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Abstract 

With the rapid development of low-altitude economy in China, path planning for low-altitude aircraft faces challenges such as strong 

environmental dynamics, complex constraints, and difficult real-time decision-making. To achieve efficient and universal path 

planning capabilities, this paper proposes a three-layer Spatiotemporal knowledge graph(3L-STKG) architecture comprising a 

conceptual layer, an instance layer, and a spatiotemporal layer. Guided by ontological spatiotemporal knowledge, this architecture 

enables efficient route planning in complex scenarios and addresses the challenges of path planning in low-altitude environments. 

The proposed method pre-matches the maneuverability constraints from the conceptual layer with the grid traversal attributes of the 

spatiotemporal layer through a cross-layer semantic association mechanism, dynamically constructing an accessible correlation 

network. On this basis, the path planning problem is transformed into a minimum weighted connected subgraph search problem in 

the ontology-constrained spatiotemporal network, and an improved A* algorithm is used to solve for the global optimal path. The 

experimental results show that the planning time in specific scenarios is reduced by 88.54% compared with traditional methods, 

while supporting rapid adaptation to multiple aircraft types. The research results provide a theoretical framework for intelligent 

decision-making of low-altitude aircraft in complex environments and have broad application prospects in fields such as emergency 

rescue and urban logistics. 

1. Introduction

1.1 Research Background and Significance 

With the continuous advancement of low-altitude reform 

policies and the vigorous development of the digital economy in 

China, the large-scale application of low-altitude vehicles 

represented by rotorcraft and unmanned aerial vehicles (UAVs) 

in scenarios such as emergency rescue, urban logistics, and 

intelligent inspection has become a reality (Zhang et al, 2022, 

Smith et al, 2021). How to achieve efficient path planning and 

intelligent decision-making for low-altitude vehicles in complex 

dynamic environments has become an interdisciplinary research 

hotspot in the aerospace and intelligent transportation fields, 

which is of great theoretical significance and engineering value 

for improving airspace resource utilization, ensuring mission 

execution efficiency, and flight safety.   

The main objective of low-altitude vehicle path planning is to 

construct an optimal feasible path from the starting point to the 

endpoint based on cost functions (such as the shortest voyage, 

minimum energy consumption, and minimum risk), while 

satisfying the vehicle’s dynamic constraints (such as maximum 

overload and minimum turning radius), task priority 

requirements, airspace control rules (such as no-fly zones and 

restricted flight altitudes), and passability conditions (such as 

obstacle distribution and meteorological impacts). Relevant 

studies have shown that efficient path planning can reduce flight 

energy consumption by 22%-35% and shorten mission time by 

15%-28% (Chen et al, 2020), and its importance is particularly 

significant in complex dynamic environments. 

1.2 Research Status and Challenges 

Existing research achievements mainly focus on static or slowly 

varying environments such as indoor spaces and airport clear 

zones, predominantly employing geometric modeling combined 

with heuristic search algorithms like swarm and ant colony 

algorithms (Zhang et al, 2010, Pal et al, 2022, Wang et al, 2019). 

Experiments show that when wind speed fluctuations exceed 

20%, traditional pre-planning methods based on static maps 

require an average of 4.2 replanning attempts to reach the target 

point, with the mission failure rate increasing to 18% (Brown et 

al, 2021). Literature indicates that when the number of 

constraint dimensions exceeds five, the probability of 

guaranteeing the global optimality of planning solutions drops 

below 65%, primarily due to the lack of joint modelling of 

maneuverability and airspace rules (Smith et al, 2020). 

In typical complex scenarios such as urban low-altitude 

logistics, path planning technology faces three core challenges: 

1. Strong environmental dynamics, such as real-time

meteorological changes in flight zones, obstacle

movements, or other aircraft activities, which can cause

abrupt changes in path passability.

2. Complex constraint conditions, including aircraft

maneuverability, no-fly zone restrictions, and other factors

that influence path planning results.

3. High real-time decision-making requirements, as

dynamic environmental impacts necessitate real-time

updates during flight, with planning time controlled within

the 100ms level.
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To address the above challenges, this paper proposes a three-

layer spatiotemporal knowledge graph-based path planning(3L-

STKG-PP) framework. The 3L-STKG comprises a concept 

layer, instance layer, and spatiotemporal layer, which achieves 

rapid path reasoning, planning, and dynamic optimization in 

complex environments. The research results will provide a new 

technical pathway for the autonomous navigation of low-

altitude vehicles in complex scenarios and facilitate the deep 

integration of low-altitude economy and smart cities. 

 

 

2. A Three-Layer Spatiotemporal Knowledge Graph-

Based Path Planning (3L-STKG-PP) Method 

2.1 Three-Layer Spatiotemporal Knowledge Graph 

Architecture 

Traditional knowledge graphs are predominantly attribute 

graphs, focusing on expressing "entity-relationship-entity" triple 

relationships. To transform complex and dynamic path planning 

problems into spatiotemporal network minimum connected 

subgraph path search problems based on ontology constraints, 

this paper proposes a three-layer knowledge graph architecture 

comprising a concept layer, instance layer, and spatiotemporal 

layer. It innovates a cross-layer spatiotemporal knowledge 

fusion analysis mechanism of "ontological knowledge-

spatiotemporal knowledge" to achieve efficient path matching 

and dynamic optimization planning based on graph computation. 

 

 
Figure 1. Three-Layer Spatiotemporal Knowledge Graph 

Architecture. 

 

2.1.1 Concept Layer: The concept layer primarily 

represents ontological concepts related to low-altitude vehicles 

and flight missions. Among them, the ontological concepts of 

low-altitude vehicles mainly include data attributes such as 

basic information, physical structure, and maneuverability 

performance; ontological concepts of flight missions mainly 

include data attributes such as basic information, mission 

resources, mission time, mission area, mission route, and 

constraint conditions. Detailed Low-Altitude Vehicle and Flight 

Mission Ontology are shown in Figure 2. 

 

 

 
Figure 2. Ontological Information of Low-Altitude Vehicles 

and Flight Missions 

 

2.1.2 Instance Layer: The instance layer primarily consists 

of entity sets of low-altitude vehicles and flight missions, along 

with their corresponding associative relationships. The 

characters includes not only the attribute elements defined in the 

ontology (e.g., basic information, physical structure) but also 

real-time state data such as current position, remaining fuel, 

remaining battery, and associated flight mission information. 

Flight missions emphasize details such as mission time, 

operation area, flight route, and constraint conditions, which are 

critical for dynamic path adjustment. 

 

This layer bridges abstract ontological definitions with real-

world operational data, enabling the knowledge graph to 

support time-sensitive reasoning (e.g., calculating remaining 

flight range based on battery level) and constraint enforcement 

(e.g., verifying mission routes against no-fly zone boundaries in 

real time). By integrating both static ontology attributes and 

dynamic sensor data, the Instance Layer ensures the path 

planning framework remains grounded in empirical reality 
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while maintaining semantic consistency with higher-level 

conceptual models. 

 

2.1.3 Spatiotemporal Layer: The spatiotemporal layer 

constructs a hierarchical spatiotemporal knowledge graph based 

on spatiotemporal grid encoding. First, a 4D spatiotemporal grid 

model G(S,T,V,E) is established, defined as: 
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where: 

1. The spatial dimension S adopts hierarchical grid 

encoding by GEOSOT . The low-altitude area (0–1000 m 

above sea level) is divided into cubic grid cells (e.g., Level 

10 grid encoding: G3D1039.9N116.3E0050, with a cell 

size of 10m ×10 m ×10 m). 

2. The temporal dimension T is discretized into equal-

interval time slices, each associated with a unique temporal 

code (e.g., hourly slots from 09:00–10:00 UTC). 

3. The attribute set V of each grid cell includes: 

a) Static Terrain: Roads, water systems, vegetation, 

pipelines, buildings, obstacles, etc. 

b) Dynamic Constraints: Rainfall intensity, wind speed, 

temporary restricted zones, etc. 

c) Passability Metrics: Passable, Non-passable, 

Conditionally passable (e.g., passable only below 50 m 

altitude). 

 

Finally, spatiotemporally adjacent grid cells are connected via 

adjacency relationships E, completing the construction of 

spatiotemporal knowledge graph triples: 1 1 2, ,G E G  . This 

encoding scheme enables efficient querying of spatial-temporal 

correlations (e.g., "find all passable grids within 500 m of 

[116.49°E, 39.91°N] between 10:00–10:30 UTC") and dynamic 

constraint propagation across adjacent cells. 

 

2.2 Cross-Layer Knowledge Fusion Framework 

This paper proposes a novel cross-layer knowledge Fusion 

Framework that addresses the coupling problem between 

ontological constraints and spatiotemporal environments in 

vehicle path planning. By fusing the low-altitude vehicle 

ontological knowledge from the concept layer with 

spatiotemporal environmental knowledge from the 

spatiotemporal layer, a multi-dimensional constraint passability 

model is constructed to generate a passable spatiotemporal 

hidden layer, enabling efficient path planning. 

 

2.2.1 Spatiotemporal Grid Level Adaptation: The 

spatiotemporal grid coding divides the Earth's space into 

different sizes of spatiotemporal grids based on the size of 

different levels. Firstly, based on the ontological attribute 

parameter set of the vehicle { , , }P l r d=  (representing fuselage 

length, minimum turning radius, and safety buffer distance, 

respectively), a grid level adaptation criterion is defined as: 

max{ 2 ,2 }l d r = + ，where δ denotes the side length of a 

single grid cell, ensuring it satisfies the minimum spatial 

constraints for vehicle passage. The spatio-temporal grid 

division hierarchy is established based on the cell size required 

for the movement of unmanned aerial vehicles. Further, 

according to the vehicle’s flight parameters (e.g., flight altitude, 

operational range), the flight area 1{ , }N

i iG g level ==  , is delimited 

to form the basic spatiotemporal search space. 

 

2.2.2 Multi-Constraint Passability Modeling and Hidden 

Layer Representation: Secondly, a set of spatiotemporal grid 

cells  
1

,
M
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=
= ， satisfying static passage conditions 

within the flight area is filtered, where static constraints include 

hard constraints such as obstacle avoidance and no-fly/control 

zone. Further, vehicle maneuverability parameters (e.g., wind 

resistance, rain resistance) and dynamic environmental factors 

(wind speed, rainfall intensity, conflict index, etc.) are 

introduced to construct a fuzzy comprehensive evaluation 

model: ( )
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kw  are factor weights, 

k  is the passability evaluation function for the k-th factor. The 

resulting passability value ( ρ 0,1  serves as a soft constraint, 

generating the actual passable spatiotemporal grid cell set 

 
1
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K
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=
=  and constructing the passable spatiotemporal 

hidden layer H . 

 

Additionally, to achieve numerical representation of this hidden 

layer, graph neural networks (GNNs) are used for vectorization. 

Treating pG  as a node set, each node is endowed with a feature 

vector containing its passability value ρ. Neighborhood 

information is aggregated layer-by-layer via graph 

convolutional networks (GCNs): 
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where: 

1. ( )l
ih  is the feature vector of node i at the l-th GCN 

layer, 

2. ( ) N i denotes the set of neighboring nodes of i, 

3. 
( )l

W  is he learnable weight matrix and bias vector at 

layer l, 

4. ( )·  is the activation function (e.g., ReLU). 

 

This hierarchical aggregation enables the hidden layer to 

capture spatiotemporal correlations between grid cells, such as 

the impact of wind speed gradients on adjacent cells' passability. 

The vectorized hidden layer H  is then integrated into path 

planning algorithms (e.g., A*) as a dynamic cost map, allowing 

real-time adaptation to multi-constraint environments. 
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2.3 Path Search Based On Improved A* Algorithm: 

Lastly, In the passable spatiotemporal hidden layer H , a 

heuristic search algorithm weighted by passability values is 

designed. The search cost function is defined as: 

 

 ( ) ( )
( )
( )n

h n
f n g n

e


= +   (3) 

 

( )g n  is the cumulative cost from the starting point to node n 

(including time cost and energy consumption), ( )h n  is a 

heuristic cost function using Manhattan distance, which 

represents the distance from the current node to the destination. 

  is a weight coefficient greater than 1, and ( )n  is the 

passability value of the node. By reducing the cost of high-

passability areas, the path search is guided to converge toward 

the optimal path with high passability values. 

 

After path generation, a caching mechanism ( ) , iM V P=  is 

established to associatively store the optimal path P with its 

corresponding passable hidden layer feature vector. When 

processing similar tasks, similarity matching is performed based 

on conditions such as regional passability features, start and end 

points, to support rapid retrieval of historical path planning 

results. Additionally, local conflict areas can be fine-tuned to 

form a closed-loop optimization mechanism of "planning-

caching-reusing-fine-tuning", ensuring the validity of planning 

results while improving planning efficiency. 

 

3. Simulations and Results 

3.1 Simulation Environment 

Simulation Platform：Python 

Hardware Configuration： Intel(R) Core(TM) Ultra 7 

265KF 3.90 GHz, 32GB RAM, NVIDIA RTX 5080 

 

Test Scenario：The test scenario simulates the low-altitude 

airspace over urban blocks, generating corresponding 

spatiotemporal knowledge graph data. The spatial dimension 

employs GeoSOT global subdivision encoding, while the 

temporal dimension uses a 1-hour interval, comprehensively 

considering the regular monitoring cycles of meteorological 

elements (e.g., wind speed, precipitation) and the average 

execution duration of low-altitude missions. Each 

spatiotemporal node is associated with simulated attributes such 

as obstacles, restricted zones, and meteorological conditions. 

Specifically, considering the differentiated distribution 

characteristics of urban functions: 

1. 20% of nodes are randomly designated as impassable 

regions, simulating hard constraints like high-rise buildings 

and restricted airspace. 

2. 60% of nodes are designated as conditionally flyable 

regions, simulating soft constraints such as pipelines, wind 

speeds, and rainfall. 

3. The remaining nodes are classified as passable 

regions. 

 

This configuration ensures a realistic representation of urban 

low-altitude environments, enabling comprehensive testing of 

path planning algorithms under complex constraints. 

 

3.2 Evaluation Metrics 

To comprehensively assess the performance of the proposed 

algorithm in complex low-altitude environments, three 

evaluation metrics are defined from three perspectives: planning 

efficiency, spatial optimization, and environmental adaptability. 

 

Planning Time(s): The time consumed from initiating path 

computation at the start node to obtaining the optimal path at 

the end node. A shorter duration indicates higher computational 

efficiency.  

 

Path Efficiency Ratio: The ratio of the total length of the 

planned path to the Manhattan distance between the start-node 

and end-node. A lower ratio signifies better spatial utilization 

efficiency. 

 

 Total Length of Planned Path
Efficiency Ratio

Manhattan Distance between Start Node and End Node
=  (4) 

 

Avg Traversal Cost: Calculated by dividing the total length of 

the planned path by the sum of their passability values. A lower 

value indicates better overall passability:  

 

 
( )

Tatal Length of Planned Path
Avg Traversal Cost =

 ρ n
  (5) 

 

These metrics collectively evaluate the algorithm's efficiency, 

spatial optimality, and adaptability to dynamic environmental 

constraints in urban low-altitude scenarios. 

 

3.3 Experiment Results 

Randomly generated simulation datasets containing 410 , 610 , 
64 10 , 625 10 , 810  spatiotemporal grid cells were tested. 

For each dataset size, 100 random <start point, end point> pairs 

were generated. The performance of the traditional A* 

algorithm was compared against the proposed 3L-STKG-PP 

path planning method. Evaluation metrics including planning 

duration, path efficiency ratio, and passage cost were computed 

and analyzed as mentioned in Section 3.2. N in figure 3 is the 

unilateral length in the square map. 

 

Panning Efficiency: The 3L-STKG-PP approach demonstrated 

significant improvements, especially with increasing grid cell 

counts. The average planning time can be reduced to 0.033s, at 
610 nodes, which can meet the needs of dynamic planning for 

unmanned aerial vehicles. At 810  nodes, the time could even be 

reduced by 88.54% compared to the traditional A* algorithm, 

achieving sub-1 second response times suitable for real-time 

decision-making. 

 

Path Quality: The 3L-STKG-PP approach marginally 

outperformed the traditional approach in both path efficiency 

ratio (optimized spatial utilization) and passage cost (smoother 

traversal through high-passability regions). 

 

These results show that the 3L-STKG-PP approach has two 

advantages: 

1. Scalability: The STKG method's efficiency advantage 

grows exponentially with dataset size, maintaining real-

time performance even at 810  nodes. 

2. Adaptability: By leveraging spatiotemporal 

knowledge graphs, the algorithm effectively balances path 

optimality and computational speed under dynamic 

constraints.. 
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Figure 3. Comparison of Test Results between 3L-STKG-PP 

and Traditional A*. 

In addition, this study compares three heuristic cost functions—

Euclidean distance, Manhattan distance, and passability-

weighted Manhattan distance using identical start and end 

points within the same regional scope. The evaluation focuses 

on pre-planning time, path efficiency ratio, and passage cost. 

Results indicate that while the Euclidean distance heuristic 

yields marginally better path efficiency and passage cost metrics, 

its pre-planning time grows exponentially with node count, 

rendering it unsuitable for rapid iteration. In contrast, the 

proposed passability-weighted Manhattan distance heuristic 

demonstrates optimal performance across all metrics, 

particularly in large-scale scenarios, making it better suited for 

practical applications requiring real-time adaptability. 

 

 

 
Figure 4 Comparison of Test Results for Different Heuristic 

Cost Functions 

 

4. Conclusions and Future Work 

4.1 Research Findings 

The three-layer knowledge graph architecture proposed in this 

study, consisting of a conceptual layer, instance layer, and 

spatiotemporal layer, effectively integrates ontological 

knowledge of low-altitude aircraft with spatiotemporal 

constraints through cross-layer associations, thereby enhancing 

the efficiency of path planning. The conceptual layer rigorously 

formalizes ontological concepts of aircraft and flight missions; 

the instance layer delineates entity sets and their relationships; 

and the spatiotemporal layer constructs a graph using 

spatiotemporal grid encoding and correlates environmental 

attributes, providing comprehensive knowledge support for path 
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planning. The cross-layer association mechanism elegantly 

transforms the complex path planning problem into a shortest 

path search problem in graph theory. By pre-matching the 

maneuverability constraints from the conceptual layer with the 

grid passability attributes from the spatiotemporal layer through 

a cross-layer spatiotemporal analysis mechanism, a dynamic 

reachability network is constructed, significantly improving the 

algorithm's adaptability to dynamic environments and enabling 

rapid, rational path planning decisions in response to 

environmental changes. The 3L-STKG-PP algorithm effectively 

leverages fuzzy representations of spatiotemporal passability, 

ensuring global optimality while enhancing computational 

efficiency. 

 

Experiments demonstrate substantial reductions in planning 

time across both static and dynamic scenarios, with planning 

durations within seconds for large-scale spatiotemporal node 

datasets, thus providing robust support for rapid decision-

making of low-altitude aircraft in complex environments. 

 

4.2 Future Directions 

The heuristic function adopted in this study is currently 

simplistic and struggles to meet the demands of large-scale, 

high-speed, dynamic low-altitude planning scenarios. To 

address this, the next step will involve introducing 

reinforcement learning (RL) to optimize heuristic function 

parameters. By leveraging RL's adaptive capabilities, the 

parameters will be dynamically adjusted according to varying 

environmental states and mission requirements, further 

enhancing the improved A* algorithm's search efficiency and 

path quality in complex, changing environments. This will 

enable the algorithm to more rapidly find global or near-global 

optimal paths. 

 

Additionally, the methodology will be extended to multi-agent 

collaborative path planning scenarios, focusing on researching 

coordination mechanisms among multiple low-altitude vehicles. 

Key challenges to address include conflict avoidance, task 

allocation, and collaborative flight in shared airspace, with the 

goal of achieving efficient multi-vehicle coordination to meet 

the needs of simultaneous operations in urban logistics 

distribution, emergency rescue, and similar applications. 

To validate the algorithm's robustness, real-world flight testing 

will be conducted. This involves building a physical flight 

testbed to evaluate the algorithm in authentic low-altitude 

environments, including tests under diverse meteorological 

conditions, complex terrains, and various interference factors. 

By collecting actual flight data, the algorithm can be further 

optimized and refined to ensure reliability and stability in 

practical applications. 
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