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Abstract

The use of stitching methods to obtain side view unfolded images of jar-shaped cultural relics with regular symmetrical shapes is of
great significance for the digital presentation of cultural heritage. However, traditional image stitching methods face issues such as
inaccurate feature point matching, visible seams, and color inconsistencies when processing jar-shaped cultural relics with curved
surfaces from different perspectives. To address these issues, this paper proposes an improved SURF algorithm and a multi-band
gradient fusion framework. The method dynamically adjusts the extraction threshold of the traditional SURF algorithm based on the
image's contrast and edge density, and then extracts feature points. The RANSAC algorithm is used to filter matching points and
eliminate mismatches. Subsequently, the images are fused using the multi-band gradient fusion framework, which separates low-
frequency illumination information from high-frequency texture information. The low-frequency part ensures illumination
consistency, while the high-frequency part repairs seam issues in the stitched areas. Experimental results show that the improved
algorithm significantly increases the number of correctly matched points when processing texture images, and effectively solves the
seam and color inconsistency problems in stitched images. The fused images exhibit visual effects that are significantly superior to
those of traditional stitching methods. This method effectively overcomes the limitations of traditional methods in practical

applications and provides strong technical support for the digital presentation of cultural relics.

1. Introduction

As an important carrier of ancient culture, canned cultural relics
often contain rich historical, artistic, and cultural information in
their side textures (Chen, 2010). However, due to the three-
dimensional shape of the ar, its side texture is often limited by
the viewing angle and shape in actual observation, as shown in
Figure 1, making it difficult to fully present its full picture.
Therefore, unfolding the side texture of canned cultural relics
into a panoramic unfolding image (Liu and Wang, 2023) is of
great significance.

In recent years, researchers in the fields of computer vision and
cultural heritage digitization (Zong and Ren, 2017) have been
committed to improving texture stitching and display methods

to better present the details and overall features of cultural relics.

Among them, high-precision collection, stitching, and fusion of
the side textures of cultural relics to generate unfolded images
of cultural relics textures is a highly valuable and efficient
method (Zhao et al, 2007).

The side texture images of ar shaped cultural relics with regular
symmetry provide an ideal testing platform for verifying the
application of image fusion algorithms and side texture
unfolding due to their small geometric deformation, enabling
more accurate evaluation of the algorithm's ability to handle
texture details and lighting changes. The complexity and
diversity of the texture on the side of cultural relics require
image stitching algorithms to have higher accuracy and
robustness; On the other hand, the actual demand for digital
protection of cultural heritage, especially in on-site archaeology,
cultural relic restoration, and museum exhibitions (Xu et al,
2022), has put forward higher requirements for the actual
quality of image stitching (Zhang and Li, 2011). Therefore,

researching more efficient and high-quality image stitching and
fusion algorithms has significant value.

SURF algorithm is a feature-based image matching algorithm
proposed by Bay et al. (Bay et al, 2008), which solves the
disadvantages of high computational complexity and long time
consumption of SIFT algorithm while maintaining its excellent
performance characteristics. The SURF algorithm significantly
improves computational speed through improvements in interest
point extraction and feature vector description. The SURF
algorithm has a certain robustness to scale changes and rotations
in images (Li et al, 2023), but when processing the texture of
cultural relics on the side, existing feature point detection
methods may not fully adapt to these subtle feature differences
due to the complex texture structure and small geometric
changes on the surface of cultural relics (Lu et al, 2025). There
are still challenges in image fusion in multi perspective texture
stitching (Liu et al, 2019). So, while maintaining high fidelity,
the demand for solving feature matching and image fusion
problems has not yet been met.

Therefore, this article uses an improved adaptive threshold
SURF algorithm and a multi band gradient fusion framework
for color texture plane stitching of regular symmetrical jar
shaped cultural relics. The improved SURF algorithm
dynamically adjusts the threshold for detecting keypoints by
dividing the image into blocks and using adaptive contrast and
adaptive edges (Zhao and Yue, 2016), improving the feature
detection ability for complex texture areas of cultural relics.
Subsequently, the feature descriptors are optimized to improve
the speed and accuracy of feature matching. In addition, by
introducing the RANSAC algorithm (Liu et al, 2017), the
probability model and residual compensation mechanism are
used to effectively suppress incorrect matches.
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Due to the deformation of the surface texture of the jar shaped
cultural relics after two-dimensional unfolding, solving the
fusion problem at the image stitching point during the stitching
process is another important focus of this study. In the image
fusion stage, a gradient domain and multi band fusion
framework are used to separate the low-frequency illumination
layer and high-frequency texture layer of the input image
through multi-scale Laplace pyramid decomposition (Dong et al,
2007), ensuring smooth transition of low-frequency components
and repairing the misalignment and stitching edge artifacts of
high-frequency textures. This method not only eliminates
visible stitching artifacts, but also effectively solves the color
discontinuity problem that occurs during image fusion,
providing a high-precision texture stitching solution for the
digitization and protection of cultural heritage.

The contribution of this study lies in proposing a high-precision
texture stitching technology that combines mathematical rigor
and engineering practicality, providing technical support for the
protection, restoration, reverse engineering, and digital display
of cultural relics.

Figure 1. Side view of Yuan blue and white porcelain jar
2. Theory and Method
2.1 Overview of the Existing SURF Algorithm

The SURF algorithm detects keypoints by calculating the
determinant of the Hessian matrix in different scale spaces.
Specifically, for any point (x, y) and scale o in the image, the
definition of the Hessian matrix H (X, o) is:

L. (X,0) L, (X,0)

HX0)= 1 (xo) L,(X.0)

(@)

In the equation, Lxx(X, 0)is the convolution of second-order

Gaussian filtering o’ () with the image at point X.
ox’ &

Similarly, Lxy(X, 6) Lyy(X, ) can be calculated.

To accelerate computation, SURF adopts the integral graph
approximation of Gaussian second-order derivative kernel and

efficiently approximates Gaussian second-order derivative using
square filters, thereby greatly improving the speed of feature
point detection. In terms of feature description, SURF first
determines the main direction within each interest point
neighborhood, and then divides it into several sub regions (such
as 4 x 4) based on this direction. Calculate the response of Haar
wavelets in the x and y directions (i.e. local brightness changes)
within each subregion, and calculate their sum and absolute
value sum. Finally, concatenate the statistics of all subregions
into a feature descriptor. The descriptor constructed in this way
not only has robustness against rotation and scale changes, but
also effectively distinguishes different local structures.

Although the SURF algorithm has good feature point matching
performance, there are still some issues with the efficiency of
feature point distribution discrimination and accurate matching
when processing images with complex textures and different
resolutions.

The SURF algorithm uses a fixed global threshold to detect
feature points. This method may detect a large number of
redundant feature points in simple texture areas, while
important feature points may be missed in complex texture
areas. This' one size fits all 'strategy cannot adapt to the
differences in texture complexity in different regions of the
image. When facing image regions with different texture
complexities, it is difficult to flexibly adapt and achieve a good
balance between the accuracy and efficiency of feature point
detection.

A common method to improve the accuracy of feature point
extraction in complex regions is to lower the global threshold.
However, although this method can increase the number of
feature points in complex regions to a certain extent, it may also
lead to a significant decrease in the efficiency of feature point
detection.

These issues limit its application in some image processing
tasks that require high precision and efficiency, especially when
dealing with images with different texture complexities and
resolutions. This problem is particularly evident.

2.2 Block-Based Detection and Threshold Adaptation

To address these issues, this paper proposes an improved SURF
algorithm that utilizes block detection and adaptive threshold
adjustment, optimizes feature descriptors, and employs FLANN
and improved RANSAC algorithms for feature matching and
geometric validation. This algorithm improves the accuracy and
matching precision of feature point detection without reducing
efficiency.

When performing block detection, the input image is first
evenly divided into 4 x 4 sub blocks. This partitioning ensures
that each sub block has sufficient pixels for statistics while also
adapting well to most common resolution images. It can reflect
the local characteristics of each part of the image in detail
without causing too few pixels or unstable statistics like finer
partitioning. The number of blocks can be flexibly adjusted
according to the size and complexity of the image. For example,
for high-resolution or structurally complex images, more sub
blocks can be used to achieve more detailed adaptive
adjustment.

On this basis, the concept of adaptive threshold is introduced:
the adaptive threshold of each sub block is obtained by fusing
normalized contrast and edge density. Contrast is used to
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measure the degree of difference between light and dark areas in
an image, while edge density is typically used to measure the
number and distribution of edges in an image.

1 if\|G*+G>>T
Edge = ' SRS )

0 otherwise

Where  Gx = gradient in the x direction
Gy = gradient in the y direction
T= predefined threshold

Edge = binary edge map

These two indicators can help identify the boundaries and
details of different texture regions in the image to be stitched.

As shown in Fllc 2.
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Figure 2. Preprocessed image to be stitched

When extracting feature points from different sub blocks, unlike
traditional weighting strategies, this algorithm adopts a two-
level adaptive threshold filtering mechanism. Dynamically
adjust the contrast threshold based on the local statistical
characteristics of each sub block, retaining only candidate
feature points with contrast above the threshold. Next, further
calculate the edge strength of these candidate points and
perform secondary screening based on the adaptive edge
threshold.

Due to the higher contrast, the larger the normalization value.
Therefore, by reducing the default threshold of 0.04 commonly
used in traditional SURF algorithms, more feature points can be
detected in complex regions.
partitioning is shown in Figure 3.

The threshold map after
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b. Adaptive contrast threshold diagram
Figure 3. Threshold data graph for splicing images

2.3 Feature Matching with Geometric Validation

This article uses the Fast library for approximate nearest
neighbors (FLANN) algorithm for feature matching, which can
effectively eliminate feature mismatches in most complex
images. The FLANN algorithm is an efficient nearest neighbor
search method suitable for large-scale feature point matching
tasks. The basic execution process is as follows:

1. Feature point distance calculation: Consider the feature point
set of the first image as the reference set, and the feature point
set of the second image as the query set. Calculate the Euclidean
distance between each feature point in the reference set and all
feature points in the query set.

2. Nearest Neighbor Selection: For each feature point in the
reference set, identify the two closest feature points in the query
set, namely the nearest neighbor and the second nearest
neighbor.

3. Distance ratio screening: Use distance ratio testing to screen
matching pairs. Specifically, if the Euclidean distance ratio
between the nearest neighbor and the second nearest neighbor is
less than the threshold, it is considered that these two feature
points are matched. Here, threshold is a preset threshold used to
control the strictness of the matching. The selection of threshold
has a significant impact on the quality and quantity of matching
results. In this study, we chose 0.6 as the threshold, which is a
commonly used value that strikes a balance between accuracy
and recall.

While using the FLANN matching algorithm, a matching
filtering strategy based on distance ratio is introduced to further
improve the reliability of matching. This strategy works by
comparing the distance ratio between two feature points in each
matching pair, ensuring that only when the distance between
two feature points is significantly smaller than other candidate
matches, they are considered a true match. In addition, to ensure
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the geometric consistency of the matching results, we employed
an improved RANSAC algorithm for geometric validation. The
RANSAC algorithm can identify inliers from matching pairs,
further verifying the accuracy of the matching. Figure 4 shows
the matching effect of the improved SURF algorithm.

a. Improve the top 50 matching points in the SURF matching
graph

b. Improves the SURF by matching all matching points in the
graph

Figure 4. Adaptive Dynamic Threshold Improved SURF
Matching Diagram

2.4 Multi-Band Gradient Fusion Framework

Image fusion is a crucial step that involves seamlessly merging
images captured from multiple perspectives or different regions
into a continuous panoramic image. To achieve visual
consistency, detail preservation, and lighting smoothness in
image fusion, a gradient domain and multi band fusion
framework were adopted. Firstly, homography algorithm is used
for image distortion and movement during image alignment, so
that the images to be stitched are basically aligned. Univariate
transformation is the process of mapping points on one image to
corresponding points on another image using a 3x3
transformation rectangle H, expressed as

H=\hy h h (€)

After applying the above mapping formula for image
transformation, we enter the crucial step of image fusion. The
purpose of this step is to minimize the seams caused by
alignment and stitching, as well as inconsistencies in image
information such as brightness and color tone, in order to make
the transition of the image stitching area smoother and more
aesthetically pleasing.

We adopted a gradient domain and multi band fusion
framework, which performed well in eliminating seams,
preserving details, and optimizing lighting consistency.
Gradient domain image fusion is an advanced technique that
achieves seamless fusion by operating in the gradient domain
rather than the pixel domain. The basic idea of this method is to
decompose the image into a base layer and a detail layer. The
basic layer mainly contains lighting and shadow information,
usually obtained through average or median filters; The detail
layer contains edge and texture information, which is the
difference between the original image and the base layer.
During the stitching process, we calculate gradient maps for
each pair of images to be stitched, then fuse the gradient maps,
and finally reconstruct the final fused image through gradient
information. The advantage of this method is that it can
effectively preserve the details and edge information of the
image, while reducing the problems of seam and lighting
inconsistency.

The multi band fusion framework is a technique that
decomposes an image into multiple frequency bands and fuses
them separately. This method allows us to finely control the
different frequency components of the image, achieving better
results in preserving details and eliminating seams. By using
multi-scale transformations such as wavelet transform to
decompose each image into multiple frequency bands, each
band captures different levels of detail in the image, ranging
from low-frequency global lighting changes to high-frequency
local texture details. We fuse each frequency band
independently: low-frequency components are usually fused
using averaging or weighted averaging methods to maintain
consistency between lighting and shadows; The intermediate
and high-frequency components are fused using gradient
domain fusion method to preserve edge and texture details.
Finally, the fused frequency bands are recombined through
inverse transformation (such as inverse wavelet transform) to
reconstruct the final fused image.

3. Experimental Results and Analysis
3.1 Experimental Subjects

The dataset of this experiment consists of side texture photos of
regular symmetrical jar shaped cultural relics, which are
specifically used to evaluate the accuracy of the proposed image
fusion algorithm in processing cultural relic images with
complex textures. The reason for choosing regular symmetrical
jar shaped cultural relics as experimental objects is that the
texture of these cultural relics causes less distortion during
image stitching when captured from different perspectives,
which helps simplify the alignment and transformation
calculations in the image stitching process and fully tests the
algorithm's ability in detail preservation and lighting
consistency. At the same time, many cultural heritages and
artworks have similar symmetrical characteristics. Therefore,
selecting such cultural relics as experimental subjects not only
helps with algorithm development, but also facilitates the
application of research results to practical cultural heritage
protection and display.

3.2 Comparison of Feature Point Matching Accuracy

The improved SURF algorithm first divides the image into 4 x 4
sub blocks. For each sub block, the algorithm calculates the
average contrast and edge density to select sub blocks with
higher complexity, and dynamically adjusts the contrast
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threshold and edge threshold accordingly. The adjusted
threshold is used for the detection of feature points in each sub
block. The adaptive threshold adjustment strategy enables the
algorithm to detect more feature points in areas with rich texture
or high contrast, thereby improving the accuracy and visual
effect of stitching. The experimental results show that the
improved algorithm has achieved significant improvements in

feature point detection, especially in complex areas of the image.

The specific results are as follows: Compared with the
traditional SURF algorithm, the improved algorithm
significantly increases the number of feature points detected.
For the first image, the number of feature points increased from
1006 to 1679, with a growth rate of 66.90%; For the second
image, the number of feature points increased from 1045 to
1487, with a growth rate of 42.30%. Figure 5 shows a
comparison of the feature point extraction performance between
the original algorithm and the improved algorithm, while Figure
6 shows the adjustment of the number of feature points in
different sub blocks of two images.

a. Imagel Original SURF
(1006 keypoints)
W Mo AEOER W e

b. Imagel Improved SURF

c. Image?2 Original SURF
(1045 keypoints)

d. Image2 Improved SURF
(1487 keypoints)

Figure 5. Feature point extraction diagram of the original
SUREF algorithm and the improved SURF algorithm
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Figure 6. Change in the number of feature points in sub blocks

To quantify the differences between the algorithm proposed in
this article and traditional algorithms, and to verify the accuracy
of feature point extraction, an equal number of feature points
were randomly selected. By controlling the number of feature
points involved in matching between the two algorithms and
eliminating the influence of quantity differences, the focus was
on the feature matching quality and verification ability of the
algorithm itself. As shown in Table 1

The original | Adaptive
Index SURF Threshold SURF
algorithm Algorithm
Number of feature
points selected for | 1000 1000
matching
Nujmber. of matching 603 588
point pairs
Nmber of interior 523 548
points
Proportion of interior
points (%) 86.73 93.20

Table 1. Comparison of algorithm performance

Interior points refer to feature points that conform to
consistency models (such as affine transformations,
homography matrices, etc.) during the image matching process.
These points have high matching reliability in the two images
and can reliably support the geometric relationship between the
images.

The adaptive threshold SURF algorithm has significantly
improved the number and proportion of inliers, indicating that
the improved algorithm has significantly improved the accuracy
of geometric transformation models, thereby enhancing the
reliability of feature point matching and the quality of image
stitching.

3.3 Comparison of Image Fusion Results

In the experiment, we used multiple pairs of images with
complex textures and different resolutions to evaluate the
performance of different algorithms in practical applications.
Figures 7 and 8 show the comparison of the processing results
between the improved algorithm and the traditional SURF
algorithm.

Figure 7 shows the image fused using the traditional exposure
fusion algorithm. It can be observed that there are obvious
seams and color discontinuities in the stitching area of the
image. Figure 8 shows the fusion results obtained by the
gradient domain and multi band fusion framework algorithm
proposed by the application. The images generated by the
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improved algorithm use distance transformation to create more
natural transitions, and ensure smooth fusion through a 5-layer
pyramid structure. The algorithm effectively avoids color
discontinuity caused by hard boundaries, achieving seamless
stitching visually. The color transition is smoother, and the
stitching area shows almost no seams, demonstrating better
visual consistency.

Figure 7. Traditional exposure fusion splicing results

Figure 8. Improved fusion algorithm splicing results

In the image fusion stage, gradient domain processing and multi
band decomposition strategies further optimize the consistency
of color and texture. Before fusion, automatic color correction is
performed on overlapping areas to make the tone and brightness
of the two images more consistent. Then, multi band fusion is
performed to greatly alleviate color discontinuity and reduce
stitching artifacts.

4. Conclusion

The improved SURF algorithm enhances the feature detection
capability for complex texture regions by dynamically adjusting
contrast and edge thresholds, thereby improving the speed and
accuracy of feature matching. In addition, the introduced
RANSAC algorithm effectively suppresses mismatches and
optimizes the image fusion process through probability models
and residual compensation mechanisms. In the image fusion
stage, the application of gradient domain and multi band fusion

framework ensures smooth transition of low-frequency
components, and repairs the misalignment of high-frequency
textures and edge artifacts of stitching, significantly improving
the visual consistency and detail preservation of the image
stitching area.

The experimental results show that the algorithm proposed in
this study can effectively reduce seams, preserve details, and
optimize lighting consistency when processing images with
complex textures and different lighting conditions. Especially in
the stitching of side texture images of regular symmetrical jar
shaped cultural relics, this algorithm demonstrates its
advantages in evaluating texture details and handling lighting
changes.

Future work will focus on further optimizing algorithm
performance, exploring its potential in more diverse application
scenarios, and planning to apply the algorithm to more types of
cultural heritage digitization projects to verify its universality
and effectiveness. The improved SURF algorithm and multi
band gradient fusion framework proposed in this study provide
an efficient and robust new method for image stitching,
particularly suitable for applications such as digital protection
of cultural heritage.
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