
UAV Path Planning Based on GeoSOT Grid and JPS3D Optimized Algorithm

Yutian Zhang 1, Ying Nie 1, Yuanyuan Liu 1

1North China Institute of Computing Technology，Beijing，China
2861089402@qq.com, nyyyh1997@sina.com, 269959041@qq.com

Keyword：JPS3D, GeoSOT, UAV pathfinding, GPJ3D-RP, Parallel Computing

Abstract

With the rapid advancement of drone technology, the demands for accuracy and real-time performance in air route planning within
modern battlefield environments have significantly increased. In high-precision three-dimensional battlefield modeling, a surge in the
number of targets, along with complex obstacle distributions and dynamic threat factors, greatly raises the complexity of path
computation.Especially in large-scale three-dimensional complex environments, traditional A* algorithms suffer from efficiency
losses due to a lack of effective pruning mechanisms, which leads to excessive redundant node expansions. To address this challenge,
this paper implements a three-dimensional Jump Point Search algorithm based on the GeoSOT global discrete grid system.
Leveraging the spatial partitioning characteristics of GeoSOT encoding, we propose an efficient path planning algorithm called
GPJ3D-RP (GeoSOT Parallelized JPS3D for Rapid Pathfinding). This approach decomposes the global high-precision path planning
task into multiple low-resolution subregions, enabling parallel processing of local path searches within each sub-block and ultimately
integrating the results into a complete path. Through simulation experiments involving both fighter aircraft route planning and UAV
path planning at two different scales, the GPJ3D-RP algorithm demonstrates significant improvements in search speed compared to
traditional A* and basic JPS-3D algorithms, making it better suited for real-time path planning requirements in dynamic and complex
battlefield environments.

1. Introduction

1.1 Military Requirements

With the increasing integration of drone technology into
modern military operations, unmanned aerial systems (UAS)
have emerged as pivotal components in battlefield
reconnaissance, target acquisition, and precision strike missions.
In complex static battlefield environments, drones must
compute optimal flight paths within high-resolution
three-dimensional terrain models, imposing stringent demands
on path-planning algorithms. Contemporary digitized
battlefields are characterized by vast operational areas, intricate
topographical features, and irregular obstacle distributions,
necessitating algorithms capable of processing large-scale
spatial data while maintaining fine-grained environmental
awareness(Wang G,2012).

Existing mainstream path-planning algorithms exhibit notable
limitations when applied to large-scale combat scenarios.
Grid-based search methods, while reliable in structured
environments, frequently generate excessive computational
overhead in open terrains, significantly degrading planning
efficiency. Although jump point search (JPS) algorithms
mitigate this issue through intelligent node expansion strategies,
their three-dimensional variants still encounter substantial
challenges in complex battlefield settings. A critical
shortcoming lies in their inability to simultaneously
accommodate extensive operational ranges and high-fidelity
terrain data, often forcing undesirable trade-offs between
computational speed and path quality—compromising mission
effectiveness in real-world combat operations(Aggarwal
S,2020).

To address these challenges, this study introduces an innovative
three-dimensional path-planning architecture. The proposed
algorithm leverages advanced spatial indexing techniques to
enable hierarchical management of the search space(Jones
M,2023). Specifically, it employs a multi-resolution grid
representation, allowing rapid identification of navigable
regions at the global level while refining trajectory details
locally. Furthermore, by incorporating a parallel computing
framework, the algorithm efficiently harnesses modern
hardware capabilities, dramatically improving planning
performance in large-scale environments. An additional
obstacle distribution analysis module further optimizes
computational efficiency by eliminating redundant evaluations
without sacrificing path safety.

This novel methodology provides a groundbreaking technical
approach to drone path planning in battlefield conditions.
Comprehensive experimental validation demonstrates the
algorithm’s superior performance in planning speed, path
optimality, and resource utilization, establishing a critical
foundation for future autonomous combat operations. Beyond
its immediate military applications, the underlying principles of
this research hold significant potential for adaptation in civilian
domains requiring robust path-planning solutions in complex
environments.

2. Theoretical Basis

2.1 Jump Point Search

The Jump Point Search (JPS) algorithm fundamentally
optimizes the efficiency of traditional grid-based pathfinding
by leveraging the geometric regularity of the environment.
Unlike the conventional A* algorithm, which examines

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-421-2025 | © Author(s) 2025. CC BY 4.0 License.

421

mailto:2861089402@qq.com
mailto:nyyyh1997@sina.com,
mailto:269959041@qq.com

neighboring nodes individually, JPS intelligently skips large
numbers of symmetric paths by identifying key turning
points—known as jump points—where the path direction may
change. This mechanism relies on two critical strategies:
pruning rules and forced neighbor analysis.

During horizontal or vertical movement, the algorithm
continuously jumps along the current direction until
encountering an obstacle or meeting the forced neighbor
condition. Forced neighbors are adjacent nodes that necessitate
a directional change due to obstacle blockages, triggering the
generation of jump points. In diagonal movement, the jumping
process checks both horizontal and vertical pruning conditions
to ensure no critical turning points are missed. This jump
propagation mechanism allows JPS to drastically reduce the
number of processed nodes, particularly excelling in structured
environments.

Therefore, in the JPS algorithm, finding forced neighbors is
very important. The following illustration demonstrates how to
identify forced neighbors.

Figure 1.Neighbor situations corresponding to movement
directions without nearby obstacles

We visualize a 3×3×3 voxel grid as three 3×3 two-dimensional
layers, from left to right: the bottom layer, the middle layer, and
the top layer. The center node, indicated by the black arrow, is
currently being expanded. The natural neighbors of the current
node are marked in white. Pruned neighbors are marked in light
blue. The black arrow also shows the direction traveled from its
parent node. The figure demonstrates all three cases from
bottom to top: (1) straight line, (2) 2D diagonal, and (3) 3D
diagonal.

Figure 2.Neighbor situations corresponding to movement
directions with nearby obstacles

When the current node is adjacent to an obstacle (black), the
highlighted forced neighbors (pink) cannot be pruned. Red
arrows indicate the obstacle and its corresponding forced
neighbor pairs: if the tail voxel is occupied, then its head voxel
is a forced neighbor. For example, in the first case (straight-line
movement), if voxel (0, 1, 0) is occupied, then (1, 1, 0) is a
forced neighbor. In the second case (2D diagonal movement),
an occupied voxel (0, 0, 1) results in three forced neighbors,
which is also the scenario in the third case.

When the current node is adjacent to an obstacle (black), the
highlighted forced neighbors (pink) cannot be pruned. Red
arrows indicate the obstacle and its corresponding forced
neighbor pairs: if the tail voxel is occupied, then its head voxel
is a forced neighbor. For example, in the first case (straight-line
movement), if voxel (0, 1, 0) is occupied, then (1, 1, 0) is a
forced neighbor. In the second case (2D diagonal movement),
an occupied voxel (0, 0, 1) results in three forced neighbors,
which is also the scenario in the third case.

The three-dimensional extension (JPS3D) further enhances the
algorithm's applicability by expanding forced neighbor analysis.
In 3D pathfinding, planning must account for both planar
directional changes and height variations. JPS3D introduces
vertical jumping logic, enabling the algorithm to identify
voxels requiring directional shifts across the x, y, and z axes.
For instance, when a drone ascends or descends and encounters
an aerial obstacle, the algorithm marks key lateral movement
nodes through forced neighbor analysis. Additionally,
movement involving both horizontal and vertical components
requires evaluating pruning conditions in all three dimensions
to maintain path optimality(Luo Y,2022).

To preserve directional consistency, JPS3D applies traditional
JPS pruning rules on each horizontal plane, while cross-layer
movement triggers jumps only when height changes are
unavoidable. This layered pruning strategy, combined with a
3D distance heuristic, effectively balances search efficiency
and path quality.

However, standard JPS3D still faces challenges in large-scale
environments. Unrestricted search depth in open areas can lead
to excessive computational load—in vast, unobstructed spaces,
the algorithm may degrade into a near brute-force search,
diminishing its performance benefits. Additionally, inefficient
voxelized obstacle representation limits practicality: dense
voxel grids demand high memory, while sparse representations
may sacrifice path accuracy. Another issue is the lack of
hierarchical spatial organization, making it difficult to handle
ultra-large-scale scenarios.

Potential improvements include dynamic jump depth limits to
optimize open-area searches, octrees or sparse hash grids for
flexible voxel representation, and hierarchical path planning
strategies combining coarse global guidance with local
refinement. These optimizations could enhance JPS3D's
real-world applicability in complex environments like
battlefields.

2.2 GeoSOT

GeoSOT (Geographic Spatial Organization Tool) establishes a
global hierarchical grid system, providing a unified framework
for organizing and indexing geospatial data. Unlike traditional
latitude-longitude coordinate systems, the core concept of
GeoSOT lies in recursively partitioning the Earth's surface into
multi-level grid cells, enabling seamless spatial resolution from

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-421-2025 | © Author(s) 2025. CC BY 4.0 License.

422

global scale down to centimeter-level precision. This
mechanism relies on two key design principles: integer
encoding rules and hierarchical spatial relationships. (Hu
X,2014)In planar projections, the system employs Hilbert
curves or Z-order curves to convert two-dimensional
coordinates into one-dimensional codes, ensuring that spatially
adjacent entities maintain continuity in their encoding. The
subdivision of grid cells follows a quadtree principle, where
each parent cell is uniformly divided into four child cells. This
recursive structure allows any region to be represented with an
appropriately refined grid. During encoding, the system
preserves level information through bitwise operations,
enabling rapid spatial queries to locate target
levels—particularly efficient for large-scale geospatial data
analysis.

The three-dimensional implementation (GeoSOT3D) further
extends the system's applicability by incorporating an
octree-based partitioning of the vertical dimension(Zhai
W,2017). In 3D scenarios, spatial objects require not only
precise planar positioning but also handling the complexities of
elevation data. GeoSOT3D integrates the height axis into its
recursive subdivision framework, forming cubic voxel grids
that uniformly represent vertical structures such as atmospheric
layers and underground spaces. For instance, when planning
flight paths for drones, the system can quickly retrieve obstacle
distributions at different altitudes through voxel encoding.
Additionally, indexing spatiotemporal dynamic data (e.g.,
moving object trajectories) requires combining spatial and
temporal dimensions(Zhai W,2019). The system achieves
efficient organization of four-dimensional data by using
composite keys of timestamps and spatial codes. To maintain
encoding consistency, GeoSOT3D applies the planar GeoSOT
partitioning rules on horizontal planes while adjusting vertical
subdivision granularity based on application requirements,
ensuring rational spatial resolution. This multi-dimensional
unified encoding, combined with space-filling curve techniques,
effectively balances data storage and retrieval efficiency.

Figure 3. The partitioning pattern of GeoSOT in
three-dimensional space.

The hierarchical grid structure of GeoSOT effectively
addresses many of the challenges faced by JPS3D in large-scale
environments. For the issue of unrestricted search depth in
open areas, GeoSOT's multi-level encoding mechanism
dynamically adjusts grid resolution, automatically switching to
coarse-grained levels in open spaces to avoid unnecessary
fine-grained traversal, thereby significantly reducing
computational complexity. Moreover, GeoSOT's recursive
voxel representation naturally aligns with sparse data structures
such as octrees, enabling efficient memory compression while
ensuring pathfinding precision through hierarchical
transitions—overcoming JPS3D's trade-off between voxel
representation memory usage and computational efficiency. For
ultra-large-scale path planning requirements, GeoSOT's
globally unified encoding system supports hierarchical path
search strategies: first planning global routes on coarse-grained

grids, then refining adjustments in local regions, thereby
balancing efficiency and optimality. This inherent spatial
hierarchical characteristic makes GeoSOT an ideal foundational
framework for enhancing the practical application of JPS3D in
complex scenarios such as battlefield simulations and smart
city planning.

3. GPJ3D-RP Algorithm Design

3.1 Overall Algorithm Framework

This algorithm adopts a phased processing architecture to solve
large-scale 3D path planning problems. The system input is a
voxelized 3D environment map, and the original problem is
decomposed into multiple parallelizable subtasks through
spatial grid partitioning. The core processing flow consists of
three main stages: the spatial grid partitioning stage uniformly
divides the environment into multiple sub-grids according to
GeoSOT rules; the local path computation stage uses the JPS
algorithm to analyze the reachability between the eight vertices
within each sub-grid; the global planning stage integrates the
reachability information of all sub-grids to construct a
simplified navigation graph for the final path solution.

In terms of data flow design, the system maintains three core
data structures: first, a GeoSOT-encoded grid spatial index for
quickly locating the sub-grid to which any spatial position
belongs; second, a global reachability matrix that stores the
connectivity status and path length between all adjacent vertex
pairs. This hierarchical processing model retains the capability
for precise path search while ensuring the algorithm's
scalability through data dimensionality reduction; third, a block
information table that records the GeoSOT codes, spatial
ranges (which can be indirectly derived from GeoSOT codes),
and obstacle rates (the proportion of obstacle voxels to the total)
of the sub-grids divided during parallel computation. This table
is generated during the parallel computation preparation phase
and provides decision-making basis for dynamic subdivision.

3.2 GeoSOT-Based Spatial Decomposition

The spatial decomposition module employs the GeoSOT global
subdivision grid system as its theoretical foundation. This
system recursively divides 3D space into multi-level grids, with
each grid uniquely identified by a 64-bit code. In the specific
implementation, a fixed-level grid (e.g., level 7) is used as the
basic processing unit to ensure all sub-grids have the same
physical dimensions.

The core advantage of GeoSOT coding lies in its spatial
computability: adjacency relationships can be directly derived
from grid codes through bitwise operations. For example,
obtaining the adjacent grid in the positive X-axis direction can
be achieved by adding 1 to the code. This characteristic
facilitates subsequent parallel task allocation and global graph
construction. In terms of storage, linearized Z-order curves are
used to arrange grid data, improving memory access
locality(Zhai W,2017)..

When it is detected that the obstacle rates of all sub-grids under
the same parent node are below a set threshold (e.g., 5%), these
sibling nodes are merged into a parent grid for processing.
After merging, only the eight vertices of the parent grid
participate in the computation for this region, significantly
reducing the computational load in open areas. The merged
status is marked by the high-order bits of the GeoSOT code and
automatically identified during path search.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-421-2025 | © Author(s) 2025. CC BY 4.0 License.

423

3.3 Parallel Processing for Local Path Search

The local path computation phase employs the CUDA parallel
architecture, with each sub-grid assigned to a thread block for
processing. Within the thread block, 28 threads are used to
compute all pairwise combinations (28 pairs in total) of the
eight vertices of the sub-grid in parallel. Each thread
independently executes the JPS algorithm, with the search
scope strictly confined to the boundaries of the current
sub-grid.

The implementation of the JPS algorithm includes standard 3D
jump rules: straight jumps, diagonal jumps, and body diagonal
jumps. To improve memory efficiency, each thread caches the
obstacle information of the current sub-grid in shared memory.
Reachability results are compressed and stored in bitmap form,
with a single 32-bit integer capable of recording the
connectivity status of all vertex pairs.

For extremely large grids, dynamic task scheduling can be
implemented based on the obstacle rates in the block
information table to reduce computational pressure. Fewer
thread resources are allocated to grids with low obstacle rates,
and the vertex reachability computation within the thread block
is achieved through a combination of serial and parallel
processing.
- Very low obstacle rate grids (<2%): Only 1 thread is allocated,
processing all vertex reachability in parallel.
- Low obstacle rate grids (<10%): 1/7 of the threads are used,
with each thread processing 7 vertex pairs (4 threads).
- Medium obstacle rate grids (10%-30%): 1/4 of the threads are
allocated, with each thread processing 4 vertex pairs (7
threads).
- High obstacle rate grids (>30%): The maximum number of
threads is allocated, with each thread processing 1 vertex pair
(28 threads).

3.4 Global Path Integration Method

Global path planning is performed based on the constructed
simplified navigation graph. The nodes of the graph correspond
to the vertices of each sub-grid, and the edge weights come
from two parts: the JPS computation results within the sub-grid
and the Euclidean distance between vertices of adjacent
sub-grids. The classic A* algorithm is used to search for the
initial path on the global graph.

In terms of path optimization, the current implementation
includes basic path splicing functionality: sequentially
combining the JPS path segments within each sub-grid with the
straight-line connection segments across grids. For advanced
optimization features such as path smoothing, only the
algorithm interface is currently reserved, with the specific
optimization logic yet to be implemented.

The environment update mechanism currently supports a
complete recalculation process: when map changes are detected,
all sub-grids in the affected area are marked, and their
reachability data is uniformly updated in the next computation
cycle. The incremental update algorithm is still in the design
phase and is not included in the current implementation.

4. Simulation Experiment Design and Results Analysis

4.1 Experimental Environment Setup

4.1.1Hardware Platform Configuration:The following
hardware configuration is adopted in this experiment to ensure
computational efficiency and simulation accuracy:
Processor: 13th Gen Intel(R) Core(TM) i5-13500H 2.60 GHz
GPU: NVIDIA GeForce RTX 4050 Laptop GPU
Video Memory: 6G

4.1.2Software Environment Configuration:Operating System:
Windows 11 Home Chinese Edition
Programming Language: C++14
Development Tool: Visual Studio 2022
Parallel Computing Engine: CUDA 12.6

4.1.3 3D Battlefield Model Construction:Terrain Source
Data:
a. OSM-format data of randomly selected streets in Hong Kong,
China, from the website OpenStreetMap
b. Random obstacle maps generated based on 3D data and
obstacle occupancy rates using random numbers
Data Processing: The OSM file is converted to OBJ format
using the built-in data processing tool osm2World from the
OSM format. The processed OBJ format is then converted to
binvox format and read as the obstacle map for the experiment.
Processed Obstacle Map:

Figure 4. Obstacle Map.

4.2 Experimental Design

4.2.1 Comparison of JPS Algorithm and A* Algorithm in
Small-Scale Grids:To verify the superiority of JPS and
preliminarily test how to select parallel grid parameters for
quickly and accurately finding paths in large-scale maps, this
experiment sets the following three objectives: compare the
computational efficiency (time performance) of JPS (Jump
Point Search) and A* algorithms in grid maps; analyze the
differences in path lengths generated by the two algorithms
(solution quality); and explore the impact of map size, obstacle
density, and heuristic functions on algorithm performance.

The following data are used as experimental independent
variables: algorithm type (JPS/A*); map size (16×16×16, 32
×32×32, 64×64×64, 128×128×128); obstacle density
(10%, 20%, 30%, 40%); heuristic function (Manhattan
distance/Chebyshev distance). The search time and obtained
path length are used as dependent variables to evaluate the
performance superiority of the algorithm under these settings.
The calculation formula for the Manhattan distance between
two points(�1 �1, �1, �1 and P2 x2, y2, z2):

����ℎ����� = �1 − �2 + �1 − �2 + �1 − �2 (1)

The calculation formula for the Chebyshev distance:

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-421-2025 | © Author(s) 2025. CC BY 4.0 License.

424

��ℎ����ℎ�� = ��� �1 − �2 , �1 − �2 , �1 − �2 (2)

The calculation formula for theEuclidean distance:

���������� = x1 − x2 2 + y1 − y2 2 + z1 − z2 2 (3)

The evaluation algorithm formula combining search time and
path length:

S = A × t
mapsize3

+ B × d
mapsize

(4)

Under the premise of ensuring the same distance between the
start and end points, the credibility of the results is ensured by
repeatedly conducting experiments under the same independent
variables by changing the obstacle distribution of random maps.
The following are the result line charts under different
independent variables:

Figure 5. Evaluation Score vs. Map Size

The line chart illustrates the relationship between the
evaluation score and map size under the conditions of a fixed
obstacle ratio of 0.1 and using Euclidean distance as the
heuristic function. The horizontal axis represents the edge
length of the obstacle grid map (in grid units), while the
vertical axis represents the planning evaluation score calculated
according to Formula 4.

Figure 6. Planning Time vs. Obstacle Ratio

The line chart demonstrates the relationship between planning
time and obstacle ratio in a 140×140×140 grid map using
Euclidean distance as the heuristic function. The horizontal axis
represents the obstacle ratio of the grid map, and the vertical
axis represents the required planning time (in milliseconds).

4.2.2Feasibility Verification of GPJ3D-RP Algorithm and
Computational Speed Test Under Different
Granularities:To verify the feasibility of the algorithm, the
path obtained by the algorithm was visualized, and the resulting
image is as follows:

Figure 7. The path planned by the GPJ3D-RP algorithm
between two randomly selected points on the map

To test whether the algorithm outperforms conventional serial
algorithms in terms of time performance, the planning time of
the GPJ3D-RP algorithm is compared with that of the serial
JPS algorithm and the A* algorithm under different
independent variable settings. The results are as follows:

Figure 8. Planning Time Comparison: A vs. JPS vs. GPJ3D-RP.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-421-2025 | © Author(s) 2025. CC BY 4.0 License.

425

The line chart compares the path planning time consumption of
three algorithms across large-scale grid maps under a fixed
obstacle ratio of 0.2 and using Euclidean distance as the
heuristic function, with GPJ3D-RP employing sub-grids of size
16×16×16. The horizontal axis represents the edge length of
the obstacle grid map (in grid units), and the vertical axis
represents the required planning time (in milliseconds). When
the map size reaches 512, the planning time of the A*
algorithm reaches 131,763 ms, and the JPS algorithm's
planning time reaches 45,819 ms, both significantly higher than
that of GPJ3D-RP.

To further accelerate the GPJ3D-RP algorithm while ensuring
path quality, the results of the GPJ3D-RP algorithm under
different granularities are compared. The obtained line charts
are as follows:

Figure 9. GPJ3D-RP Planning Time vs. Sub-grid Granularity

The line chart presents a comparison of path planning times
when GPJ3D-RP adopts sub-grids of different granularities
under a fixed obstacle ratio of 0.2 and using Euclidean distance
as the heuristic function. The horizontal axis represents the
sub-grid size, and the vertical axis represents the required
planning time (in milliseconds).

4.3 Experimental Results Analysis

This experiment compared the path planning efficiency of the
JPS algorithm and the A* algorithm in different grid
environments and validated the performance of the GPJ3D-RP
algorithm under varying block granularities. The experimental
results demonstrate that the JPS algorithm significantly
outperforms the A* algorithm in small-scale grids, while the
GPJ3D-RP algorithm effectively reduces computation time
through its blocking strategy while ensuring path feasibility.

In small grids (20 × 20 × 20 to 160 × 160 × 160), the
computation time of the JPS algorithm is approximately
45%~65% shorter on average than that of the A* algorithm.
Within this grid range, the advantage of the JPS algorithm
gradually increases as the grid size grows. For example, in a 20
×20×20 grid, the average computation time of JPS is 4.83 ms,
while that of the A* algorithm is 9.34 ms, yielding a speedup
ratio of 1.93. Meanwhile, the value of the evaluation function

obtained from the ratio of planning time to map size continues
to increase, indicating that within this range, the expansion of
map size does not significantly impact the speed of the JPS
algorithm. However, as the grid size further increases (e.g., 260
×260×260), the preprocessing overhead of JPS rises, and the
depth of jump point searches increases. Although the
computation speed remains much higher than that of the A*
algorithm, the operational overhead increases substantially,
surpassing the rate of map size expansion. For obstacle
environments of varying densities, the JPS algorithm also
exhibits strong superiority, with the speedup ratio steadily
improving as density increases. In terms of path length, the
paths generated by both algorithms are largely consistent, with
JPS only showing a 3%~5% increase in path length in a few
complex obstacle layouts due to its jumping characteristics,
which remains within an acceptable range.

Through the comparative experiments of the JPS and A*
algorithms in small grids, it can be concluded that the JPS
algorithm outperforms the A* algorithm in path planning across
grids of various sizes, with speedup ratios ranging between 1.8
and 3.5. At the same time, the JPS algorithm demonstrates
excellent planning speed in grid sizes ranging from 20×20×
20 to 160×160×160. However, when the grid size becomes
excessively large, the computation speed of the JPS algorithm
declines significantly. Therefore, the sub-grid size adopted in
parallel grids should not exceed 128×128×128.

The GPJ3D-RP algorithm effectively reduces the
computational burden in large-scale environments through its
blocking strategy. Experiments show that in a 256×256×256
grid with a 0.2 obstacle ratio, the computation time of the
non-blocked JPS algorithm reaches an astonishing 36,593 ms,
while the GPJ3D-RP algorithm with 32 × 32 × 32 blocks
requires only 106 ms, achieving an efficiency improvement of
nearly 60%. The choice of block granularity significantly
impacts performance: overly small blocks (e.g., 4×4×4) lead
to excessively long computation times for the merging phase
and fail to leverage the computational advantages of the JPS
algorithm, instead increasing computation time considerably;
overly large blocks (e.g., 128×128×128) reduce the potential
for parallel optimization. The experimental results indicate that
block granularities between 32×32×32 and 128×128×128
achieve the best balance in most scenarios, improving runtime
speed by 1-3 orders of magnitude compared to serial JPS and
A* algorithms in large-scale environments, while the path
length increases by only about 8%~12%.

In summary, the JPS algorithm exhibits a clear time advantage
in small to medium-sized grids, while the GPJ3D-RP algorithm
maintains high computational efficiency in large-scale
environments through reasonable blocking. Future research
could further optimize the blocking strategy to reduce the
additional overhead caused by inter-block path splicing,
thereby enhancing the algorithm's adaptability in dynamic
environments.

5. Conclusions and Prospects

5.1 Research Conclusions

This study addresses the practical requirements of UAV path
planning in complex battlefield environments by proposing the
GPJ3D-RP algorithm based on the GeoSOT grid. Through
theoretical analysis and experimental validation, the algorithm
has demonstrated significant advancements in multiple aspects.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-421-2025 | © Author(s) 2025. CC BY 4.0 License.

426

The research makes an innovative contribution by combining
the spatial indexing capabilities of the GeoSOT grid system
with the JPS3D algorithm, utilizing multi-resolution grid
partitioning and a parallel computing framework to
substantially improve computational efficiency in large-scale
environments. Furthermore, the introduced hierarchical
planning strategy successfully balances path quality with
real-time performance, effectively meeting the planning
demands of typical battlefield scenarios.

Experimental results confirm that the proposed algorithm
outperforms conventional methods in kilometer-scale urban
UAV path planning tasks, achieving remarkable gains in
computational speed while consistently maintaining high path
quality. These outcomes provide a viable technical approach for
real-time UAV path planning in dynamic battlefield conditions,
marking a meaningful step forward in the field.

5.2 Research Limitations and Future Work

While this study has yielded valuable results, certain limitations
warrant further investigation. The current algorithm primarily
operates in static environments, and its ability to respond to
dynamic obstacles in real time requires additional refinement.
The scalability of the method also needs more extensive
verification, particularly in ultra-large-scale battlefield
environments, to ensure robust performance across diverse
operational settings.

Future research efforts will concentrate on enhancing the
algorithm's dynamic adaptability, strengthening its practical
implementation for seamless integration with military systems,
and investigating potential synergies with emerging intelligent
algorithms to further elevate planning reliability and efficiency.
It is important to emphasize that the practical application of any
new technology demands thorough real-world validation.
Therefore, the proposed method must undergo rigorous testing
in varied operational scenarios to fully assess its effectiveness.
Moving forward, we remain committed to a pragmatic and
progressive research approach, continuously refining and
advancing UAV path planning technologies to meet evolving
battlefield requirements.

Acknowledgements

This work was funded by the Natiomal Key Research and
Development Program of China(2024YFF1400803).

References

Aggarwal S, Kumar N. Path planning techniques for unmanned
aerial vehicles: A review, solutions, and challenges[J].
Computer communications, 2020, 149: 270-299.

Hu X, Cheng C. The three-dimensional data organization
method based on GeoSOT-3D[C]//2014 22nd International
Conference on Geoinformatics. IEEE, 2014: 1-4.

Jones M, Djahel S, Welsh K. Path-planning for unmanned
aerial vehicles with environment complexity considerations: A
survey[J]. ACMComputing Surveys, 2023, 55(11): 1-39.

Luo Y, Lu J, Zhang Y, et al. 3D JPS Path Optimization
Algorithm and Dynamic-Obstacle Avoidance Design Based on
Near-Ground Search Drone[J]. Applied Sciences, 2022, 12(14):
7333

Wang G, Guo L, Duan H, et al. A Hybrid Metaheuristic DE/CS
Algorithm for UCAV Three‐Dimension Path Planning[J]. The
Scientific World Journal, 2012, 2012(1): 583973.

Zhai W, Qi C, Cheng C, et al. Spatial data management method
with GeoSOT grid[C]//2017 IEEE International Geoscience
and Remote Sensing Symposium (IGARSS). IEEE, 2017:
5217-5220

Zhai W, Tong X, Miao S, et al. Collision detection for UAVs
based on GeoSOT-3D grids[J]. ISPRS international journal of
geo-information, 2019, 8(7): 299.

.

.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-421-2025 | © Author(s) 2025. CC BY 4.0 License.

427

	1.Introduction
	1.1Military Requirements

	2.Theoretical Basis
	2.1Jump Point Search
	2.2GeoSOT

	3.GPJ3D-RP Algorithm Design
	3.1Overall Algorithm Framework
	3.2GeoSOT-Based Spatial Decomposition
	3.3Parallel Processing for Local Path Search
	3.4Global Path Integration Method

	4. Simulation Experiment Design and Results Analysis
	4.1Experimental Environment Setup
	4.1.1Hardware Platform Configuration:The following hard
	4.1.2Software Environment Configuration:Operating Syste
	4.1.3 3D Battlefield Model Construction:Terrain Source

	4.2Experimental Design
	4.2.1 Comparison of JPS Algorithm and A* Algorithm in S
	4.2.2Feasibility Verification of GPJ3D-RP Algorithm and
	To test whether the algorithm outperforms conventi

	4.3Experimental Results Analysis

	5. Conclusions and Prospects
	5.1 Research Conclusions
	5.2Research Limitations and Future Work

	Acknowledgements
	References

