associations, thereby enhancing
the efficiency of path planning. The conceptual layer rigorously
formalizes ontological concepts of aircraft and flight missions;
the instance layer delineates entity sets and their relationships;
and the spatiotemporal layer constructs a graph using
spatiotemporal grid encoding and correlates environmental
attributes, providing comprehensive knowledge support for path
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planning. The cross-layer association mechanism elegantly
transforms the complex path planning problem into a shortest
path search problem in graph theory. By pre-matching the
maneuverability constraints from the conceptual layer with the
grid passability attributes from the spatiotemporal layer through
a cross-layer spatiotemporal analysis mechanism, a dynamic
reachability network is constructed, significantly improving the
algorithm's adaptability to dynamic environments and enabling
rapid, rational path planning decisions in response to
environmental changes. The 3L-STKG-PP algorithm effectively
leverages fuzzy representations of spatiotemporal passability,
ensuring global optimality while enhancing computational
efficiency.

Experiments demonstrate substantial reductions in planning
time across both static and dynamic scenarios, with planning
durations within seconds for large-scale spatiotemporal node
datasets, thus providing robust support for rapid decision-
making of low-altitude aircraft in complex environments.

4.2 Future Directions

The heuristic function adopted in this study is currently
simplistic and struggles to meet the demands of large-scale,
high-speed, dynamic low-altitude planning scenarios. To
address this, the next step will involve introducing
reinforcement learning (RL) to optimize heuristic function
parameters. By leveraging RL's adaptive capabilities, the
parameters will be dynamically adjusted according to varying
environmental states and mission requirements, further
enhancing the improved A* algorithm's search efficiency and
path quality in complex, changing environments. This will
enable the algorithm to more rapidly find global or near-global
optimal paths.

Additionally, the methodology will be extended to multi-agent
collaborative path planning scenarios, focusing on researching
coordination mechanisms among multiple low-altitude vehicles.
Key challenges to address include conflict avoidance, task
allocation, and collaborative flight in shared airspace, with the
goal of achieving efficient multi-vehicle coordination to meet
the needs of simultaneous operations in urban logistics
distribution, emergency rescue, and similar applications.

To validate the algorithm’s robustness, real-world flight testing
will be conducted. This involves building a physical flight
testbed to evaluate the algorithm in authentic low-altitude
environments, including tests under diverse meteorological
conditions, complex terrains, and various interference factors.
By collecting actual flight data, the algorithm can be further
optimized and refined to ensure reliability and stability in
practical applications.
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