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Abstract

Under the backdrop of global climate change, the frequency and severity of drought events are continuously increasing, posing signif-
icant challenges to human society, ecosystems, and economic development. Traditional drought simulation methods often overlook the
interactions among meteorological, hydrological, and geographic information. Complex network theory offers a new perspective for
exploring these interconnections. Graph Neural Networks (GNNs), as a deep learning technique capable of handling geospatial data
and complex structures, have advantages in capturing geographic correlation information and network topology. Therefore, combining
complex networks and GNNs for drought simulation is of great significance. This study proposes a framework that integrates complex
networks and graph learning to identify the spatial structure of drought regions. Using latitude-longitude grids as nodes, topological
indicators such as degree, betweenness centrality, and clustering coefficient describe node features, which are combined with SPEI
time series statistical features to form multidimensional vectors. These are input into a Graph Convolutional Network (GCN) to obtain
low-dimensional embeddings, and clustering is used to divide the space into subregions. Results show that the clustering based on
multi-feature combinations exhibits stronger spatial continuity and clearer boundaries. Regions with high degree and betweenness
centrality and low clustering coefficient serve as network hubs and information bridges, while medium-feature regions are intermediate
connecting zones, and regions with low feature values are peripheral isolated areas. This method offers a novel approach to analyzing

drought system structures and regional risk management.

1. Introduction

In the context of accelerating global climate change, drought
events are threatening human societies, ecosystems and regional
sustainable development with significantly increased frequency
and intensity. Unlike other sudden-onset natural disasters,
droughts permeate the hydrological-ecological social system
with ‘slow-onset and insidious’ characteristics, and their multi-
layer driving mechanisms (e.g., anomalies in atmospheric circu-
lation, imbalances in land-surface processes, and human inter-
vention in water use) and nonlinear evolution patterns have al-
ways been a difficult issue in geoscientific research. Its multi-
circle driving mechanism (e.g., atmospheric circulation anomaly,
land surface process balance, human water intervention) and non-
linear evolution law have always been the difficult problems in
geoscientific research. Against the background of the gradual se-
verity of multi-circle composite extreme events, droughts show
new characteristics, with the traditional slow-onset droughts
shifting to sudden droughts on the one hand (Yuan et al., 2023),
and the frequency and intensity of composite droughts gradually
increasing on the other (Hao Zengchao and Chen Yang, 2024).
Although the related aspects have become a hot issue in domestic
and international research, the research on the new characteristics
of droughts and the spatial and temporal propagation patterns of
complex droughts is still limited due to the insufficient sample
size and the increase in the uncertainty of climate model simula-
tions caused by the dominance of dynamical processes (Singh et
al, 2021; Zscheischler and Lehner, 2022; Mondal et al., 2023).
Exploring new effective means to further grasp the new charac-
teristics of drought and the spatial and temporal propagation laws
is the key to achieving drought prediction and early warning, im-
proving the scientific and technological level of drought manage-
ment, and reducing drought losses.

The most primitive driving factor of drought is the water balance

imbalance phenomenon caused by the anomalies of the climate
system, which, as a typical nonlinear dissipative giant system, has
cross-scale coupling characteristics that are particularly promi-
nent in drought remote correlation studies. (Liu Shida et al., 2002;
Jia Xiaojing et al., 2003; Ren Hongli and U Jifan, 2005; Ding
Ruiqiang and Li Jianping, 2009; Fu et al., 2016). On a large re-
gional scale, complex networks provide an effective means to an-
alyse drought remote correlations by abstracting drought impact
elements into a ‘node-edge’ topology. In recent years, the com-
plex network method has been widely used by the geosciences in
studies related to extreme climate events, including extreme pre-
cipitation events, anomalous SST patterns (Agarwal et al., 2019;
Lu et al., 2022), and extreme high-temperature heatwaves (Mon-
dal and Mishra, 2021; Zhang et al., 2023), etc., and the results of
the studies have provided a new methodology and new method-
ology for the climatic extreme event The results of this study pro-
vide new methods and perspectives for characterising climate ex-
treme events (Feng Guolin et al., 2006). Complex network theory
provides a powerful framework for modelling the interdependen-
cies among environmental, climatic and geographical factors in
drought-prone regions.

Meanwhile, Graph Neural Network (GNN) has emerged as an
effective tool for learning from spatially structured data (Scarselli
et al., 2009), as a method that can directly deal with most of the
actual graph structures, it is able to capture topological infor-
mation and attribute interactions, build effective data-driven dy-
namic models on the network by integrating geospatial and tem-
poral information to effectively capture complex spatio-temporal
dynamic trends of events (Scarselli et al., 2009; Yu et al., 2023).
Currently graph neural networks have achieved some results in
the analysis and extrapolation of time-series data, such as the pre-
diction of crop yields (Fung et al., 2019), the simulation and ex-
trapolation of the spread of Corona Virus Disease 2019 (COVID-
19) (Murphy et al., 2021), and the traffic flow prediction, etc.

Taking advantage of these complementary strengths, this study
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proposes an integrated framework that combines complex net-
work modelling with graph-based learning to identify spatial
structural patterns within drought-affected regions. By construct-
ing drought-related complex networks and extracting representa-
tive topological features, joint topology-attribute characterization
is achieved through the combination of the neighbourhood fea-
ture propagation mechanism of graph neural networks, and ulti-
mately, spatial sub-regions with different drought propagation
functions are delineated by clustering. This method introduces
the concept of ‘hub-node-bridge-edge-community structure’ of
network science into the spatial analysis of drought, which pro-
vides new insights into the structural organisation of drought sys-
tems, and provides theoretical support for analysing the network
emergence mechanism of the rapid evolution of sudden drought
and constructing a composite drought early warning model.

2. Data

In this study, the Standardized Precipitation Evapotranspiration
Index (SPEI) data employed span the period from 1960 to 2023,
with a spatial resolution of 1° X 1°, covering the entire globe. This
dataset quantifies the balance of water supply and demand,
thereby providing multidimensional and standardized metrics for
drought definition. By setting different threshold values, drought
severity can be classified. The classification criteria are typically
based on the standardized probability distribution. The following
thresholds are internationally accepted and commonly used in re-
lated research:

SPEI Range Drought Severity Level
SPEI <-2 Extreme Drought

-2 <SPEI<-1.5 Severe Drought
-1.5<SPEI <-1 Moderate Drought

-1 <SPEI<-0.5 Mild Drought
-0.5<SPEI<0.5 No Drought

0.5 <SPEI<1 Mild Wet

1 <SPEI<1.5 Moderate Wet

1.5 <SPEI<2 Severe Wet

SPEI >2 Extreme Wet

Table 1 SPEI Drought Severity Classification

3. Methodology

This study establishes a multi-scale analytical framework that in-
tegrates complex network theory with graph neural networks to
investigate the spatiotemporal dynamics of global drought evolu-
tion comprehensively. First, based on global SPEI data spanning
1901-2023, the event synchronization method is employed to
construct a drought complex network and extract its topological
properties, including degree centrality, betweenness centrality,
and clustering coefficient. The network metrics and adjacency
matrix are then used as input information for the spatial layer of
the GCN model. This approach ultimately reveals the hierar-
chical structural characteristics of the global drought network,
identifies critical drought hub regions, and quantifies the spatio-
temporal scales of drought propagation.
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Figure 1 Schematic Diagram of the Methodological Framework
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3.1 Construction of the Complex Network

The global drought complex network is constructed using the
Event Synchronization (ES) method to explore the spatiotem-
poral connections among extreme drought events occurring at
different locations. By analyzing time series data, the event syn-
chronization approach effectively mitigates analytical complex-
ity arising from confounding factors, making it particularly well-
suited for investigating extreme climate events characterized by
nonlinear and nonparametric properties.

The following equation can express the time interval of event
synchronization:

dirt =t —t", (1)

here, tjl and t/" denote the occurrence times of the I-th drought
event at grid point i and the m-th drought event at grid point j,
respectively. t} —t!~? represents the time interval between the
1-th and the (I-1)-th drought events at location i. t! — t/™ is de-
fined as the dynamic delay between two drought events. To en-
sure that the dynamic delay remains as reasonable as possible, a
delay threshold 7,4, is specified so that the dynamic delay is
constrained within the interval [0, 7,4, ]. When the condition
0<th— th < T,l]m and 0 < t} — /" < Tmax is satisfied, it is
considered that the 1-th event at grid point i and the m-th drought
event at grid point j are synchronized, and the 1-th event precedes
the m-th event.
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In this framework, each latitude-longitude grid cell is treated as a
node in the drought complex network. The graph is defined as
G(V,L), where V = {vy,v,,---vy} denotes the set of nodes
(each corresponding to a spatial grid cell), and L = {I, 15, lx}
represents the set of edges. An edge is established between two
nodes v; and v;.

3.2 Extraction of Network Feature Parameters

The resulting complex network captures the global patterns of
drought co-variability. From this network, several topological in-
dicators are extracted-such as degree, betweenness centrality, and
clustering coefficient-which describe the connectivity, intermedi-
ary role, and local cohesiveness of each node(Murphy et al.,
2021). These structural features are used as inputs to the subse-
quent graph learning framework, providing topological priors for
spatial representation learning.

3.2.1 Degree Centrality: In a weighted directed network, the
node degree reflects not only the number of connections but also
integrates the directionality and the weight of those connections.
In the drought complex network, the drought propagation
strength can be calculated using the following equations:

The outward drought strength originating from node i, denoted as
SrPYt, is defined as:

N
Srovt = Z Cij, 2)
=1

the inward drought propagation strength received by node i, de-
noted as Sr{", is computed as:

N
STiin = Z Gji, 3)
=

where N represents the total number of grid cells within the
study area, and C is the N X N adjacency matrix. Each ele-
ment Cij indicates the probability of drought propagating from
grid cell i to grid cell j. A higher value of Sr°*t implies a
stronger ability of grid cell i to transmit drought to other loca-
tions, while a higher S7/™ indicates that grid cell i is more sus-

ceptible to receiving drought influence from others.

To further analyze the patterns of drought propagation within the
complex network, the study calculated the outward and inward
strengths for each grid cell in the study area. The difference be-
tween them was used to determine whether a grid cell acts pri-
marily as a source or a sink of drought propagation within the
network. This difference is defined as:

AST; = Srim — Srfut, (4)

when ASr is positive, it indicates that the drought influence re-
ceived by grid cell i exceeds the influence it transmits outward,
and therefore this grid cell can be considered a convergence point
(sink region) of drought propagation. Conversely, if AS7 is nega-
tive, it implies that the outward propagation strength exceeds the
inward strength, indicating that this grid cell serves as a source
region of drought events.

3.2.2  Betweenness Centrality: Betweenness centrality quan-
tifies the influence of a node on information transmission be-
tween other nodes. It characterizes the importance of a node by
counting the number of shortest paths that pass through it. In the

context of the drought complex network, betweenness centrality
reflects the likelihood that drought propagates through a given
grid location. A node with higher betweenness centrality plays a
more significant role in facilitating drought transmission.

The betweenness centrality of node i is defined as:

BC; = Z O-st(i)’ (s)

(o}
s#Ei#t st

where og denotes the total number of shortest paths between
node s and node t, and o4 (i) represents the number of those
paths that pass through node i. Nodes with higher betweenness
centrality serve as critical bridges in the process of drought prop-
agation.

3.23 Clustering Coefficient: The clustering coefficient
measures the degree to which the neighbors of a node are inter-
connected, reflecting the tendency of a node’s neighboring nodes
to form a tightly knit cluster. In the drought complex network, it
indicates the consistency of drought occurrences among the grid
cells connected to a given grid cell.

For an undirected weighted network, the clustering coefficient of
node iii, denoted as CC;, can be defined as :

1 (W” + Wik)
CC = (e, — 1)2 2w, ik ke (6)
J,

where k;s the degree of node i, w; denotes the average weight
of all edges connected to nodei, w;; and wy, are the weights of
the edges between node i and its neighboring nodes j and k,
respectively, and a;;, a;,and aj; are the elements of the adja-
cency matrix.

A higher clustering coefficient indicates a greater degree of con-
sistency in drought occurrences among the grid cells connected
to the given grid cell.

3.3 Construction of the Graph Neural Network

These structural indicators are then combined with statistical
characteristics of the SPEI time series (e.g., mean, variance) to
construct a multi-dimensional feature vector for each node. The
resulting feature matrix serves as input to a Graph Convolutional
Network (GCN) model. After training and hyperparameter tuning,
low-dimensional node embeddings are obtained. Finally, K-
means clustering is applied to the embeddings to identify spatial
heterogeneity and functional subregions in the global drought
network.

The core idea of Graph Convolutional Networks (GCNs) is to
update the representation of each node by aggregating the feature
information of its neighboring nodes through a weighted average.
Specifically, for each node, GCN combines its own features with
those of its neighbors using a linear transformation, followed by
a non-linear activation function. The core propagation rule is ex-
pressed as:

HU+D = o(ﬁ—o.sgﬁ—o.sH(l)W(l))' (7

where H®denotes the node feature matrix at the I-th layer, A is
the adjacency matrix with added self-loops, D is the degree ma-
trix corresponding to A, and o is an activation function, typi-
cally the ReLU function.
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This convolution operation captures spatial dependencies
through weighted summation over each node and its neighbors.

After obtaining the node embeddings, the K-Means algorithm
was applied to cluster nodes, mapping similar nodes in the high-
dimensional embedding space back to the geographic domain,
and comparing the clustering outcomes across different input
configurations. Multi-feature composite inputs-combining local
connectivity strength (degree), global propagation control (be-
tweenness centrality), and small-scale aggregation characteristics
(clustering coefficient)-enabled a more comprehensive character-
ization of the multi-scale topological mechanisms driving
drought propagation. As a result, the clustering outputs demon-
strated stronger spatial continuity and clearer boundaries. In con-
trast, single-feature inputs were limited in their information di-
mensions and exhibited ambiguity in boundary delineation,
thereby validating the added value of multi-feature integration for
interpreting drought spatial patterns within the graph learning
framework.

4. Results

4.1 Global Distribution of Drought Network Topological
Features

Following the construction of the drought-related complex net-
work, three representative structural features were extracted to
characterize the topological role and structural position of each
node within the network: node degree, betweenness centrality,
and clustering coefficient. As illustrated in Figure 2, the global
distribution of node degree reveals the connectivity of drought-
related nodes; higher values indicate stronger connections to
other nodes.

It can be clearly observed that in regions such as the Eurasian
continent and parts of North America, node degree values are rel-
atively high, reflecting that these areas exhibit tighter drought
linkages with other regions and act as critical hubs for drought
signal propagation. In contrast, in some high-latitude zones or
tropical rainforest regions, node degree values are comparatively
lower, suggesting a more isolated pattern of drought connectivity.

Notably, regions of high drought connectivity are mainly concen-
trated in three core belts: The Mediterranean-Central Asia
drought corridor, which is alternately influenced by the subtrop-
ical high and westerlies, serving as a key hub for drought trans-
mission across Eurasia; The interior of Australia, closely linked
to Indian Ocean Dipole anomalies triggered by El Niflo events;
The Sahel region of Africa, where node degree centrality is also
prominent, reflecting its role as a trans-equatorial bridge for
drought signal transmission.
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Figure 2 Global Distribution of Node Degree Centrality in the
Drought-Related Complex Network

4.2 Clustering Analysis under Multi-Feature Inputs

To evaluate the impact of different structural feature inputs on
graph neural network embeddings and subsequent clustering per-
formance, this study designed four input configurations: using
node degree alone, betweenness centrality alone, clustering coef-
ficient alone, and a composite input combining all three features.
These features were fed into the GCN model to generate node
embeddings, which were then clustered using the K-Means algo-
rithm. The clustering labels were mapped back to the geographic
space, and the results are shown in Figure 3.

The results demonstrate that the multi-feature composite input
(Figure 3d) yields clustering outcomes characterized by stronger
spatial continuity and clearer boundaries, with distinct differenti-
ation among categories. In Figure 3d, major clustered regions are
observed to form strip-like or patch-like spatial patterns. Notably,
the Mediterranean-Central Asia drought corridor, the interior of
Australia, and the Sahel region of Africa show high consistency
between the clusters and the areas with elevated topological fea-
ture values, indicating significant homogeneity and spatial aggre-
gation of drought network characteristics. In addition, northeast-
ern South America and the central and western United States also
exhibit clustering regions that are markedly different from their
surroundings, further illustrating that multi-feature inputs effec-
tively enhance the discriminative capacity of node representa-
tions.

In contrast, while clustering results based on single-feature inputs
broadly exhibit similar spatial trends to those of the composite
input, there are clear differences in category boundaries in many
areas. For example, Figure 3a (node degree input) successfully
identifies high-connectivity regions across Eurasia, but the tran-
sitions between these regions and their surroundings are rela-
tively blurred, and mid-latitude zones exhibit fragmented classi-
fication patterns. Figure 3b (betweenness centrality input) high-
lights the core hubs in Central Asia and North America but pro-
duces more scattered category distributions across the Southern
Hemisphere. Figure 3¢ (clustering coefficient input) shows less
distinct category boundaries in Africa and South America, result-
ing in substantial discontinuities.

Overall, single structural features are limited in their ability to
represent the complex topological relationships of the drought
network comprehensively and accurately. In contrast, the multi-
feature composite input, by integrating local connectivity
strength (node degree), global propagation control (betweenness
centrality), and neighborhood aggregation (clustering coeffi-
cient), not only improves the expressive power of node embed-
dings but also produces more coherent and interpretable spatial
partitioning. This provides a richer and more nuanced perspective
on the spatial clustering patterns of the global drought network.
The findings further validate the substantial added value of multi-
feature fusion in graph-based learning and establish a foundation
for uncovering the networked mechanisms underlying drought
propagation.
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Figure 3 Clustering results based on different structural feature
inputs
(a. Degree centrality input; b. Betweenness centrality input; c.
Clustering coefficient input; d. Combined input of all three
features)

4.3 Contribution Analysis of Network Features in Drought
Clustering

To further interpret the structural-functional roles of each cluster,
the average values of the three structural indicators were calcu-
lated for each category, and a normalized radar chart was drawn
(Figure 4). The results show that Cluster 1 is characterized by
high degree and betweenness centrality but low clustering coef-
ficient, indicating a dual role as a network hub and information
transmission bridge. This suggests that nodes in Cluster 1 are key
connectors that facilitate the rapid spread of drought signals
across otherwise distant regions. Cluster 2 displays moderate
structural features and may represent intermediate connector re-
gions within the network, potentially serving as transition zones
that mediate interactions between core hubs and peripheral areas.
Cluster 3 exhibits low values across all three indicators, reflect-
ing peripheral or isolated characteristics, possibly corresponding
to areas with delayed drought response or limited information
flow. Additionally, the radar chart highlights the clear differenti-
ation among clusters in their structural profiles, underscoring the
importance of integrating multiple topological attributes to accu-
rately capture the functional heterogeneity of the drought net-
work. Such distinctions are essential for identifying priority re-
gions in drought monitoring and for designing targeted interven-
tion strategies to improve early warning systems and resilience
planning.
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Figure 4 Radar Chart of Structural Feature Distributions for Dif-
ferent Drought Clusters

5. Discussions

The findings of this study provide compelling evidence that com-
bining complex network theory with graph learning methods en-
ables a more nuanced characterization of drought spatial struc-
tures compared to traditional approaches. In particular, the ex-
traction of node degree, betweenness centrality, and clustering
coefficient allowed the identification of regions that serve as hubs
or bridges in the global drought propagation network, which are
not readily captured by index-based analyses alone.

The performance comparison of different feature input schemes
further illustrates that multi-feature integration can significantly
enhance the discriminative power of node embeddings. The re-
sulting clusters display clearer spatial boundaries and more co-
herent regional patterns, which are critical for operational
drought monitoring and intervention planning. This supports the
hypothesis that structural heterogeneity is an essential aspect of
drought dynamics and must be accounted for when designing
early warning systems and resilience strategies.

Nevertheless, this study has several limitations. First, the tem-
poral resolution of the SPEI data (monthly) may obscure short-
term drought episodes or rapid transitions. Second, while the cho-
sen topological indicators are representative, they do not exhaust-
ively capture all possible structural characteristics of drought net-
works. Incorporating other graph metrics (e.g., eigenvector cen-
trality, modularity) and temporal graph models could yield addi-
tional insights. Finally, this framework has not yet integrated so-
cioeconomic and land use factors that may modulate the actual
impacts of drought events. Future research should explore multi-
layer graph representations that combine climatic, environmental,
and socioeconomic networks to support holistic risk assessment
and management.

Overall, this study demonstrates the value of graph-based learn-
ing approaches for uncovering hidden spatial structures in
drought systems, offering an innovative foundation for more tar-
geted and proactive drought governance.
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