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Abstract

Digital Surface Models (DSM), critical for 3D surface representation, rely on dense matching algorithms for accuracy and efficiency.
This review examines two decades of advancements in feature-based, region-based, and deep learning-driven methods. Feature-based
methods such as SIFT and ORB can achieve sub-pixel accuracy in high - texture scenes. However, they have a mismatch rate of
approximately 20% in low - texture areas and are suitable for small - scale photogrammetry. Region - based methods like Semi -
Global Matching (SGM) can achieve a Root Mean Square Error (RMSE) of <0.5 meters in homogeneous terrains. But in complex
urban scenes, they may have errors of about 1.2 meters. These methods are used for large - scale DSM generation and have a
computational complexity of O(n?). Deep learning-driven methods such as GC-Net can reduce the mismatch rate by 30-50% in
low-texture regions, with F1 - scores greater than 0.9. However, they require 20-50 times more GPU memory and are applied to high
- precision DSM in complex environments. Currently, the challenges include the trade-off between accuracy and efficiency and the
interpretability of deep learning. Future directions include Al-driven interdisciplinary integration, enhanced data augmentation, and

addressing complex scene challenges.

1 INTRODUCTION

DSM capture terrain and vertical structures, enabling
applications in smart cities and disaster monitoring. Unlike
DEM, DSM use grids or TIN for multi-scale modeling. LIDAR
and photogrammetry are primary DSM generation methods:
LiDAR achieves sub-meter accuracy via time-of-flight ranging,
while photogrammetry constructs dense 3D point clouds
through image matching. Dense matching algorithms, grounded
in photometric consistency and geometric constraints, optimize
cost functions using dynamic programming or graph-cut
algorithms. SGM balances local-global optimization for robust
DSM generation but struggles with regions. Deep learning
enhances accuracy but suffers from computational complexity
and opacity. This review synthesizes algorithmic evolution,
strengths, and limitations to guide high-precision DSM
advancements.

2 THEORETICAL BACKGROUND

2.1 Fundamental Principles of Digital Surface Models

DSM models 3D surface geometry and vertical structures via
multi-scale grids or TIN. Generated using LiDAR (Mandlburger,
Wenzel, Spitzer, et al., 2017) and stereophotogrammetry
(image-matching dense point clouds), DSM capture true surface
geometry unlike DEM (bare-earth only). Recent advancements
integrate DSM  with orthophotos to enhance 3D building
reconstruction in complex urban scenes, validating its role in
smart cities(Arefi, Reinartz, 2013). GIS-compatible visibility
analysis further leverages DSM for environmental and spatial
planning applications(Ruzickova, Ruzicka, Bitta, 2021).

As shown in Figure 1,The research on DSM has long been
driven by two primary disciplines: computer vision and
geomatics. Computer vision focuses on algorithm optimization
to enhance the accuracy and efficiency of dense matching,
particularly emphasizing robustness in complex scenes. In
contrast, geomatics prioritizes precise geospatial modeling and
multi-source data fusion, emphasizing reliability and
standardization for practical engineering applications.
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Figure 1 Generation Methods of Digital Surface Model

2.2 Core Theories of Dense Matching

Dense matching algorithms generate high-precision 3D point
clouds for DSM by establishing dense  pixel
correspondences(Ma, Wang, Li, et al., 2019), surpassing sparse
methods in density. Reliance on photometric consistency is
challenged by illumination, shadows, and occlusions. To
mitigate this, surface patch validation methods use LiDAR as
geometric references. Zhang et al. proposed a framework
integrating local photometric consistency with LiDAR spatial
constraints(Zhang, Gerke, Vosselman, et al., 2018), enhancing
validation accuracy in complex scenes. Matching cost metrics
include NCC, SSD/SAD(Dall'Asta, Roncella, 2014).
Optimization strategies span local and global methods for
complex scene handling. Geometric constraints, such as
disparity-depth conversion from stereo geometry, refine
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accuracy via spatial relationships.

3 RESEARCH STATUS
3.1 Feature-Based Dense Matching Algorithms

3.1.1 Feature Point-Based Matching

Feature matching is a fundamental technique in computer vision
for establishing correspondences between images. The process
involves three key steps: feature point detection, descriptor
generation, and feature correspondence. In the detection phase,
algorithms identify distinctive keypoints by analyzing local
image structures. These keypoints are then encoded into unique
and robust mathematical representations , such as SIFT’s
gradient histograms or binary patterns in ORB. Among them,
Equation 2-1 is the calculation formula for the gradient
magnitude and direction of the SIFT gradient histogram.

m(x,y) =
VLr+1,y) = Lx=1,))* +(L(x, y+1) = L(x, y =1))’

L(x,y+1)—L(x,y—l))
L(x+1,y)-L(x—-1,y)

arctan(-

The binary pattern in ORB generates a binary code string
through grayscale comparison of predefined point pairs, which
is mathematically expressed as

Finally, similarity metricsare computed between descriptors,
followed by outlier rejection using ratio testing and RANSAC,
enabling precise cross-image correspondences.

Scharstein and Szeliski established a four-stage framework for
dense stereo matching: matching cost computation, cost
aggregation, disparity ~ optimization, and disparity
refinement(Scharstein, Szeliski, 2002). Z Shunyi et al.
introduced a feature-based image relaxation method that
enhances matching accuracy in low-texture regions(Shunyi,
Zuxun, Jianqing, 2004). Wang Jingxue et al. proposed a
multi-view dense matching approach integrating multiple
primitives to mitigate occlusion effects(Jingxue, Qing, Weixi, et
al., 2013). Dai Jiguang addressed heterogeneous high-resolution
satellite image matching challenges via a progressive

multi-feature fusion strategy(Jiguang, 2014). Zhao Hongrui et al.

improved feature point density in blockwise matching by
leveraging feature scale distribution and epipolar geometry
constraints(Hongrui, Shenghan, 2018). Hou Wenguang et al.
combined SURF's robust feature extraction with thin-plate
spline (TPS) transformations for continuous geometric
alignment, advancing stereo image matching(Wenguang, Zicui,
Mingyue, 2010).

Despite widespread use, feature point matching has critical
limitations: illumination variations and noise degrade local
textures, destabilizing descriptors; dynamic objects and
occlusions cause erroneous correspondences; perspective/scale
changes distort local structures, hindering stable keypoint
detection. Repetitive textures trigger mismatches; low-texture
regions have sparse features. Traditional algorithms are
computationally costly, while lightweight methods sacrifice
precision in complex scenarios. Limited descriptor
distinctiveness in ambiguous regions requires deep learning or

multi-modal fusion for robustness. These challenges drive
research into multi-modal fusion and end-to-end deep learning
for efficient, stable matching across diverse conditions.

3.1.2 Deep Learning-Based

Deep learning-based dense matching directly learns pixel-level
inter-image correspondences via end-to-end neural networks,
with three core stages: feature extraction, cost volume
construction, and prediction refinement. Encoders first extract
multi-scale features capturing local details and global semantics.
For stereo matching, 3D cost volumes are built by measuring
feature similarity across disparity hypotheses between left-right
image pairs, then processed via 3D convolutions or iterative
optimization modules to generate disparity maps or optical flow
fields with sub-pixel accuracy.

Wayne Treible et al.proposed a neural network framework,
ground truth generation, and training protocols tailored for
satellite image matching, accompanied by comparative analysis
with existing methodologies(Treible, Sorensen, Gilliam, et al.,
2018). Liu Jin et al. evaluated deep learning performance in
aerial image dense matching using three CNN: MC-CNN,
GC-Net, and DispNet(Liu, Ji, 2019). Teng Wu et al. established
a stereo dense matching benchmark from the ISPRS Vaihingen
dataset, facilitating systematic evaluation of traditional and deep
learning-based methods for digital surface model (DSM)
generation(Wu, Vallet, Pierrot-Deseilligny, et al., 2021). He
Sheng et al. introduced a hierarchical dynamic matching
strategy and constructed the GF-7 stereo dataset, training
Stereo-Net and DSM-Net models to enhance satellite-derived
DSM accuracy(He, Zhang, Chen, et al., 2023).As shown in
Figure 2,in the generation of DSM for the built-up area in
Zhongshan City, the traditional SGM algorithm leads to
adhesion of buildings and blurred edges in the DSM due to
occlusion. In contrast, DSM-Net and Stereo-Net, leveraging the
hierarchical dynamic matching strategy and dataset advantages,
clearly distinguish building clusters and preserve edges. The
elevation analysis of building sections shows that the DSM
generated by these methods features elevation changes more
consistent with reality, fewer gross errors, and a proportion of
erroneous disparity pixels <3.8%, significantly outperforming
the traditional method in elevation accuracy and building
morphology preservation.
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Figure 2 Elevation change curves of house section acquired
from three methods

Despite superior performance, deep learning faces key
challenges: high-res images need massive GPU memory for cost
volume construction, and complex 3D convolutions hinder
real-time deployment. Supervised learning requires costly
annotated real-world data, with synthetic-to-real domain gaps
limiting generalization. Moving objects violate static scene
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assumptions, causing prediction errors in occluded areas.
Low-texture regions have ambiguous matches due to high
feature similarity, and performance drops under extreme
illumination, bad weather, or cross-sensor scenarios. Also,
model compression often sacrifices accuracy for efficiency,
failing to balance real-time processing and high precision.

3.2 Region-Based Dense Matching Algorithm

Region-based dense matching establishes inter-image
correspondence via local pixel patch similarity comparison,
mainly used in stereo vision disparity estimation and 3D
reconstruction. Its core workflow has four steps: 1) Selecting
fixed-size neighborhood windows centered on target pixels as
matching units; 2) Sliding these windows pixel-wise in the
reference image's candidate regions to compute similarity
metrics; 3) Finding optimal matches via maximum similarity
criteria and calculating disparity from pixel offsets; 4) Refining
initial disparity maps with dynamic programming or Markov
Random Fields to resolve local ambiguities.

Lemaire tested varying digital camera geometries and ground
sampling distances (GSD) to enhance point cloud
completeness(Lemaire, 2008). Alobeid A et al. compared least
squares matching, dynamic programming, and semi-global
matching (SGM), providing references for subsequent
studies(Alobeid, Jacobsen, Heipke, 2010). G. Kuschka et al.
applied SGM and total variation minimization to process ISPRS
benchmark datasets(Kuschk, d'Angelo, Qin, et al., 2014). N.
Yastikli et al. generated DSM from Istanbul aerial images using
DLR and Microsoft software for pixel-level dense
matching(Yastikli, Bayraktar, Erisir, 2014). Balenovi¢ I et al.
pioneered DSM generation from Croatian digital aerial stereo
imagery, evaluating vertical consistency with RMSE, mean
error, and standard deviation(Balenovi¢, Marjanovié, Vuleti¢, et
al., 2015). Wu J et al. fused SIFT and SGM for oblique image
dense matching, enabling pixel-wise correspondence for
automated DSM generation(Wu, Yao, Cheng, 2015). Yue Q et
al. proposed an object-space semi-global optimization strategy
for ZY-3 satellite imagery, improving DSM accuracy in
complex terrains(Yue, Gao, Tang, 2016). Li S et al. enhanced
SGM using ADCensus for UAV image dense matching(Li, Li,
Wang, et al., 2017). Yang X et al. balanced computational
efficiency and memory usage via systematic error compensation,
block processing, and disparity map dilation-erosion
algorithms(Yang, Lu, Jiang, et al., 2018). Shao C integrated
geometric constraints and disparity range reduction for
high-precision DSM(Shao, 2019). Zou S et al. optimized
disparity maps with fast bilateral filtering to refine building
edges(Zou, Zou, Pan, et al., 2020). K. Gong and D. Fritsch
developed a stereo-based fusion workflow for robust DSM
generation(Gong, Fritsch, 2019). Yang W et al. introduced
SGBM with adaptive block matching to improve waterbody
DSM accuracy(Yang, Li, Yang, et al., 2019). Wang J et al.
proposed hierarchical SGM for radar-based DSM generation in
vegetated and mountainous regions(Mahphood, Arefi,
Hosseininaveh, et al., 2019).

Fig. 3 shows the cost aggregation in disparity space, core being
minimum cost accumulation along 1D paths from all directions
(e.g., 16 paths). Centered on pixel p, it illustrates how paths in
different directions r undergo dynamic programming (DP)
optimization under disparity d, with the specific formula as
follows:

min{L,.(p—r,d),Lr(p—r,d—l),Lr(p—r,d+1)+PI,
min, L (p—r,i)+ P, —min, L (p—r,k)}

)]

The figure intuitively presents how the cost of each pixel
achieves global optimization through the cost accumulation of
adjacent pixels in the multipath aggregation, balancing the
computational efficiency and matching accuracy.

Minimum Cost Path L Ap d) 16 Paths from all Directions r
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Figure 3 The multipath aggregation process of the SGM
algorithm

N

Region-based dense matching faces inherent limitations: 1)
Sliding window operations exhibit exponential computational
complexity growth with window size and search range,
hindering real-time processing of high-resolution images; 2)
Highly uniform similarity responses across candidate windows
frequently cause mismatches; 3) Window spanning
depth-discontinuous regions at object boundaries leads to
distorted similarity computation; 4) Metrics like SAD/SSD
suffer severe performance degradation wunder uneven
illumination or noise, while NCC only partially mitigates these
issues by relying on local intensity consistency assumptions.

3.3 Other Innovative Strategies

Zhang and Gruen enhanced DSM accuracy by leveraging
multi-view coverage and high-quality data from IKONOS
imagery(Zhang, Gruen, 2006). Fig. 4 shows the Shaded Terrain
Model generated by multi-view matching from the IKONOS
triplet images . Based on the multi-view matching results
(fusing feature points, grid points, and edges), this model
verifies the algorithm's capability to generate DSM for
large-scale complex terrains.

#
Figure 4 The shaded terrain model generated from
IKONOS triplet images
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Pablo d’Angelo et al. proposed region-based outlier removal for
fixed-view geometry sensors like Cartosat-1 and ALOS
PRISM(d'Angelo, 2010). Irschara A et al. achieved global
optimization in aerial image dense matching through multi-view
plane-sweep and global energy minimization(Irschara, Rumpler,
Meixner, et al., 2012). Jiayuan Li et al. generated DSM via
SIFT seed point matching and Poisson surface reconstruction(Li,
Ai, Hu, et al.,, 2014). Mandlburger G et al. improved DSM
quality by integrating LiDAR reliability with dense image
matching (DIM) point clouds(Ma, Wang, Li, et al., 2019). Yang
W et al. (2019) introduced multi-path dynamic programming
with reliability estimation for efficient DSM generation(Yang,
Li, Yang, et al., 2020). Mahphood A et al. implemented a DSM
workflow involving epipolar image generation, registration, and
SGM-based stereo matching(Mahphood, Arefi, Hosseininaveh,
et al., 2019). Feng S et al. proposed a DEM generation method
using multi-view image offsets on ground planes(Feng, Lin,
Wang, et al, 2020). Yang W et al. addressed SGM's
computational load via minimum-cost path and disparity
candidate weighting(Yang, Zhang, Sun, et al., 2024). Yang X et
al. employed millimeter-wave InSAR to overcome imaging
challenges in inaccessible areas, generating DSM and DOM
products(Yang, Kang, Wang, et al., 2024).

Innovative dense matching methods for DSM generation still
face three core challenges: scenario adaptability,
efficiency-accuracy trade-offs, and robustness in complex
environments. For instance: Zhang and Gruen rely on
multi-view, high-quality data, while Feng S assumes flat
terrains, both struggling with occlusions or complex topography;
Irschara et al.’s global optimization and Yang et al.’s dynamic
programming suffer from high computational complexity, while
SGM variants remain constrained by disparity search ranges;
Mandlburger et al.’s LiDAR fusion relies on costly hardware.
Future breakthroughs require lightweight architectures, adaptive
multi-modal fusion, and semantic-aware enhancements to
overcome current bottlenecks.

4 RESEARCH CHALLENGES AND CONTROVERSIES

4.1 The Trade-Off Challenge Between Accuracy and
Computational Complexity

The accuracy-efficiency trade-off remains a critical challenge in
dense matching algorithms. While Semi-Global Matching
(SGM) achieves pixel-wise accuracy in 3D point clouds, its
computational demands escalate exponentially with large
datasets or scenes of significant depth variation due to extensive
pixel storage and correspondence calculations(Rothermel, Haala,
2012). Similarly, d’Angelo’s outlier removal method(d'Angelo,
2010) and commercial tools like MATCH-T DSM(Lemaire,
2008) face inherent complexity growth to maintain precision.
Although optimizations like Yang Xingbin et al.’s SGM
variant(Lemaire, 2008) improve efficiency for high-resolution
data, excessive memory consumption and prolonged runtime
persist for large-scale applications.

4.2 Matching Consistency Challenges in Complex Scenes

Matching consistency in complex scenes remains a critical
challenge for dense matching algorithms, directly impacting

accuracy and computational efficiency. G. Mandlburger et al.
demonstrated that shadows in narrow alleys degrade image
contrast, leading to mismatches(Mandlburger, Wenzel, Spitzer,
et al., 2017). MahphoodA et al. identified frequent mismatches
in ocean and high-rise areas due to complex
geometries(Rothermel, Haala, 2012), while AlobeidA et al.
observed similar issues with building occlusions and abrupt
height changes in urban DSM(Alobeid, Jacobsen, Heipke, 2010).
Maltezos et al. further noted that mismatches in urban scenes
increase surface roughness and boundary distortions(Maltezos,
Kyrkou, Ioannidis, 2016).

4.3 Interpretability Dilemma of Deep Learning Models

Deep learning-based dense matching algorithms face critical
interpretability challenges that hinder practical reliability and
optimization. Treible et al. demonstrated neural networks'
efficacy in satellite-derived DSM generation(Treible, Sorensen,
Gilliam, et al., 2018), yet their decision-making mechanisms
remain opaque under complex imaging conditions . A
promising solution is integrating gradient-weighted class
activation mapping (Grad-CAM) into models like DSM-Net to
visualize pixel-level attention mechanisms. For instance,
Grad-CAM generates heatmaps indicating which image regions
dominate the disparity prediction, enabling users to verify
whether the model relies on geometrically meaningful features
rather than spurious correlations (He, Zhang, Chen, et al., 2023).
Wang et al.(Wang, Gong, Hu, et al., 2021) highlighted deep
learning's dependency on extensive training data and its lack of
explainability in complex scenarios, raising reliability concerns.
Liu et al.(Liu, Ji, 2019) further confirmed limitations in remote
sensing applications, noting immature model architectures and
unintuitive decision processes.

4.4 Generalizability Limitations of Algorithms

Existing dense matching algorithms face scenario-dependent
adaptability limitations, particularly in complex environments
like forests and urban areas. Balenovi¢ et al. observed reduced
DSM accuracy in forests due to structural complexity and
sensitivity to environmental factors(Balenovi¢, Marjanovié,
Vuleti¢, et al., 2015). Ghuffar highlighted challenges in deriving
tree heights from satellite data, emphasizing texture
homogeneity’s impact on robustness(Ghuffar, 2016). While K.
Gong and Fritsch’s multi-view workflow excels in satellite data,
its generalizability to heterogeneous datasets (e.g., UAV
imagery) remains unverified(Gong, Fritsch, 2019).

4.5 Interlinked Challenges of Data Quality and Algorithm
Robustness

Data quality critically impacts the robustness of dense matching
algorithms. Kuschka et al.identified sensor oversaturation and
texture scarcity as key disruptors, degrading matching
reliability(Kuschk, d'Angelo, Qin, et al., 2014). Kim et al.
further demonstrated that outliers and unmatched regions
propagate errors into DSM reconstructions, particularly in
heterogeneous terrains. Challenges like data noise, missing
inputs, and sensor miscalibrations amplify ambiguities,
constraining algorithmic performance(Kim, Rhee, Kim, 2018).
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5 CONCLUSION

Dense matching algorithms for DSM face a persistent
accuracy-efficiency-adaptability trade-off, with traditional
methods like SGM balancing local-global optimization but
struggling in textureless regions and large-scale datasets due to
exponential computational costs. Deep learning models, while
achieving superior accuracy through end-to-end feature learning,
suffer from high computational demands, interpretability
challenges, and domain-specific limitations. Complex scenes
exacerbate these issues, as shadows, occlusions, and terrain
variations degrade matching consistency. Future advancements
require Al-driven optimizations: adversarial training to enhance
robustness against perturbations, lightweight architectures for
real-time  processing, and interdisciplinary integration.
Cross-domain collaboration and hybrid
frameworks—combining photogrammetry, GIS, and Al—are
critical to address scalability and adaptability gaps, enabling
high-precision DSM generation for smart cities, disaster
monitoring, and geospatial applications.

6 FUTURE DIRECTIONS

The deep integration of Al and multi-source remote sensing
technologies will usher in new opportunities for the
development of dense matching algorithms in DSM. Future
research may focus on the following directions: First,
prioritizing multimodal fusion of LiDAR and optical imagery to
address accuracy and robustness challenges. This framework
integrates LIDAR's geometric precision (sub-meter accuracy via
time-of-flight ranging (Mandlburger, Wenzel, Spitzer, et al.,
2017)) with optical imagery's dense texture information,
leveraging their complementary advantages: LiDAR calibrates
optical matching errors through spatial constraints, while optical
data enriches LiDAR's sparse point clouds with surface details
via cross-modal attention mechanisms that fuse semantic
features from UNet++-based segmentation(Yang, Li, Yang, et
al., 2019). Feasibility-wise, this approach requires NVIDIA
A100 GPUs (40GB) for 48-72 hours of training on datasets like
ISPRS Vaihingen and ZY-3+airborne LiDAR, with inference
achievable on RTX 3090s (24GB) within 5 minutes per scene.

Second, constructing lightweight and adaptive deep learning
architectures to balance computational efficiency and accuracy
via NAS and knowledge distillation.

Third, advancing synthetic data generation driven by GAN and
physics-based models to alleviate data scarcity constraints and
improve cross-domain generalization.

Fourth, develop explainability techniques to boost trust and
refine algorithms. Integrate edge computing and distributed
processing for large-scale DSM applications in urban
monitoring and disaster response. Interdisciplinary collaboration,
open-source ecosystems, standardized evaluation frameworks,
and shared datasets are also vital for advancing geospatial
intelligence.

Fifth, addressing cross-sensor generalization challenges through
a dual-stage transfer learning framework: first, pre-training a
common feature extractor on the Wuhan University-Stereo
dataset using contrastive learning to capture invariant features
like geometric structures and semantic categories, then

fine-tuning with domain adversarial neural networks (DANN)
for target sensors (e.g., GF-7 satellite imagery), where gradient
reversal layers minimize distribution gaps between source
domains (UAV) and target domains while preserving
pre-learned features.

Although certain advancements have been achieved in dense
matching algorithms for digital surface models, challenges still
persist. In the future, it will be necessary to conduct in-depth
exploration in multiple directions, break through existing
technical bottlenecks, and promote the sustained development
of'this field to meet practical application requirements.
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