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Abstract

Traditional mobile sensing systems often experience a decline in data acquisition accuracy in dynamic environments due to the use
of fixed-parameter Kalman filters, which lack adaptability to changes in motion states and sensor noise. To address this limitation,
this paper proposes a gait-aware adaptive Kalman filtering method that dynamically adjusts filter parameters based on real-time gait
frequency analysis. This method enables autonomous real-time data collection of multi-dimensional data from multiple sensors
embedded in smartphones. By employing adaptive covariance optimization, the method enhances the system's ability to handle
different motion patterns, ensuring the accuracy and robustness of data collection. Experimental results demonstrate that this method
improves data quality in diverse motion scenarios, providing a reliable foundation for multi-modal sensing and intelligent mobile

sensing applications.
1. Introduction

With the rapid development of mobile computing technology,
smartphones have evolved beyond mere communication tools to
become multifunctional intelligent platforms integrating
location tracking, sensing, and interaction capabilities. One of
the key drivers behind this transformation is the continuous
maturation of built-in  sensor technology and enhanced
integration capabilities. Currently, mainstream smart devices
are generally equipped with various types of sensors, including
inertial sensors (such as accelerometers, gyroscopes, and
magnetometers), location sensors (such as GPS), and
environmental sensing sensors (such as thermometers, light
sensors, and barometric pressure sensors)(Zheng et al., 2020).
These sensors can collect real-time data on user movements and
environmental conditions, providing devices with precise
contextual awareness capabilities.

Sensor data is widely used in functions such as automatic screen
rotation, gesture recognition, and motion state detection,
significantly enhancing the naturalness and convenience of
human-computer interaction. It also provides a solid data
foundation for fields such as pedestrian navigation, motion
analysis, and behavior recognition. However, due to the
physical limitations of sensors, their accuracy and response
capabilities are often affected by the stability of the external
environment and the complexity of motion patterns. When users
are in situations with significant changes in gait or dynamic
interference, traditional sensor data collection mechanisms often
experience issues such as reduced accuracy or response delays,
which in turn affect the stability and robustness of upper-layer
application systems.

Among various sensor application scenarios, indoor positioning
has emerged as a research hotspot due to the high-precision
location sensing  requirements in complex dynamic
environments. Unlike outdoor environments, which can rely on
GNSS systems to provide stable positioning information, indoor
environments are characterized by significant signal obstruction,
reflection, and multipath effects, leading to a significant decline
in the effectiveness of traditional positioning methods(Zhao et
al.,, 2019). To overcome this bottleneck, researchers have
gradually turned to relying on time-series data collected by
multi-source sensors in mobile devices to characterize user

behavior patterns and environmental states, thereby achieving
indirect modeling of location and trajectory. Against this
backdrop, in recent years, a large number of studies have
introduced deep learning methods, leveraging their powerful
feature extraction and spatio-temporal modeling capabilities,
and have been widely applied to tasks such as indoor behavior
recognition, trajectory prediction, and auxiliary positioning,
achieving significant results(Poulose and Han, 2021). However,
the modeling capabilities of deep learning models are highly
dependent on the quality and stability of the raw sensor data. If
the collected data contains noise interference, sampling
discontinuities, or missing errors, it will directly weaken the
model's ability to capture temporal patterns, thereby affecting
training efficiency and inference accuracy. Therefore, how to
achieve high-quality, multi-dimensional, and dynamically
robust data collection mechanisms on mobile devices has
become a critical prerequisite for the effective performance of
deep sensing systems.

Among the many algorithms used for preprocessing inertial
sensor data, the Kalman filter is widely used in mobile sensing
systems due to its efficient state estimation capabilities and
good real-time performance. It is used to reduce noise
interference, smooth time-series data, and improve the
reliability of observations(Lee et al., 2021). By dynamically
adjusting the differences between the system state and
observations, it can effectively improve the accuracy and
consistency of sensor data under ideal conditions. However,
traditional Kalman filter methods typically rely on statically
defined process noise and observation noise covariance matrices,
making them ill-suited to handle the non-stationary
characteristics resulting from frequent changes in user behavior
patterns. This is particularly evident in dynamic scenarios such
as fast walking, turning, or complex gait patterns, where the
filter may exhibit issues such as drift, over-smoothing, or error
accumulation.

Therefore, in data-driven indoor intelligent sensing systems,
establishing a stable, robust, and adaptable multi-dimensional
sensor data acquisition mechanism capable of handling dynamic
scene changes is a critical prerequisite for the practical
application of model performance. The step frequency-aware
adaptive Kalman filter method proposed in this paper is
specifically designed to address this issue. By introducing a
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real-time step frequency adjustment mechanism to dynamically
adjust filter parameters, the system can autonomously optimize
the modeling of observations from sensors such as
accelerometers, gyroscopes, and magnetometers based on
changes in user behavior states. This significantly enhances the
continuity, consistency, and physical plausibility of signal
sampling at the data level. This method can serve as a crucial
data foundation for subsequent deep learning models in time
series modeling, feature extraction, and representation learning
for perception tasks. Based on this method, a dynamic multi-
dimensional sensor data acquisition app for the Android
platform has been developed, enabling stable multi-source
perception data collection and providing a reliable foundation
for data modeling and environmental perception in indoor
location services.

The remainder of this paper is organized as follows. Section 2
introduces related work. Section 3 introduces the proposed
algorithm, including its architecture, experiments, and
explanations. Section 4 evaluates the proposed algorithm in
actual collection processes to prove its performance. Section 5
summarizes this paper.

2. Related Work
2.1 Noise covariance dynamic adjustment method

An improved Kalman filter is employed in mobile GNSS/IMU
systems to fuse IMU data with different sampling frequencies
with GNSS observations, demonstrating that an improved
covariance configuration can significantly enhance the
navigation performance of low-cost terminals(Yan et al., 2020).
Chen Yu et al. proposed an adaptive Kalman filter method
based on the EM algorithm for smartphone pedestrian
navigation systems, which improves positioning accuracy in
complex environments(Yu et al., 2020). Wu et al. proposed an
adaptive Kalman filter method based on residual analysis for
heading estimation in pedestrian dead reckoning, enhancing
system robustness in dynamic environments(Wu et al., 2018).
Sun proposed an innovative adaptive Kalman filter (IAKF) that
dynamically identifies abnormal observations and adjusts the
measurement noise covariance matrix by performing chi-square
tests on the filter innovation quantities, effectively improving
the robustness and anti-interference capabilities of INS/GNSS
systems in complex urban environments(Sun et al., 2022).
However, this approach heavily relies on anomaly detection,
requires manual setting of the chi-square threshold, and only
adjusts the observation covariance matrix, failing to account for
system dynamic changes caused by user state variations. Pandey
addressed the IMU attitude estimation problem by introducing a
recursive information expansion Kalman filter (RI-EKF) based
on the expectation-maximization (EM) algorithm, which
improves attitude estimation accuracy through iterative
estimation processes and measurement noise covariance(Pandey
et al., 2024). However, the EM algorithm is computationally
intensive and unsuitable for real-time embedded environments;
additionally, parameter convergence speed depends on
initialization, making it difficult to quickly respond to dynamic
changes in user behavior.

2.2 Deep learning and filter fusion methods

Ghanizadegan proposed the DeepUKF-VIN framework, which
combines the Unscented Kalman Filter (UKF) with the Visual
Inertial Neural Network (IMU-Vision-Net) to enable online
estimation of the noise covariance matrix, thereby enhancing
positioning performance in indoor environments with weak

GNSS signals(Ghanizadegan and Hashim, 2025). This method
requires training a deep neural network model, which relies on
large-scale labeled datasets; and the computational cost is high,
making it difficult to deploy on general-purpose mobile devices.
Levy proposed the Adaptive Neural UKF, which uses a neural
network to predict state noise covariance, achieving good
results in autonomous underwater vehicle (AUV) systems(Levy
and Klein, 2025). Although it is adaptive, the network model is
large and unsuitable for resource-constrained mobile platforms,
lacking lightweight deployment strategies. Adzemovi¢ et al.
proposed a deep learning-based Bayesian filtering method to
improve the performance of target tracking systems, particularly
excelling in handling nonlinear motion patterns(Adzemovié et
al., 2024). While these methods enhance filtering performance
to some extent, they generally suffer from high model
complexity, significant computational resource requirements, or
reliance on large training datasets, making direct deployment on
lightweight mobile terminals challenging.

2.3 Multi-sensor fusion and environment-adaptive filtering
methods

Xie's AKF-LIO framework combines LiDAR and IMU,
dynamically adjusting the weights and covariances of the two
sensor types through context-aware strategies to enhance
robustness in complex scenarios(Xie et al., 2025). AKF-LIO
relies on multiple heterogeneous sensors (LiDAR + IMU), has
high hardware requirements, and is not suitable for single
mobile terminal environments; additionally, the system design
is complex, resulting in high deployment barriers. Pang applied
adaptive UKF to an IMU+GPS system in high-dynamic forest
environments, using acceleration changes to automatically
adjust measurement noise, making it suitable for sharp turns or
complex terrain navigation(Pang et al., 2024). Although it
considers dynamic motion, it only uses acceleration as the basis
for adjustment, making it insensitive to low-speed or vibration-
related motion changes; additionally, the scheme does not
consider deployment efficiency under resource-constrained
conditions.

An analysis of the current state of research both domestically
and internationally has identified the following two issues:

(1) Fixed filter parameters with poor adaptability: Commonly
used Kalman filters typically employ fixed observation noise
covariance (R) during deployment. While this may be effective
in static or single-motion scenarios, it fails to adapt promptly to
changes in motion states and sensor noise characteristics in real-
world scenarios where user gait frequently changes, leading to a
decline in data filtering accuracy.

(2) Lack of a general, real-time adaptive mechanism: While
some adaptive filtering methods possess a certain degree of
adjustment capability, they largely rely on prior models or
historical data fitting, resulting in poor generalizability and low
real-time performance. This makes them unsuitable for
continuous high-frequency data collection tasks on resource-
constrained mobile devices.

3. Method

In this paper, an adaptive Kalman filtering method based on
step frequency sensing is proposed, aiming at realizing high-
precision acquisition of multi-dimensional sensor data in
dynamic scenes. The method mainly includes two parts of the
core mechanism: the step frequency sensing module and the
filter parameter adaptive adjustment module, and the overall
flow is shown in Figure 1.
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On the data acquisition side, the system is based on the built-in
accelerometers, gyroscopes and magnetometers of smartphones
to realize real-time sensing of the user's motion state and raw
data acquisition. In order to obtain the user's current step
frequency characteristics, the system uses the acceleration
signal for periodic analysis, combined with the peak detection
algorithm to calculate the current step frequency in real time.
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Figure 1. Technical flow of the method.

3.1 Kalman filtering method

The Kalman filter is a recursive filter used for state estimation
in linear systems, suitable for dynamic systems under the
assumption of Gaussian white noise. It uses the current system
state prediction and measurement observations, combined with
their respective uncertainties, to perform optimal estimation of
the true state. Its system model consists of two parts: the state
transition model and the observation model. State transition
model:

X, = AX,_, +Bu, +w, Q)

X, indicates the actual state of the system at time k ; Ais the

state transition matrix, which defines the evolution relationship
between the state at the previous moment k —1and the current
moment k ; B is the control input matrix, and u, is the current

control input; w, is process noise, which follows a Gaussian
distribution w, ~ M'(0,Q) .

The observation model is:
7, = Hx, +V, @)

z, represents the actual observation value of the system at time

k ; H is the observation matrix, which maps the system state
X, to the measurement space; v, is the measured noise, which

follows a Gaussian distribution w, ~ A(0,Q) .

The entire Kalman filter process consists of two steps:
prediction and update. It uses the system model to predict the
state and covariance at the next moment:
X, = A%, +Bu, (3)
P =APLA +Q 4)

X, is the current state prior estimate, and P, is the prior error
covariance. In the update phase, the current observation value is

used to correct the prediction result and update the state
estimate and covariance matrix:

Ky=RH'(HRH" +R)™ ®)
f(k = )A(; + Kk(zk - Hf(;:) (6)
Pk:(I_KkH)P{ (7)

K is the Kalman gain matrix, which measures the weight of the
observation value in the final estimate. If R, is large, it indicates

that the observation value noise is large, and the system will
rely more on the predicted value; conversely, it will rely more
on the current observation. In traditional implementations, Q
and R are mostly preset constants, which are difficult to cope
with the dynamic changes in the user's movement state in real
scenarios, such as sudden starts, acceleration, sharp turns, and
other behaviors.

3.2 Step frequency detection method

To achieve real-time sensing of the user's movement status, this
study embedded a step frequency estimation module in the data
collection process. This module mainly relies on the periodic
fluctuations generated by the accelerometer sensor during
human walking. Through time window sliding analysis and
peak detection methods, it achieves real-time calculation of step
frequency. The entire process includes four steps: cycle
calculation, peak detection, and step frequency output. The
original three-axis acceleration signal is converted into
acceleration modulus to enhance the periodic expression
capability of the signal:

Ay (1) = AL (1) +aj(t) +a; (1) (®)

During walking, the periodic fluctuations in the center of
gravity of the human body cause the modulus signal to exhibit
obvious periodic peaks. By setting a minimum time interval
restriction condition, a set of local maximum time points
{t,.t,,---,t,} corresponding to the stride can be extracted from

the modulus sequence. In this paper, the minimum time interval
is 200ms. Calculate the current step frequency f, based on the
average interval between consecutive peaks:

ft Il )

This calculation is based on n peaks detected within the
current time window, reflecting the user's walking rhythm per
unit of time. Step frequency estimation uses a fixed time
window for sliding updates. When new data arrives, the window
content is updated, and peak extraction and frequency
calculation are performed again to achieve dynamic tracking of
step frequency.

In order to improve filter adaptability, this study proposes using
the step frequency f, as a dynamic feedback signal to

adaptively adjust R, in real time. The covariance adjustment
formula is as follows:
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RIowl f < fIuw
R(f)=<Rg, +k(f=1,), f,<f< fhigh (10)
Rhigh: f > fn

where f = current detection step frequency

fiows Trign = Step frequency threshold boundary
Rows Ruign = COrresponding R parameter value

low?

k= (Rhigh - Rlow) / (fhigh - flow)

When users engage in more vigorous exercise, resulting in a
higher step frequency, the uncertainty of observation noise
increases. The filter should reduce its reliance on sensor
observations and instead rely more on prediction terms. In a
steady state, however, it should increase its reliance on
observation terms. Without the need for predefined motion
models or external calibration data, the system exhibits high
adaptability and versatility, dynamically adjusting filtering
strategies based on the user's natural behavior. By updating
filter parameters in real time, it enhances the accuracy and
robustness of multi-source data collection in actual dynamic
environments.

4. Experimental evaluation
4.1 Experimental equipment and data acquisition

In this section, the feasibility and performance of the proposed
adaptive Kalman filter method are validated through
experiments. The Huawei Mate40 Pro smartphone was used as
the test platform for method validation, with experimental
hardware parameters as shown in Table 1. The corresponding
algorithms were developed and software code implemented
using Android Studio, with the sensor data acquisition
frequency set to 50 Hz as mentioned in the paper.

Mobile phone model Detailed parameters

CPU model Mali-G78 MP24
Memory apacity 8GB RAM
HUAWEI Mate 40 Pro Operating system | Harmony OS 2.0

Table 1. Detailed specifications of the mobile phone.

The experiments were conducted in an indoor corridor area of a
building, with two gait modes set: normal walking and fast
walking, to simulate real-world usage scenarios under different
movement rhythms. During data collection, participants were
required to naturally switch between the two gait modes, with a
focus on covering the significant changes in step frequency. A
total of approximately 80,000 frames of data were collected.
Parameter settings in this paper R, =0.01I, R, = 0.0051 .

low

4.2 Experimental equipment and data acquisition

To evaluate the stability performance of the proposed step
frequency sensing adaptive Kalman filter method in the process
of multi-dimensional sensor data acquisition, this paper
introduces the axis error distribution (AED) as the core
evaluation metric. This metric analyzes the amplitude and
deviation of fluctuations in three-axis sensor signals after
filtering to reveal the differences in how various methods
smooth the original sensor signals. Compared to using statistical
measures such as the mean or standard deviation, the AED
provides a more granular probabilistic statistical perspective,

enabling the description of the distribution patterns of filtering
residuals along each axis, the identification of whether
abnormal fluctuations are effectively suppressed, and the
display of systematic shifts. Let the original signal be x,(n)

and the filtered signal be X (N) . This paper statistically

analyzes the residual sequences of the X, Y, and Z axes to
demonstrate the processing differences among various methods
in terms of signal smoothness.

E(n) = Xraw(n) ~ Xiittered (n) (ll)

In the three-axis data from an inertial sensor, the Z-axis
typically represents changes in vertical acceleration. During
normal walking, the up-and-down foot movements of the
human body cause the Z-axis signal to exhibit periodic
oscillations. Therefore, the Z-axis signal not only contains
rhythm information about human movement but also plays a
critical role in step frequency estimation and motion state
recognition. If there is significant noise or error in this axis, it
will directly affect the accurate judgment of movement rhythm,
thereby impacting the estimation accuracy of the entire filtering
system. To validate the advantages of the step frequency
perception adaptive Kalman filter method proposed in this
paper for Z-axis signal processing, the Z-axis of the
accelerometer was selected as the primary comparison object,
and its error distribution was compared with that of a traditional
fixed-parameter Kalman filter.

Figure 2 shows a comparison of the probability density curves
of error distributions across the three axes of the accelerometer
signal for different methods. Experimental results indicate that
the error distribution range of the original signal is the widest,
with a longer tail extension, exhibiting obvious fluctuations and
occasional abnormal points; while the method proposed in this
paper exhibits a more concentrated and symmetrical distribution
across all axes, with higher peaks in the error density function
and lower dispersion, demonstrating higher signal stability and
robustness. Additionally, the Z-axis error decreased by 0.0689
m/s=compared to the fixed Kalman filter.

Figure 3 shows the filtering results of the Z-axis signal from the
accelerometer using a fixed-parameter Kalman filter method
during the transition from normal walking to fast walking. It can
be observed that during the transition to fast walking, the
amplitude of the filter output signal changes relatively little,
remaining at a level similar to that of normal walking, and thus
failing to effectively reflect the change in movement state. This
phenomenon indicates that the fixed-parameter Kalman filter
lacks dynamic adaptability when faced with significant changes
in step frequency, leading to excessive smoothing of transient
features in the original signal and thereby suppressing the
significant acceleration changes that should be reflected in fast
walking. This filter response lag not only weakens the
discriminative capability of the Z-axis signal in behavior
recognition but may also have negative impacts on downstream
sensor-data-based temporal modeling and state estimation.
Figure 4 shows the results obtained after processing the Z-axis
signal from the accelerometer using the step frequency-aware
adaptive Kalman filter method. Compared with the fixed
filtering method in Figure 3, the proposed method can
sensitively capture the trend of step frequency changes when
pedestrians transition from normal walking to fast walking, and
dynamically adjust the measurement noise covariance
parameters of the filter accordingly, thereby enabling the filter
output to better retain the high-amplitude acceleration character-
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Figure 2. Three-axis error distribution (The top three figures show the three-axis error distribution after fixed Kalman filtering, and
the bottom three figures show the three-axis error distribution after adaptive Kalman filtering.).
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Figure 3. Comparison of raw values and filtered values of
accelerometer fixed Kalman filter.

-istics corresponding to fast walking. Experimental results show
that the adaptive filter exhibits greater filtering gain during step
frequency increases, reducing suppression of high-frequency
signal components and effectively avoiding the “over-
smoothing” issue in traditional methods. The proposed method
achieves a self-balancing between noise suppression and
dynamic response, thereby significantly enhancing the ability to
perceive changes in motion states while ensuring signal stability.
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Figure 4. Comparison of raw values and filtered values of
accelerometer adaptive Kalman filter.

To quantify the sensitivity of filters to gait transitions, this paper
introduces rise time as an important indicator for evaluating the
tracking speed of filters. Rise time is a commonly used time-
domain indicator in signal processing and control systems,
defined as the time required for the system response to rise from
10% of the low value to 90% of the high value, reflecting the
speed and delay of the system response (Li and Jian, 2024):

T, = e “hoe 3000 (12)
S

S
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In this study, we compared the performance of fixed-parameter
Kalman filtering and the method described in this paper in
terms of rise time on the Z-axis acceleration signal. The results
are shown in Table 2:

Method T,
Fixed-parameter Kalman filter | 145.6ms
Methodology of this paper 127.0ms

Table 2. Rise Time Comparison.

As can be seen from the data, the average rise time of the
proposed method was significantly reduced by 12.8%,
indicating that it has a fast filtering response speed in scenarios
with sudden changes in step frequency. These experiments
demonstrate that the step frequency sensing mechanism
effectively improves the time-domain response performance of
the filter in real-world walking scenarios by dynamically
adjusting the measurement noise covariance, enabling it to
avoid over-smoothing while quickly adapting to input changes
when capturing signal changes.

Based on the proposed step frequency-aware adaptive Kalman
filter method, this paper designs and develops a mobile multi-
sensor data acquisition and visualization system on the Android
platform. The system uses Android Studio as the development
environment and integrates native sensor APIs to achieve real-
time acquisition, storage, and filtering of multi-source inertial
sensor data. During operation, the system simultaneously
displays a comparison line chart of raw data and filtered results.
It also integrates a local data export module, enabling the
storage of complete multi-dimensional time series data in CSV
format. This provides reliable data support for subsequent tasks
such as deep learning-based trajectory modeling, behavior
recognition, and scene element prediction. Figure 5 shows the
system interface.

' \- NAR @ Ll G4 ‘ ’ ‘- W 2o \‘-“
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Figure 5. Multi-source data collection software app

5. Conclusion

This paper proposes an adaptive Kalman filter method based on
step frequency sensing to enhance the stability and accuracy of

multi-dimensional sensor data acquisition in dynamic
environments. The method achieves adaptive control of the
filtering behavior by dynamically adjusting the measurement
noise covariance matrix through real-time analysis of changes in
user step frequency, thereby overcoming the issues of slow
response to sudden movements and excessive smoothing
associated with traditional Kalman filters under fixed parameter
conditions. An Android multi-dimensional sensor acquisition
system developed based on this method was used to collect and
evaluate inertial signals under different gait conditions in real-
world scenarios. Experimental results demonstrate that the
proposed method offers advantages in terms of signal stability
and dynamic response speed.

The adaptability of the current method mainly relies on a single
motion feature, namely step frequency, and it still has certain
limitations for more complex or non-periodic turning, pausing,
and stair climbing motion patterns. In future work, we will
expand the identification and modeling of non-periodic motion
states, introduce the LSTM algorithm from deep learning into
the behavior classification module to judge scene switching, and
then dynamically adjust the filter structure.

Future work will focus on the following areas: In the field of
deep learning, we will compare mainstream deep learning
algorithms to analyze differences in model structure adaptability,
feature fusion efficiency, dynamic scene generalization, and
computational resource consumption. At the system level, we
will further optimize the filtering module and data storage
structure to achieve low-power, high-real-time data collection
and distribution mechanisms, providing high-quality data
support for subsequent tasks such as intelligent indoor
positioning, behavior recognition, and semantic map
construction.
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