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Abstract 

 

Traditional mobile sensing systems often experience a decline in data acquisition accuracy in dynamic environments due to the use 

of fixed-parameter Kalman filters, which lack adaptability to changes in motion states and sensor noise. To address this limitation, 

this paper proposes a gait-aware adaptive Kalman filtering method that dynamically adjusts filter parameters based on real-time gait 

frequency analysis. This method enables autonomous real-time data collection of multi-dimensional data from multiple sensors 

embedded in smartphones. By employing adaptive covariance optimization, the method enhances the system's ability to handle 

different motion patterns, ensuring the accuracy and robustness of data collection. Experimental results demonstrate that this method 

improves data quality in diverse motion scenarios, providing a reliable foundation for multi-modal sensing and intelligent mobile 

sensing applications. 

 

1. Introduction 

With the rapid development of mobile computing technology, 

smartphones have evolved beyond mere communication tools to 

become multifunctional intelligent platforms integrating 

location tracking, sensing, and interaction capabilities. One of 

the key drivers behind this transformation is the continuous 

maturation of built-in sensor technology and enhanced 

integration capabilities. Currently, mainstream smart devices 

are generally equipped with various types of sensors, including 

inertial sensors (such as accelerometers, gyroscopes, and 

magnetometers), location sensors (such as GPS), and 

environmental sensing sensors (such as thermometers, light 

sensors, and barometric pressure sensors)(Zheng et al., 2020). 

These sensors can collect real-time data on user movements and 

environmental conditions, providing devices with precise 

contextual awareness capabilities. 

 

Sensor data is widely used in functions such as automatic screen 

rotation, gesture recognition, and motion state detection, 

significantly enhancing the naturalness and convenience of 

human-computer interaction. It also provides a solid data 

foundation for fields such as pedestrian navigation, motion 

analysis, and behavior recognition. However, due to the 

physical limitations of sensors, their accuracy and response 

capabilities are often affected by the stability of the external 

environment and the complexity of motion patterns. When users 

are in situations with significant changes in gait or dynamic 

interference, traditional sensor data collection mechanisms often 

experience issues such as reduced accuracy or response delays, 

which in turn affect the stability and robustness of upper-layer 

application systems. 

 

Among various sensor application scenarios, indoor positioning 

has emerged as a research hotspot due to the high-precision 

location sensing requirements in complex dynamic 

environments. Unlike outdoor environments, which can rely on 

GNSS systems to provide stable positioning information, indoor 

environments are characterized by significant signal obstruction, 

reflection, and multipath effects, leading to a significant decline 

in the effectiveness of traditional positioning methods(Zhao et 

al., 2019). To overcome this bottleneck, researchers have 

gradually turned to relying on time-series data collected by 

multi-source sensors in mobile devices to characterize user 

behavior patterns and environmental states, thereby achieving 

indirect modeling of location and trajectory. Against this 

backdrop, in recent years, a large number of studies have 

introduced deep learning methods, leveraging their powerful 

feature extraction and spatio-temporal modeling capabilities, 

and have been widely applied to tasks such as indoor behavior 

recognition, trajectory prediction, and auxiliary positioning, 

achieving significant results(Poulose and Han, 2021). However, 

the modeling capabilities of deep learning models are highly 

dependent on the quality and stability of the raw sensor data. If 

the collected data contains noise interference, sampling 

discontinuities, or missing errors, it will directly weaken the 

model's ability to capture temporal patterns, thereby affecting 

training efficiency and inference accuracy. Therefore, how to 

achieve high-quality, multi-dimensional, and dynamically 

robust data collection mechanisms on mobile devices has 

become a critical prerequisite for the effective performance of 

deep sensing systems. 

 

Among the many algorithms used for preprocessing inertial 

sensor data, the Kalman filter is widely used in mobile sensing 

systems due to its efficient state estimation capabilities and 

good real-time performance. It is used to reduce noise 

interference, smooth time-series data, and improve the 

reliability of observations(Lee et al., 2021). By dynamically 

adjusting the differences between the system state and 

observations, it can effectively improve the accuracy and 

consistency of sensor data under ideal conditions. However, 

traditional Kalman filter methods typically rely on statically 

defined process noise and observation noise covariance matrices, 

making them ill-suited to handle the non-stationary 

characteristics resulting from frequent changes in user behavior 

patterns. This is particularly evident in dynamic scenarios such 

as fast walking, turning, or complex gait patterns, where the 

filter may exhibit issues such as drift, over-smoothing, or error 

accumulation. 

 

Therefore, in data-driven indoor intelligent sensing systems, 

establishing a stable, robust, and adaptable multi-dimensional 

sensor data acquisition mechanism capable of handling dynamic 

scene changes is a critical prerequisite for the practical 

application of model performance. The step frequency-aware 

adaptive Kalman filter method proposed in this paper is 

specifically designed to address this issue. By introducing a 
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real-time step frequency adjustment mechanism to dynamically 

adjust filter parameters, the system can autonomously optimize 

the modeling of observations from sensors such as 

accelerometers, gyroscopes, and magnetometers based on 

changes in user behavior states. This significantly enhances the 

continuity, consistency, and physical plausibility of signal 

sampling at the data level. This method can serve as a crucial 

data foundation for subsequent deep learning models in time 

series modeling, feature extraction, and representation learning 

for perception tasks. Based on this method, a dynamic multi-

dimensional sensor data acquisition app for the Android 

platform has been developed, enabling stable multi-source 

perception data collection and providing a reliable foundation 

for data modeling and environmental perception in indoor 

location services. 

 

The remainder of this paper is organized as follows. Section 2 

introduces related work. Section 3 introduces the proposed 

algorithm, including its architecture, experiments, and 

explanations. Section 4 evaluates the proposed algorithm in 

actual collection processes to prove its performance. Section 5 

summarizes this paper. 

 

2. Related Work 

2.1 Noise covariance dynamic adjustment method 

An improved Kalman filter is employed in mobile GNSS/IMU 

systems to fuse IMU data with different sampling frequencies 

with GNSS observations, demonstrating that an improved 

covariance configuration can significantly enhance the 

navigation performance of low-cost terminals(Yan et al., 2020). 

Chen Yu et al. proposed an adaptive Kalman filter method 

based on the EM algorithm for smartphone pedestrian 

navigation systems, which improves positioning accuracy in 

complex environments(Yu et al., 2020). Wu et al. proposed an 

adaptive Kalman filter method based on residual analysis for 

heading estimation in pedestrian dead reckoning, enhancing 

system robustness in dynamic environments(Wu et al., 2018). 

Sun proposed an innovative adaptive Kalman filter (IAKF) that 

dynamically identifies abnormal observations and adjusts the 

measurement noise covariance matrix by performing chi-square 

tests on the filter innovation quantities, effectively improving 

the robustness and anti-interference capabilities of INS/GNSS 

systems in complex urban environments(Sun et al., 2022). 

However, this approach heavily relies on anomaly detection, 

requires manual setting of the chi-square threshold, and only 

adjusts the observation covariance matrix, failing to account for 

system dynamic changes caused by user state variations. Pandey 

addressed the IMU attitude estimation problem by introducing a 

recursive information expansion Kalman filter (RI-EKF) based 

on the expectation-maximization (EM) algorithm, which 

improves attitude estimation accuracy through iterative 

estimation processes and measurement noise covariance(Pandey 

et al., 2024). However, the EM algorithm is computationally 

intensive and unsuitable for real-time embedded environments; 

additionally, parameter convergence speed depends on 

initialization, making it difficult to quickly respond to dynamic 

changes in user behavior. 

 

2.2 Deep learning and filter fusion methods 

Ghanizadegan proposed the DeepUKF-VIN framework, which 

combines the Unscented Kalman Filter (UKF) with the Visual 

Inertial Neural Network (IMU-Vision-Net) to enable online 

estimation of the noise covariance matrix, thereby enhancing 

positioning performance in indoor environments with weak 

GNSS signals(Ghanizadegan and Hashim, 2025). This method 

requires training a deep neural network model, which relies on 

large-scale labeled datasets; and the computational cost is high, 

making it difficult to deploy on general-purpose mobile devices. 

Levy proposed the Adaptive Neural UKF, which uses a neural 

network to predict state noise covariance, achieving good 

results in autonomous underwater vehicle (AUV) systems(Levy 

and Klein, 2025). Although it is adaptive, the network model is 

large and unsuitable for resource-constrained mobile platforms, 

lacking lightweight deployment strategies. Adžemović et al. 

proposed a deep learning-based Bayesian filtering method to 

improve the performance of target tracking systems, particularly 

excelling in handling nonlinear motion patterns(Adžemović et 

al., 2024). While these methods enhance filtering performance 

to some extent, they generally suffer from high model 

complexity, significant computational resource requirements, or 

reliance on large training datasets, making direct deployment on 

lightweight mobile terminals challenging. 

 

2.3 Multi-sensor fusion and environment-adaptive filtering 

methods 

Xie's AKF-LIO framework combines LiDAR and IMU, 

dynamically adjusting the weights and covariances of the two 

sensor types through context-aware strategies to enhance 

robustness in complex scenarios(Xie et al., 2025). AKF-LIO 

relies on multiple heterogeneous sensors (LiDAR + IMU), has 

high hardware requirements, and is not suitable for single 

mobile terminal environments; additionally, the system design 

is complex, resulting in high deployment barriers. Pang applied 

adaptive UKF to an IMU+GPS system in high-dynamic forest 

environments, using acceleration changes to automatically 

adjust measurement noise, making it suitable for sharp turns or 

complex terrain navigation(Pang et al., 2024). Although it 

considers dynamic motion, it only uses acceleration as the basis 

for adjustment, making it insensitive to low-speed or vibration-

related motion changes; additionally, the scheme does not 

consider deployment efficiency under resource-constrained 

conditions. 

 

An analysis of the current state of research both domestically 

and internationally has identified the following two issues:   

(1) Fixed filter parameters with poor adaptability: Commonly 

used Kalman filters typically employ fixed observation noise 

covariance (R) during deployment. While this may be effective 

in static or single-motion scenarios, it fails to adapt promptly to 

changes in motion states and sensor noise characteristics in real-

world scenarios where user gait frequently changes, leading to a 

decline in data filtering accuracy. 

(2) Lack of a general, real-time adaptive mechanism: While 

some adaptive filtering methods possess a certain degree of 

adjustment capability, they largely rely on prior models or 

historical data fitting, resulting in poor generalizability and low 

real-time performance. This makes them unsuitable for 

continuous high-frequency data collection tasks on resource-

constrained mobile devices.   

 

3. Method 

In this paper, an adaptive Kalman filtering method based on 

step frequency sensing is proposed, aiming at realizing high-

precision acquisition of multi-dimensional sensor data in 

dynamic scenes. The method mainly includes two parts of the 

core mechanism: the step frequency sensing module and the 

filter parameter adaptive adjustment module, and the overall 

flow is shown in Figure 1. 
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On the data acquisition side, the system is based on the built-in 

accelerometers, gyroscopes and magnetometers of smartphones 

to realize real-time sensing of the user's motion state and raw 

data acquisition. In order to obtain the user's current step 

frequency characteristics, the system uses the acceleration 

signal for periodic analysis, combined with the peak detection 

algorithm to calculate the current step frequency in real time. 

 

 

Figure 1. Technical flow of the method. 

 

3.1 Kalman filtering method 

The Kalman filter is a recursive filter used for state estimation 

in linear systems, suitable for dynamic systems under the 

assumption of Gaussian white noise. It uses the current system 

state prediction and measurement observations, combined with 

their respective uncertainties, to perform optimal estimation of 

the true state. Its system model consists of two parts: the state 

transition model and the observation model. State transition 

model: 

 

 
1k k k kx Ax Bu w−= + +  (1) 

 

kx  indicates the actual state of the system at time k ; A is the 

state transition matrix, which defines the evolution relationship 

between the state at the previous moment 1k − and the current 

moment k ; B  is the control input matrix, and 
ku is the current 

control input; 
kw is process noise, which follows a Gaussian 

distribution ~ (0, )kw Q .  

 

The observation model is: 

 

 k k kz Hx v= +  (2) 

 

kz  represents the actual observation value of the system at time 

k ; H  is the observation matrix, which maps the system state 

kx  to the measurement space; 
kv  is the measured noise, which 

follows a Gaussian distribution ~ (0, )kw Q .  

 

The entire Kalman filter process consists of two steps: 

prediction and update. It uses the system model to predict the 

state and covariance at the next moment: 

 

 1
ˆ ˆ

k k kx Ax Bu−

−= +  (3) 

 

 1

T

k kP AP A Q−

−= +  (4) 

 

ˆ
kx−

 is the current state prior estimate, and kP−
 is the prior error 

covariance. In the update phase, the current observation value is 

used to correct the prediction result and update the state 

estimate and covariance matrix: 

 

 1( )T T

k k k kK P H HP H R− − −= +  (5) 

 

 ˆ ˆ ˆ( )k k k k kx x K z Hx− −= + −  (6) 

 

 ( )k k kP I K H P−= −  (7) 

 

K is the Kalman gain matrix, which measures the weight of the 

observation value in the final estimate. If 
kR is large, it indicates 

that the observation value noise is large, and the system will 

rely more on the predicted value; conversely, it will rely more 

on the current observation. In traditional implementations, Q 

and R are mostly preset constants, which are difficult to cope 

with the dynamic changes in the user's movement state in real 

scenarios, such as sudden starts, acceleration, sharp turns, and 

other behaviors. 

 

3.2 Step frequency detection method 

To achieve real-time sensing of the user's movement status, this 

study embedded a step frequency estimation module in the data 

collection process. This module mainly relies on the periodic 

fluctuations generated by the accelerometer sensor during 

human walking. Through time window sliding analysis and 

peak detection methods, it achieves real-time calculation of step 

frequency. The entire process includes four steps: cycle 

calculation, peak detection, and step frequency output. The 

original three-axis acceleration signal is converted into 

acceleration modulus to enhance the periodic expression 

capability of the signal: 

 

 2 2 2( ) ( ) ( ) ( )mag x y za t a t a t a t= + +  (8) 

 

During walking, the periodic fluctuations in the center of 

gravity of the human body cause the modulus signal to exhibit 

obvious periodic peaks. By setting a minimum time interval 

restriction condition, a set of local maximum time points 

1 2{ , , , }nt t t  corresponding to the stride can be extracted from 

the modulus sequence. In this paper, the minimum time interval 

is 200ms. Calculate the current step frequency 
tf  based on the 

average interval between consecutive peaks: 

 

 
1

1
t

n

n
f

t t

−
=

−
 (9) 

 

This calculation is based on n  peaks detected within the 

current time window, reflecting the user's walking rhythm per 

unit of time. Step frequency estimation uses a fixed time 

window for sliding updates. When new data arrives, the window 

content is updated, and peak extraction and frequency 

calculation are performed again to achieve dynamic tracking of 

step frequency. 

 

In order to improve filter adaptability, this study proposes using 

the step frequency 
tf  as a dynamic feedback signal to 

adaptively adjust kR  in real time. The covariance adjustment 

formula is as follows: 
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,

( ) ( ),

,

low low

low low low high

high high

R f f

R f R k f f f f f

R f f

 


= + −  
 

 (10) 

 

where   f = current detection step frequency 

,low highf f  = step frequency threshold boundary 

,low highR R  = corresponding R parameter value 

( ) / ( )high low high lowk R R f f= − −  

 

When users engage in more vigorous exercise, resulting in a 

higher step frequency, the uncertainty of observation noise 

increases. The filter should reduce its reliance on sensor 

observations and instead rely more on prediction terms. In a 

steady state, however, it should increase its reliance on 

observation terms. Without the need for predefined motion 

models or external calibration data, the system exhibits high 

adaptability and versatility, dynamically adjusting filtering 

strategies based on the user's natural behavior. By updating 

filter parameters in real time, it enhances the accuracy and 

robustness of multi-source data collection in actual dynamic 

environments. 

 

4. Experimental evaluation 

4.1 Experimental equipment and data acquisition 

In this section, the feasibility and performance of the proposed 

adaptive Kalman filter method are validated through 

experiments. The Huawei Mate40 Pro smartphone was used as 

the test platform for method validation, with experimental 

hardware parameters as shown in Table 1. The corresponding 

algorithms were developed and software code implemented 

using Android Studio, with the sensor data acquisition 

frequency set to 50 Hz as mentioned in the paper. 

 

Mobile phone model Detailed parameters 

HUAWEI Mate 40 Pro 

CPU model Mali-G78 MP24 

Memory apacity 8GB RAM  

Operating system Harmony OS 2.0 

  

Table 1. Detailed specifications of the mobile phone. 

 

The experiments were conducted in an indoor corridor area of a 

building, with two gait modes set: normal walking and fast 

walking, to simulate real-world usage scenarios under different 

movement rhythms. During data collection, participants were 

required to naturally switch between the two gait modes, with a 

focus on covering the significant changes in step frequency. A 

total of approximately 80,000 frames of data were collected. 

Parameter settings in this paper 0.01 , 0.005low highR IRI= = . 

 

4.2 Experimental equipment and data acquisition 

To evaluate the stability performance of the proposed step 

frequency sensing adaptive Kalman filter method in the process 

of multi-dimensional sensor data acquisition, this paper 

introduces the axis error distribution (AED) as the core 

evaluation metric. This metric analyzes the amplitude and 

deviation of fluctuations in three-axis sensor signals after 

filtering to reveal the differences in how various methods 

smooth the original sensor signals. Compared to using statistical 

measures such as the mean or standard deviation, the AED 

provides a more granular probabilistic statistical perspective, 

enabling the description of the distribution patterns of filtering 

residuals along each axis, the identification of whether 

abnormal fluctuations are effectively suppressed, and the 

display of systematic shifts. Let the original signal be ( )rawx n  

and the filtered signal be ( )filteredx n . This paper statistically 

analyzes the residual sequences of the X, Y, and Z axes to 

demonstrate the processing differences among various methods 

in terms of signal smoothness. 

 

 ( ) ( ) ( )raw filteredE n x n x n= −  (11) 

 

In the three-axis data from an inertial sensor, the Z-axis 

typically represents changes in vertical acceleration. During 

normal walking, the up-and-down foot movements of the 

human body cause the Z-axis signal to exhibit periodic 

oscillations. Therefore, the Z-axis signal not only contains 

rhythm information about human movement but also plays a 

critical role in step frequency estimation and motion state 

recognition. If there is significant noise or error in this axis, it 

will directly affect the accurate judgment of movement rhythm, 

thereby impacting the estimation accuracy of the entire filtering 

system. To validate the advantages of the step frequency 

perception adaptive Kalman filter method proposed in this 

paper for Z-axis signal processing, the Z-axis of the 

accelerometer was selected as the primary comparison object, 

and its error distribution was compared with that of a traditional 

fixed-parameter Kalman filter. 

 

Figure 2 shows a comparison of the probability density curves 

of error distributions across the three axes of the accelerometer 

signal for different methods. Experimental results indicate that 

the error distribution range of the original signal is the widest, 

with a longer tail extension, exhibiting obvious fluctuations and 

occasional abnormal points; while the method proposed in this 

paper exhibits a more concentrated and symmetrical distribution 

across all axes, with higher peaks in the error density function 

and lower dispersion, demonstrating higher signal stability and 

robustness. Additionally, the Z-axis error decreased by 0.0689 

m/s² compared to the fixed Kalman filter. 

 

Figure 3 shows the filtering results of the Z-axis signal from the 

accelerometer using a fixed-parameter Kalman filter method 

during the transition from normal walking to fast walking. It can 

be observed that during the transition to fast walking, the 

amplitude of the filter output signal changes relatively little, 

remaining at a level similar to that of normal walking, and thus 

failing to effectively reflect the change in movement state. This 

phenomenon indicates that the fixed-parameter Kalman filter 

lacks dynamic adaptability when faced with significant changes 

in step frequency, leading to excessive smoothing of transient 

features in the original signal and thereby suppressing the 

significant acceleration changes that should be reflected in fast 

walking. This filter response lag not only weakens the 

discriminative capability of the Z-axis signal in behavior 

recognition but may also have negative impacts on downstream 

sensor-data-based temporal modeling and state estimation. 

Figure 4 shows the results obtained after processing the Z-axis 

signal from the accelerometer using the step frequency-aware 

adaptive Kalman filter method. Compared with the fixed 

filtering method in Figure 3, the proposed method can 

sensitively capture the trend of step frequency changes when 

pedestrians transition from normal walking to fast walking, and 

dynamically adjust the measurement noise covariance 

parameters of the filter accordingly, thereby enabling the filter 

output to better retain the high-amplitude acceleration character-
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Figure 2. Three-axis error distribution (The top three figures show the three-axis error distribution after fixed Kalman filtering, and 

the bottom three figures show the three-axis error distribution after adaptive Kalman filtering.). 

 

Figure 3. Comparison of raw values and filtered values of 

accelerometer fixed Kalman filter. 

-istics corresponding to fast walking. Experimental results show 

that the adaptive filter exhibits greater filtering gain during step 

frequency increases, reducing suppression of high-frequency 

signal components and effectively avoiding the “over-

smoothing” issue in traditional methods. The proposed method 

achieves a self-balancing between noise suppression and 

dynamic response, thereby significantly enhancing the ability to 

perceive changes in motion states while ensuring signal stability. 

 

Figure 4. Comparison of raw values and filtered values of 

accelerometer adaptive Kalman filter. 

To quantify the sensitivity of filters to gait transitions, this paper 

introduces rise time as an important indicator for evaluating the 

tracking speed of filters. Rise time is a commonly used time-

domain indicator in signal processing and control systems, 

defined as the time required for the system response to rise from 

10% of the low value to 90% of the high value, reflecting the 

speed and delay of the system response (Li and Jian, 2024): 

 

 90% 10% 1000r

s

t t
T

f

−
=   (12) 
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In this study, we compared the performance of fixed-parameter 

Kalman filtering and the method described in this paper in 

terms of rise time on the Z-axis acceleration signal. The results 

are shown in Table 2: 

 

Method rT  

Fixed-parameter Kalman filter 145.6ms 

Methodology of this paper 127.0ms 

Table 2. Rise Time Comparison. 

 

As can be seen from the data, the average rise time of the 

proposed method was significantly reduced by 12.8%, 

indicating that it has a fast filtering response speed in scenarios 

with sudden changes in step frequency. These experiments 

demonstrate that the step frequency sensing mechanism 

effectively improves the time-domain response performance of 

the filter in real-world walking scenarios by dynamically 

adjusting the measurement noise covariance, enabling it to 

avoid over-smoothing while quickly adapting to input changes 

when capturing signal changes. 

 

Based on the proposed step frequency-aware adaptive Kalman 

filter method, this paper designs and develops a mobile multi-

sensor data acquisition and visualization system on the Android 

platform. The system uses Android Studio as the development 

environment and integrates native sensor APIs to achieve real-

time acquisition, storage, and filtering of multi-source inertial 

sensor data. During operation, the system simultaneously 

displays a comparison line chart of raw data and filtered results. 

It also integrates a local data export module, enabling the 

storage of complete multi-dimensional time series data in CSV 

format. This provides reliable data support for subsequent tasks 

such as deep learning-based trajectory modeling, behavior 

recognition, and scene element prediction. Figure 5 shows the 

system interface. 

 

Figure 5. Multi-source data collection software app 

 

5. Conclusion 

This paper proposes an adaptive Kalman filter method based on 

step frequency sensing to enhance the stability and accuracy of 

multi-dimensional sensor data acquisition in dynamic 

environments. The method achieves adaptive control of the 

filtering behavior by dynamically adjusting the measurement 

noise covariance matrix through real-time analysis of changes in 

user step frequency, thereby overcoming the issues of slow 

response to sudden movements and excessive smoothing 

associated with traditional Kalman filters under fixed parameter 

conditions. An Android multi-dimensional sensor acquisition 

system developed based on this method was used to collect and 

evaluate inertial signals under different gait conditions in real-

world scenarios. Experimental results demonstrate that the 

proposed method offers advantages in terms of signal stability 

and dynamic response speed. 

 

The adaptability of the current method mainly relies on a single 

motion feature, namely step frequency, and it still has certain 

limitations for more complex or non-periodic turning, pausing, 

and stair climbing motion patterns. In future work, we will 

expand the identification and modeling of non-periodic motion 

states, introduce the LSTM algorithm from deep learning into 

the behavior classification module to judge scene switching, and 

then dynamically adjust the filter structure. 

 

Future work will focus on the following areas: In the field of 

deep learning, we will compare mainstream deep learning 

algorithms to analyze differences in model structure adaptability, 

feature fusion efficiency, dynamic scene generalization, and 

computational resource consumption. At the system level, we 

will further optimize the filtering module and data storage 

structure to achieve low-power, high-real-time data collection 

and distribution mechanisms, providing high-quality data 

support for subsequent tasks such as intelligent indoor 

positioning, behavior recognition, and semantic map 

construction.   
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