
Remote Sensing Image Super-Resolution Using Feature Grouped Multi-Scale Network

Wei-Tao Zhang1,∗, Nuo Xu1, Yi-Bo Dang1

1School of Information Mechanics and Sensing Engineering, Xidian University, 710071, Xi’an, China
zhwt-work@foxmail.com, timxu219@gmail.com, dangyibo1111@163.com

Keywords: Image Super-Resolution, Multi-Scale Feature Extraction, Arbitrary-Scale Upsampling.

Abstract

With the rapid development of deep learning technology, remote sensing image super-resolution has made remarkable progress.
Remote sensing images usually contain multiple objects with different scales, making it crucial to adopt multi-scale feature extrac-
tion methods. However, the existing multi-scale modules introduce a large number of parameters due to performing convolution
operations with different kernel sizes on the input feature maps separately. To address this issue, this paper proposes a Grouped
Multi-scale Feature Extraction (GMFE) module. By applying grouped convolutions along the depth dimension of the input feature
maps, the number of parameters is effectively reduced. On this basis, we design a Feature-grouped Multi-scale Super-Resolution
(FMSR) network. We propose an Edge Enhancement (EE) module integrated into the network to sharpen edges and enhance the
visual quality of the image. Additionally, we introduce an arbitrary scale upsampling module, enabling a single trained model to
perform image super-resolution reconstruction at arbitrary scales. Extensive experiments on the UC Merced and RSSCN7 datasets
demonstrate that the proposed FMSR network achieves superior performance in both quantitative metrics and visual quality.

1. Introduction

With the rapid development of modern aerospace technology,
remote sensing has become a crucial means of acquiring in-
formation about the Earth’s surface and is widely applied in
various fields such as land cover classification, agricultural
monitoring, geological surveying, and military reconnaissance
(Li et al., 2022, Aburaed et al., 2023, Hong et al., 2021, Li
et al., 2021). However, due to factors such as cost, sensor
limitations, and acquisition angles, traditional remote sensing
images typically exhibit low spatial resolution, resulting in the
loss of image details and posing challenges for image interpret-
ation and analysis. Therefore, enhancing the resolution of re-
mote sensing images and restoring more detailed information
has become a critical research topic. To address these chal-
lenges, remote sensing image super-resolution (RSSR) techno-
logy has emerged. Among the RSSR methods, single image
super-resolution (SISR) has become the preferred approach for
many image enhancement and reconstruction tasks due to its
relatively low computational complexity and simple input re-
quirements.

Existing SISR techniques can be broadly categorized into three
approaches: interpolation-based methods (Jo and Kim, 2021,
Loghmani et al., 2018, Cherifi et al., 2020), reconstruction-
based methods (Huang et al., 2018, Yang et al., 2018),
and convolutional neural network (CNN)-based methods.
Interpolation-based methods, such as nearest-neighbor inter-
polation and bicubic interpolation, are computationally simple
and efficient. However, they fail to effectively recover image
details and high-frequency information, limiting their ability
to enhance image quality. Reconstruction-based methods, on
the other hand, utilize techniques such as sparse representa-
tion and dictionary learning to formulate optimization problems
for restoring image structures. Although these methods can
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better preserve image details, they are computationally intens-
ive. With the rapid development of deep learning technology,
CNN-based methods have become the dominant approach in
the SISR field in recent years. By training on large datasets of
low-resolution and corresponding high-resolution image pairs,
these methods can automatically learn the mapping relationship
between the two domains. In the field of computer vision, Dong
et al.(Dong et al., 2015) first proposed Super-Resolution Convo-
lutional Neural Network (SRCNN), which achieved end-to-end
learning for mapping low-resolution images to high-resolution
outputs. Based on SRCNN, Kim et al.(Kim et al., 2016) intro-
duced Very Deep Super-Resolution Network (VDSR), which
improved image reconstruction quality by increasing network
depth and incorporating residual learning. Subsequently, Lim
et al.(Lim et al., 2017) proposed Enhanced Deep Residual Net-
works (EDSR), which removed batch normalization layers and
adopted a deeper network architecture to further enhance per-
formance.

Although SISR techniques have made significant progress
in natural image super-resolution, remote sensing imagery
presents new challenges for this field. In recent years, vari-
ous CNN models have been proposed to address the super-
resolution of remote sensing images. Ma et al. (Ma et al.,
2019) introduced the WTCRR, which combines wavelet trans-
form and recursive Res-Net to reconstruct HR images of differ-
ent frequency bands. Dong et al. (Dong et al., 2020) proposed
the enhanced back-projection network (EBPN), which captures
feature differences between channels by incorporating an atten-
tion mechanism. Wang et al. (Wang et al., 2022) developed
the lightweight feature enhancement network (FeNet), which
improves the network’s representational capacity by designing
lightweight lattice blocks as nonlinear feature extraction func-
tions. Liu et al. (Liu et al., 2024) introduced SRDNet, a dual-
domain network with hybrid convolution and progressive up-
sampling to exploit the spatial-spectral and frequency inform-
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Figure 1. The architecture of proposed FMSR model.

ation of hyperspectral data. Despite the promising perform-
ance of existing SISR networks, many rely on multi-scale fea-
ture extraction to capture objects of different sizes, often at the
cost of increased network parameters. This highlights the need
for more efficient multi-scale extraction strategies. Moreover,
current RSSR methods are generally restricted to fixed-scale
super-resolution. Some employ multiple output branches for
specific scaling factors, but this design introduces redundant
upsampling modules, leading to higher computational costs and
reduced efficiency. Therefore, it is essential to develop a unified
and flexible arbitrary-scale upsampling module to enhance both
the adaptability and efficiency of super-resolution networks.

To address the aforementioned issues, this paper adopts the
concept of group convolution and proposes two Grouped Multi-
Scale Feature Extraction modules (GMFE and GMFE+). Based
on these modules, we further design the Feature Grouped
Multi-Scale Attention module (FMA) and the Feature Grouped
Multi-Scale Edge Enhancement module (FMEE). Finally, an
arbitrary-scale upsampling module is introduced at the end of
the network to reconstruct the feature maps. The main contri-
butions of this paper can be summarized as follows:

1. To reduce the number of parameters while maintaining
the feature extraction capability, this paper proposes the
GMFE and GMFE+ modules based on the concept of
group convolution. These modules significantly reduce the
number of parameters compared to conventional feature
extraction modules.

2. The clarity of an image is influenced by the sharpness of its
edges. This paper further designs the FMEE module based
on the GMFE module. By incorporating an Edge Enhance-
ment (EE) mechanism, the FMEE module improves the
clarity of image edges, particularly in scenarios with edge
blurring and heavy noise.

3. An arbitrary-scale upsampling module is introduced to
process remote sensing images, enabling a single trained
model to perform image super-resolution reconstruction
at arbitrary scales. This approach eliminates the need to
train separate networks for different upsampling factors,
thereby improving the generalizability and flexibility of
the model.

2. Proposed Method

2.1 Network Architecture

As shown in Figure 1, the proposed FMSR network can be di-
vided into two main components: deep feature extraction and
arbitrary-scale upscaling. In the deep feature extraction sec-
tion, we employ the FMA and FMEE modules to replace tradi-
tional feature extraction module. Let Conv(nc, k, nf ) repres-
ent the convolution operation, where nc, k and nf denote the
input channels, kernel size, and output channels, respectively.
The operation Conv(c, 3, n) is used to extract the shallow fea-
tures F0 from the input image ILR ∈ Rc×h×w , c represents
the number of channels in the low-resolution image, while h
and w denote the height and width of the low-resolution image,
respectively. Shallow feature F0 can be expressed as:

F0 = W(c,3,n) ⋆ ILR (1)

Here, W(c,3,n) represents the weight matrix consisting of n
convolution kernels of size 3×3, and ⋆ denotes the convolution
operation.

Subsequently, the shallow features F0 are fed into the deep fea-
ture extraction section. Let fFMA(·) and fFMEE(·) denote the
computational processes of the FMA and FMEE modules, re-
spectively, which will be described in detail in Section 2.2 and
2.3. The computation process of this section can be formulated
as follows:

F1 = W(n,1,n)⋆catdepth (fFMA1(F0), ..., fFMAK..1(F0)) (2)

FLR = W(n,3,n) ⋆ fFMEE(F1 + F0) (3)

Here, K represents the number of FMA modules,
catdepth (..., ...) represents the concatenation operation
along the depth dimension. F1 represents the feature map
extracted after passing through K FMA modules, while FLR

represents the deep features enhanced by the FMEE module.

Finally, they are fed into the arbitrary-scale upsampling mod-
ule, denoted by fupscale(·) , to generate super-resolution images
at any desired scaling factor. The computation process of this
section can be formulated as follows:
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ISR = fupscale(M,FLR) (4)

where M represents the location projection matrix, and ISR de-
notes the output high-resolution image. The computational pro-
cess of the above module will be described in detail in Section
2.4.

2.2 Grouped Multi-Scale Feature Extraction

Figure 2 illustrates the structures of the traditional multi-scale
feature extraction module, the GMFE module, and the GMFE+
module. The traditional multi-scale feature extraction module
applies several sets of convolution kernels with different sizes
to the input feature map to capture multi-scale features, which
results in a significant increase in the number of parameters.
Inspired by the concept of group convolution, this paper pro-
poses the GMFE and GMFE+ modules. Specifically, in the
GMFE module, the input feature map Fi

GMFE is first evenly
divided into four groups along the depth dimension, denoted as
{Fik

GMFE}, k = 1, 2, 3, 4 . Each group of feature maps is then
processed by convolution operations with different kernel sizes
{Conv(n, i, n)}, i = 1, 3, 5, 7. Finally, the four output feature
maps are concatenated along the depth dimension to produce
a feature map with the same shape as the input. This feature
extraction operation can be expressed as:

Fout
GMFE = catdepth(W

(n,2k−1,n)⋆Fik
GMFE), k = 1, 2, 3, 4

(5)

where

{Fi1
GMFE,Fi2

GMFE,Fi3
GMFE,Fi4

GMFE}

= splitdepth(Fi
GMFE) (6)

Here, splitdepth(..., ...) represents the operation of evenly split-
ting along the depth dimension. This operation utilizes group
convolution to divide the input channels, which not only pre-
serves the multi-scale feature extraction capability but also sig-
nificantly reduces the number of parameters.

GMFE+ is an enhanced version of the GMFE module with sig-
nificantly improved feature extraction capabilities. Compared
to GMFE, the output feature maps of GMFE+ retain the feature
outputs obtained through sequential processing with convolu-
tion kernels of different scales. The detailed process is as fol-
lows: First, the input feature map Fi

GMFE+ undergoes a 3×3
convolution operation. The resulting feature map Fi1

GMFE+ is
then evenly divided into two groups along the depth dimension,
referred to as Fi11

GMFE+ and Fi12
GMFE+. Fi12

GMFE+ is
processed by a 5×5 convolution operation, while Fi11

GMFE+

remains unchanged. Next, the output feature map Fi2
GMFE+

from the 5×5 convolution is further divided into two parts
along the depth dimension, referred to as Fi21

GMFE+ and
Fi22

GMFE+. Fi22
GMFE+ undergoes a 7×7 convolution op-

eration, while Fi21
GMFE+ remains unchanged. Finally, the

output from the 5×5 convolution, the output from the 7×7 con-
volution, and the two unmodified feature groups are concaten-
ated along the depth dimension to produce a feature map with
the same shape as the input. The output feature map is denoted
as Fout

GMFE+.

2.3 Attention and Edge Enhancement Modules

The FMA and FMEE modules are both designed based on the
GMFE architecture. Inspired by (Guo et al., 2023), the FMA
module utilizes a large-kernel attention mechanism to capture
long-range dependencies, thereby enhancing the network’s abil-
ity to perceive and process image details. Traditional large-
kernel convolutions significantly increase the network’s para-
meter count, which not only leads to higher computational costs
but may also result in performance bottlenecks. To mitigate the
increase in computation and parameters, we adopt a convolu-
tional decomposition strategy to construct the LKA module in
FMA. Specifically, traditional large-kernel convolutions can be
decomposed into three parts: first, spatial local convolutions
(depthwise convolutions) handle the local detail information in
the image; second, spatial long-range convolutions (dilated con-
volutions) capture relationships between distant pixels by in-
creasing the span of the convolution kernels; and finally, chan-
nel convolutions (1×1 convolutions) are used to integrate in-
formation across the channel dimension. Let Fin

LKA and
Fout

LKA denote the input and output of the LKA module, re-
spectively. The computational process of the module can be
expressed as:

Fout
LKA = Xattention ⊗ Fin

LKA (7)

where

Xattention = W(n,1,n) ⋆ (ConvDW−D(ConvDW(Fin
LKA)))

(8)

Here, ConvDW−D( · ) represents the depthwise dilated convo-
lution, ConvDW( · ) refers to the depthwise convolution, and
Xattention indicates the attention map, where the values in the
attention map represent the importance of each feature. The
symbol ⊗ represents element-wise product.

The FMEE module incorporates an Edge Extraction (EE) mod-
ule to enhance the edge and texture information in the feature
map. Specifically, the input feature map Fin

EE is first sub-
tracted by a smoothed version of the feature map to extract the
edge information. Then, a 1×1 convolution is applied to fuse the
depthwise channel information. Finally, a residual connection
is made with the input feature map to obtain the output feature
map Fout

EE. The EE module can be expressed as follows:

Fout
EE =W(n,1,n) ⋆ (Fin

EE−

AveragePool3×3(Fin
EE)) + Fin

EE (9)

2.4 Arbitrary Scale Upsampling Module

The upsampling module needs to find a mapping from the low-
resolution feature to the high-resolution image. Specifically, for
each low-resolution feature map pixel FLR(i′, j′), r∗r specific
filter weights W(i, j) needs to be found to map it to the super-
resolved image ISR(i, j). r represents the scaling factor, and
r ∗ r indicates that each pixel in the low-resolution feature map
will be mapped to r ∗ r pixels in the high-resolution image.
The computational process of the module can be expressed as
follows:
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Figure 2. Multi-scale feature extraction (a) Traditional multi-scale feature extraction module. (b) GMFE. (c) GMFE+.

ISR(i, j) = Φ(FLR(i′, j′),W(i, j)) (10)

Here, W(i, j) denotes the filter weights corresponding to the
pixel (i, j) in ISR. Φ(·) represents the operation of computing
the product and summation of the corresponding elements.

To generate the filter weights W(i, j), it is necessary to con-
struct a location projection matrix M as the input to the mod-
ule. The weight prediction matrix should include the positional
projection information between (i′, j′) and (i, j), as well as the
image’s scaling factor r. Let v⃗(i,j) represent the vector in the
weight prediction matrix. M can be expressed as follows:

M =
[
v⃗(0,0), v⃗(0,1), ..., v⃗(i,j), ..., v⃗(H,W )

]
(11)

where

v⃗(i,j) =

[
i

r
−
⌊
i

r

⌋
,
j

r
−
⌊
j

r

⌋
,
1

r

]T

(12)

Here, ( i
r
, j
r
) represents the projection of the pixel index (i, j) in

the high-resolution image FLR onto the low-resolution feature
map ISR. Since r can be any positive number greater than 1, i

r

and j
r

may take non-integer values. Therefore, it is necessary to
introduce i

r
−
⌊

i
r

⌋
and j

r
−
⌊
j
r

⌋
to represent the projection off-

set of the pixel, where ⌊⌋ represents the floor operation. Then,
the location projection matrix is passed through two fully con-
nected layers to obtain the filter weights W(i, j), which, when
applied to FLR(i′, j′), result in the output super-resolved image
ISR.

3. Experimental Results

3.1 Datasets

To evaluate the effectiveness of the proposed method, we se-
lected the UC Merced and RSSCN7 remote sensing datasets
for training. The UC Merced dataset is a high-resolution re-
mote sensing image dataset consisting of 21 land cover classes,
including urban, forest, water, agricultural areas, airports, etc.
Each class contains 100 images, for a total of 2100 images.
The image size is 256×256 pixels. In our experiments, 90 im-
ages from each class were selected as the training set and 10
images as the test set. Therefore, the training set consists of

1890 images, and the test set consists of 210 images. The high-
resolution images in both the training and test sets have a pixel
size of 256×256, with the corresponding low-resolution images
obtained by bicubic interpolation downsampling from the high-
resolution images.

The RSSCN7 dataset contains remote sensing images from 7
categories, including urban, forest, grassland, farmland, and
water bodies. Each category includes 400 images, for a total of
2800 images. The image size is 400×400 pixels. The RSSCN7
dataset provides rich land cover information, making it partic-
ularly suitable for multi-classification tasks on high-resolution
remote sensing images. In our experiments, 360 images from
each class were selected as the training set and 40 images as the
test set. Therefore, the training set consists of 2520 images, and
the test set consists of 280 images. The high-resolution images
in both the training and test sets have a pixel size of 400×400,
with the corresponding low-resolution images obtained by bicu-
bic interpolation downsampling from the high-resolution im-
ages.

3.2 Experimental Settings

This study primarily focuses on image upscaling tasks with
scale factors of ×2 and ×4. The FMSR network is capable of
performing image upscaling for different scale factors using
the same module, while in other networks, the reconstruction
part adjusts the upsampling operation according to the specific
scale factor. The batch size for training data is set to 32. To
enhance the diversity of training samples, data augmentation
techniques are employed, including random horizontal flipping
and random rotations (90°, 180°, 270°). During training, the
L1 loss function is used as the optimization objective, and the
Adam optimizer is utilized for training, with hyperparameters
set to β1 = 0.9 and β2 = 0.999. The initial learning rate
is set to 1 × 10−4 , with a learning rate decay strategy to en-
sure stability and convergence during the training process. To
evaluate the performance of the network, Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index (SSIM) are used
as evaluation metrics. PSNR is used to measure the quality
of image reconstruction, with higher values indicating better
reconstruction quality; SSIM reflects the structural similarity
between images, with values closer to 1 indicating better visual
quality. All experiments are implemented and trained using the
PyTorch framework on a TITAN RTX GPU.

3.3 Comparison With Other Methods

To demonstrate the superiority of the proposed method, we se-
lected six image super-resolution algorithms for comparison,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025 
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-401-2025 | © Author(s) 2025. CC BY 4.0 License.

 
404



(a)

(b)

Figure 3. Image super-resolution performance of different
models

(a) UC Merced dataset. (b) RSSCN7 dataset.

Table 1. PSNR and SSIM of different methods under
scaling factors of ×2 and ×4

Methods UC Merced RSSCN7
×2 ×4 ×2 ×4

Bicubic 31.12 / 0.8983 25.52 / 0.6973 28.71 / 0.7940 25.66 / 0.6145
SRCNN 32.88 / 0.9240 26.28 / 0.7361 29.16 / 0.8042 25.96 / 0.6279
VDSR 33.84 / 0.9360 27.39 / 0.7720 29.34 / 0.8100 26.08 / 0.6368
RDN 34.38 / 0.9404 27.84 / 0.7924 30.05 / 0.8235 26.14 / 0.6433
MHAN 34.42 / 0.9324 27.62 / 0.7736 30.14 / 0.8212 26.20 / 0.6429
Omni-SR 34.32 / 0.9335 27.80 / 0.7652 30.11 / 0.8197 26.16 / 0.6421
FMSR 34.63 / 0.9412 27.91 / 0.7932 30.19 / 0.8245 26.26 / 0.6437

including Bicubic, SRCNN(Dong et al., 2015), VDSR(Kim
et al., 2016), RDN(Zhang et al., 2018), MHAN(Zhang et al.,
2020), and Omni-SR(Wang et al., 2023). Tables 1 present the
performance of each algorithm on the UC Merced and RSSCN7
datasets, where each model performs image super-resolution
using scaling factors of ×2 and ×4, respectively. Based on
the experimental results, FMSR demonstrates superior perform-
ance in terms of PSNR and SSIM metrics compared to other
super-resolution models. Figures 3 present the visual results of
image super-resolution obtained using different models on the
UC Merced and RSSCN7 datasets. As shown in the compar-
ison images, FMSR outperforms the other models in restoring
image edges and demonstrates significantly less distortion in
the recovery of object shapes.

3.4 Ablation Studies

This paper proposes the GMFE and GMFE+ modules, which
utilize grouped convolutions to extract features at multiple
scales for better handling of complex land cover information
and details in remote sensing images. We conducted a series
of ablation experiments to validate the effectiveness of each
module, and the experimental results are presented in Table 2,
Here, FE represents the conventional multi-scale feature extrac-

Table 2. Comparison of the Super-Resolution Performance of
the Network Using Different Blocks

FE GMFE GMFE+ LKA EE PSNR/SSIM Param

✕ ✕ 27.81 / 0.7873 333.6k
✕ ✕ 27.78 / 0.7881 22.5k
✕ ✕ 27.91 / 0.7932 85k
✕ ✕ ✕ 27.82 / 0.7883 83k
✕ ✕ ✕ 27.75 / 0.7876 77k

tion module, while GMFE and GMFE+ denote the proposed
Grouped Multi-Scale Feature Extraction modules. The results
demonstrate that the super-resolution network achieves the best
performance when the GMFE+, LKA, and EE modules are used
simultaneously. When the input channel size is 64, the para-
meter counts of model using GMFE and GMFE+ are approx-
imately reduced by 311k and 248k, respectively, compared to
the conventional multi-scale feature extraction module, repres-
enting only 6.74% and 25.48% of the total parameter size.

4. Conclusion

This paper presents a Feature-grouped Multi-scale Super-
Resolution (FMSR) network built upon the proposed Grouped
Multi-scale Feature Extraction (GMFE) module, which lever-
ages grouped convolution to reduce parameters while pre-
serving feature extraction capacity. The network integrates a
Large Kernel Attention (LKA) mechanism and an Edge En-
hancement (EE) module to further boost performance. An
arbitrary-scale upsampling module is also introduced, allow-
ing flexible super-resolution at any scale with a single model.
Extensive experiments on the UC Merced and RSSCN7 data-
sets demonstrate that FMSR achieves superior quantitative and
visual results, confirming its effectiveness and generalizability
for remote sensing image super-resolution.
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