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Abstract

Accurate building contour extraction is critical for urban modeling but remains challenging due to limitations in single-source point
clouds. LiDAR data suffers from sparsity and sensitivity to surface reflectance, while photogrammetric point clouds exhibit noise
under occlusion and lighting variations. To overcome these constraints, we propose an end-to-end framework combining multimodal
3D fusion and deep geometric co-optimization. First, LIDAR and photogrammetric point clouds are fused through ICP registration,
avoiding 2D-3D misalignment. Building points are then segmented using PointNet++. A novel Z-axis threshold projection is applied
during projection, eliminating rooftop interference by constraining projections to structural walls. Initial contours extracted via
Alpha-shapes undergo adaptive regularization: 1) Douglas-Peucker simplification, 2) angle-constrained vector optimization
rectifying non-orthogonal corners. Validated on Ming and Qing heritage structures, our method achieves 3.7% area error (vs. 17.8%
for CloudCompare) and 2.6% perimeter error. This represents the first unified pipeline combining 3D-3D data fusion with deep
learning and geometric regularization, offering a promising approach for automated building modeling in complex urban and heritage

environments.

1. Introduction

3D reconstruction of urban buildings is a central task in digital
city development, with building contour extraction being a key
component. As urbanization accelerates, the demand for high-
precision 3D models in urban management, planning, and
design continues to grow. Consequently, point cloud contour
extraction is increasingly recognized as a fundamental 3D
modeling technique.

Light Detection and Ranging (LiDAR) offers high accuracy,
active acquisition, and vegetation penetration capabilities,
making it a valuable source of 3D spatial data. However, its
relatively low point cloud density and sensitivity to weather
conditions and surface reflectance can limit its effectiveness. In
contrast, photogrammetric point clouds provide high-density
data with rich texture and geometric details, making them well-
suited for detailed urban modeling, though their quality is
influenced by lighting, image clarity, and occlusion. Relying on
a single data source often fails to meet the requirements for
high-precision and full-coverage building outline extraction in
complex urban environments. Fusing LiDAR  with
photogrammetric point clouds allows each to compensate for
the other's limitations, enhancing spatial consistency and detail
representation. This integration provides reliable data support
for the accurate depiction of building structures. Compared to
fusing 2D imagery with point clouds, the integration of two 3D
data sources ensures better spatial alignment and is more
suitable for geometric analysis. As a result, this approach offers
distinct advantages for extracting accurate and complete 3D
building outlines and has become a key research focus in urban
modeling.

Moreover, advances in computer vision and Al, particularly
deep learning, have significantly improved point cloud
processing efficiency and accuracy. These techniques enable

more intelligent and automated extraction of building contours,
further advancing the field.

This paper proposes a building contour extraction method
fusing LiDAR and photogrammetric point clouds. By
integrating deep learning and contour optimization strategies,
the proposed method achieves high-precision contour extraction.
Its effectiveness and practicality are demonstrated through
validation on real-world data.

2. Related work

Building outline extraction is a key technology in fields such as
Geographic Information Systems (GIS), urban planning, and
disaster monitoring. With the rapid development of remote
sensing and computer vision technologies, significant
advancements have been made in data acquisition and
processing (Li et al., 2015; Wang and Tan, 2020; Wang and
Kim, 2019). The current methods for building outline extraction
can be broadly categorized into three types based on different
data sources: high-resolution remote sensing imagery, point
cloud data, and multi-source remote sensing data fusion.

2.1 Building Outline Extraction from High-Resolution
Remote Sensing Imagery

The first category involves extracting building outlines from
high-resolution remote sensing imagery. For example,
integrating vector data can optimize outlines, better reflecting
building details and improving match with reality (Tang et al.,
2023). However, remote sensing imagery can sometimes suffer
from issues such as shadows, occlusions, and poor contrast, as
well as limitations in estimating accurate height information.
Additionally, with the continuous evolution of computer vision
technologies, many researchers have used Convolutional Neural
Networks (CNNs) for automatic building outline extraction. For
instance, the PRCUnet deep learning model, based on the U-Net
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architecture, has been developed for building extraction and
outline optimization from high-resolution remote sensing
imagery (Xu et al., 2021). The Attention-based Feature Pyramid
U-Net (AFP-Net) focuses on different building structures in
high-resolution imagery, enabling efficient extraction of
building outlines (Yu et al., 2022).

2.2 Building Outline Extraction from Point Cloud Data

The second category involves building outline extraction based
on point cloud data. Various methods are employed for
extracting building point clouds. Some use filtering techniques
that leverage the differences in features such as height and
density between buildings and their surrounding environment to
filter out non-building point clouds. For example, LiDAR data
is used to acquire side-view point clouds of buildings, and a
method based on point cloud density differences after projection
is proposed for building outline extraction. Statistical Outlier
Removal (SOR) filtering and adjacent-angle criteria are used to
remove non-building points (Chen et al., 2023). Solely image-
based 3D change detection is challenging, while traditional
point cloud methods suffer from low automation and accuracy.
As a result, some researchers have introduced deep learning-
based point cloud semantic segmentation methods, such as
RandLA-Net, to improve the accuracy and automation of
change detection (Meng et al., 2022). After obtaining building
point clouds, the Alpha-shapes algorithm is often used to extract
building outlines. This method is robust and easy to implement,
but the extracted outlines are susceptible to noise. To overcome
these drawbacks, researchers have continuously improved the
process, proposing modifications to the Alpha-shapes algorithm
and using techniques such as the Douglas-Peucker algorithm
and orthogonal optimization to correct irregularities,
inaccuracies, and lack of smoothness in the building outlines
(Saalfeld, 1999; Gardiner et al., 2018).

2.3 Building Outline Extraction via Multi-Source Remote
Sensing Data Fusion

The third category is characterized by the fusion of multi-source
remote sensing data to achieve complementary advantages. For
example, building extraction can be performed by combining
point clouds and imagery. This method utilizes attention
mechanisms to drive the joint extraction of buildings,
leveraging channel attention mechanisms to enhance effective
semantic features in the channels and spatial attention
mechanisms to enhance effective semantic features in spatial
locations, thereby improving the precision of building extraction
(Di, 2022). By extracting building outlines from airborne point
clouds and aerial imagery, fitting line segments, and
determining building corner points, precise registration and
fusion of the two data types can be achieved. Furthermore,
spectral information is used to cluster and separate land cover,
combined with elevation data to accurately extract building
outlines (Cheng et al., 2016). Some researchers have proposed
an extraction method based on the fusion of LiDAR point
clouds and orthophoto imagery using an improved genetic
algorithm (IGA), proving its applicability in practical
production (Lai et al., 2024). Addressing issues such as point
cloud sparsity, hyperspectral variability, urban object diversity,
environmental complexity, and data inconsistency, methods
have been proposed for automated building detection and
regularization using multi-source data, extracting and
normalizing building outlines by combining point cloud and
orthophoto features (Gilani et al., 2016).

Despite growing interest, most fusion methods face limitations:
low geometric resolution, poor scalability, or reliance on
heuristic rules. Some methods fuse 2D imagery and 3D point
clouds, which introduces challenges in co-registration and
inconsistent semantic labeling. Others are constrained by the
sparsity or noise inherent in a single data modality. Moreover,
many approaches lack robustness when applied to complex roof
structures or heritage architecture, which are prevalent in our
study area. These limitations highlight the need for a more
unified, 3D-based, deep learning-enabled fusion strategy.
Therefore, this study takes into account the respective strengths
and limitations of photogrammetric and LiDAR point clouds,
aiming to integrate them into a more comprehensive and
accurate multi-source dataset. Through data fusion, the
shortcomings of individual sources can be mitigated, enabling
complementary advantages. Furthermore, by incorporating deep
learning techniques, the overall quality and reliability of the
fused data can be significantly enhanced.

3. Data Preparation
3.1 Study Area

Most existing studies, both domestic and international, have
focused on building outline extraction in urban areas.
Considering the vast geographical diversity and architectural
variety across China, this study adopts a unique perspective by
selecting a rural area as the research focus, with the main
structures being ancient buildings. This choice not only
highlights the distinctiveness of the dataset but also emphasizes
the cultural significance of ancient architecture as heritage,
making the study both meaningful and practically representative.

The study area is located in Lidukou Village, Jia County,
Pingdingshan City, Henan Province, China. It covers
approximately 0.6 square kilometers, with a length of about 780
meters and a width of approximately 770 meters, as shown in
Figure 1. The buildings in this area are primarily traditional
structures, including those from the Ming Dynasty, the Republic
of China period, and the Qing Dynasty. The village features a
variety of elements such as buildings, rivers, vegetation, and
transportation routes.
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Figure 1. Remote sensing image of the study area

3.2 Multimodal Data Acquisition

3.2.1 Photogrammetric Point Cloud Acquisition:
Unmanned aerial vehicle (UAV) aerial photography technology
was first employed to collect high-resolution images, with
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ground control points (GCPs) deployed throughout the study
area in combination with a global positioning system. A DJI
Phantom 4 RTK drone was used for image acquisition, with
flight parameters listed in Table 1. A total of 1,677 images were
captured using real-time kinematic (RTK) positioning.

Three GCPs and two check points were evenly distributed for
accurate georeferencing. The measurements were conducted
using a Qianxun RS6 GNSS receiver, which achieved a
horizontal accuracy of £(8+1 X 10 D) mm and a vertical
accuracy of £(15+1X 10 D) mm under CORS mode.

Flight Forward Side Overlap Gimbal
Altitude (m) Overlap (%) (%) Angle(°)
90 70 80 -60°

Table 1. Flight Parameters of the Phantom 4 RTK

The dense point cloud reconstructed using photogrammetry was
evaluated for accuracy through a comparative analysis of
checkpoint coordinates. The comparison between the model
coordinates of all ground control points (GCPs) and checkpoints
and their corresponding ground truth values shows that both the
horizontal position errors (X/Y directions) and elevation errors
(Z direction) are within & 3 cm. This level of error strongly
indicates that the reconstructed model possesses high geometric
accuracy, meeting the precision requirements for building
contour extraction.

3.2.2 LiDAR Point Cloud Acquisition: The second part
involves the collection of LiDAR point cloud data using an
M300 equipped with a DJI Zenmuse L1 sensor for flight-line
scanning. A total of two flight missions were conducted, with
the specific flight parameters listed in Table 2. The collected
data were imported into DJI Terra for point cloud reconstruction,
with the point cloud density set to 100% and an effective point
cloud range of 300 meters.

Flight Flight Pulse Repetition ~ Scan Rate
Altitude (m)  Speed (m/s) Rate (kHz) (kHz)
80 6m/s 240 720

Table 2. Flight Parameters of the Matrice 300 (M300)

3.2.3 Data Fusion: In this study, the Iterative Closest Point
(ICP) algorithm embedded in CloudCompare was used to
register the photogrammetric point cloud with the LiDAR point
cloud, thereby integrating them into multimodal data. This
algorithm is a classical method for point cloud registration,
capable of spatially aligning two point clouds. The registration
process consists of two stages: an initial coarse registration and
a fine registration. The final output is a transformation matrix
that ensures consistency between coordinate systems.

4. Methodology

The objective of this study is to fuse LiDAR point clouds and
photogrammetric point clouds to form multimodal data, and to
perform building point cloud classification using the deep
learning neural network PointNet++. During planar projection, a
Z-axis threshold method reduces errors from point cloud
misclassification and complex rooftops. Subsequently, the
Alpha-shapes algorithm extracts initial contours, followed by
Douglas-Peucker key point extraction. Finally, the contour lines

formed by these key points are regularized to accurately reflect
the true geometric shapes of the buildings within a certain
precision. The experimental procedure is illustrated in figure 2.
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Figure 2. Experimental Procedure

4.1 Building Point Cloud Extraction Based on PointNet++

4.1.1 PointNet++ Network  Architecture Design:
PointNet++ is a deep learning algorithm for point cloud
processing. A schematic diagram of the PointNet++ network is
shown in Figure 3. It extracts local features through hierarchical
sampling and multilayer perceptrons (MLPs), and then
progressively aggregates these features using set abstraction
operations to generate a global feature representation of the
point cloud. This approach significantly enhances the
network” s ability to understand 3D spatial structures, enabling
PointNet++ to perform effectively in tasks such as 3D shape
analysis, object classification, and semantic segmentation.

skip link

Hierarchical point set feature learning

—
unit
pointnet

— P
""" : interpolate

sampling &~ pointmet ~ sampling & pointnet
grouping grouping

set abstraction set abstraction

pointnet fully connected layers

Figure 3. Architecture of the PointNet++ network

A multi-scale grouping strategy (Figure 4) enriches feature
extraction with three scale groups.
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Figure 4. Multi-Scale Grouping

This approach enhances the richness of point cloud features. In
this network architecture, the point cloud data is first divided
into multiple sets of points based on predefined scale
parameters. These scale parameters, which typically include
both smaller local scales and larger global scales, can be
adjusted according to specific requirements. For each scale
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group, a PointNet layer is used for feature extraction. This layer
is capable of handling the unordered nature of point sets and
extracting local features for each point. Next, features from
different scales are fused together. The fusion can be performed
through simple concatenation or more advanced methods such
as attention mechanisms. The fused features are then passed as
input to the next layer, and the above process is repeated until
the desired network depth is reached.

4.1.2 PointNet++ Model Parameter Settings: PointNet++
performance is highly sensitive to network parameter
configuration. Therefore, careful tuning is required during
experiments to achieve optimal segmentation or classification
results. In this study, the model pointnet2 sem seg msg is
adopted, and the specific parameter settings are shown in Table
3.

Batch  Block  Number Learning

Size Size Points Rate Stride  Optimizer
64 1*1 4096 0.001 0.6 Adam
Table 3. Parameters of the PointNet++ network
4.1.3  Evaluation Metrics: To evaluate the performance of

the PointNet++ network model during the experiment,
Intersection over Union (IoU) is used to calculate the ratio of
the intersection to the union between the predicted segmentation
region and the ground truth. In addition, Point Accuracy (Point
Acc) is also used as an evaluation metric. In this experiment, the
evaluation of point cloud semantic segmentation accuracy
categorizes the segmentation results into four cases: True
Positive (TP), False Positive (FP), True Negative (TN), and
False Negative (FN). Here, “ positive” and “ negative ”
indicate whether each point belongs to a certain class, while
“true” and “false” refer to whether the predicted class of
the point matches the ground truth label. Therefore, a higher
proportion of true results and fewer misclassifications (false
positives and false negatives) generally indicate better
segmentation accuracy of the network model. The specific
formula for calculating the Intersection over Union (IoU) is
shown in Equation 1.

P

- (1)
TP + FP + FN

10U

Among the two accuracy evaluation metrics mentioned above,
the IoU value is used as the primary evaluation metric for the
experiment, while the Point Accuracy (Point Acc) metric is
presented as a reference to indicate the overall accuracy.

4.14 Data Augmentation: Deep learning models typically
require large datasets to achieve good generalization. To
address data scarcity, we employ six data augmentation
strategies in PointNet++ to expand the original point cloud
dataset and enhance model robustness under various scenarios,
as illustrated in Figure 5. These include: (1) random shuffling of
point clouds and their labels; (2) small random rotations of
points and normals along the XYZ axes (Fig. 5a); (3) random
scaling (Fig. 5b); (4) random translation by adding a
displacement vector to each point (Fig. S¢); (5) adding noise for
local perturbation; and (6) random point dropout based on a
predefined dropout rate during each training iteration (Fig. 5d).
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Figure 5. Illustration of data augmentation methods: (a)
Random rotation, (b) Random scaling, (¢) Random translation,
(d) Random dropout .

4.2 Building Contour Extraction

4.2.1 Z-Axis Threshold Method: The building point cloud
data obtained through PointNet++ is three-dimensional. To
more accurately extract the edge points of each building wall, it
is necessary to project the data onto the XOY plane to obtain the
building's planar projection points. However, due to the
complexity of building roof structures and the randomness of
point cloud acquisition, directly ignoring the Z-axis for
projecting the roof could result in discrepancies between the
obtained area and the actual situation, leading to lower accuracy.

Therefore, a Z-axis threshold is set during the projection. This
threshold is established above the ground but below the roof
height range, ensuring that the projection plane is within the
main structure of the building, rather than directly using the roof
as the projection reference. The Z-axis threshold is set above a
certain height from the ground to avoid mistakenly identifying
non-building points on the ground as building points when
using PointNet++ to extract the building point cloud. Such
missegmentation could result in the projection including non-
building ground points, thereby affecting the accuracy of the
analysis. At the same time, the threshold is set below the roof
height to account for the possibility that some buildings' roof
structures may extend beyond the main body. If the roof is used
as the projection reference, the projected area could exceed the
actual area.

Considering these factors, this experiment proposes setting a Z-
axis threshold, ensuring that the projection range lies within the
main structure of the building. This ensures that the projection
result more closely aligns with the actual geometry and layout
of the building, and the experiment demonstrates that this
method not only effectively eliminates the interference of non-
building points but also avoids the influence of complex roof
structures on the projection surface, providing strong support
for subsequent building structure analysis.

4.2.2 Contour Extraction Based on the Alpha-Shapes
Algorithm: This experiment adopts the Alpha-Shapes
algorithm to extract building contour lines. The Alpha-Shapes
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algorithm is a geometric method used to extract boundary
outlines from scattered point sets. Its essence lies in the "empty
circle" principle to determine whether the connection between
two points constitutes a boundary segment.

Consider a point set P containing n points, these n points can
potentially form nx(n—1) directed line segments. The next step
is to determine which of these segments constitute the boundary
of the point set.

For any two points P; and P> within the point set P, a circle
with radius o is drawn through them. If there are no other points
inside this circle, then P; and P; are considered boundary points,
and the line segment P;P, is identified as a boundary edge.
Given the coordinates of point P; as (x;,y;) and point P, as
(x2,y2), the center P; of the circle passing through these two
points can be computed using Equation 2. Once the center is
obtained, whether other points fall within the circle is
determined by comparing the distance from each point to the
circle’s center with the radius a. Traverse all possible points and
retain the boundary segments that meet the conditions. All
retained boundary segments together form the final Alpha-
Shapes contour.

1
X; =X 7LE(xz _X1)+L(Yz _Y1)

Y3=y1+%(YZ_YI)+L(X1_X2) 2)

where  xi, y1 = Coordinates of P;
X2, y2 = Coordinates of P
x3, y3 = Coordinates of P3
L = Factor for computing the circle center coordinates

o = Parameter used to control the radius of the circle

4.3 Contour Line Regularization

Due to the inherent randomness of point cloud data acquisition
and the uneven reflection and scattering of laser beams, the
initial contour lines directly formed by connecting edge points
often do not perfectly match the true outlines of buildings.
Typically, these initial contours are rough, with numerous
inflection points, and exhibit a “zigzag” shape (as shown in
Fig. 6). Such contours cannot be directly applied to 3D building
reconstruction  or  architectural ~ mapping.  Therefore,
regularization smooths contours to better reflect true boundaries.
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Figure 6. Initial Contour Line

4.3.1 Douglas-Peucker Keypoint Detection: The Douglas-
Peucker algorithm is used to compress large amounts of

redundant graphical data points and extract only the essential
ones. As a classic algorithm for line feature simplification, it
simplifies curves into polylines by sampling, while preserving
the skeletal structure of the original geometric shape to a certain
extent.

First, the starting and ending points of the curve to be processed
are connected to form a straight line. The perpendicular
distances from all other points on the curve to this line are
calculated, and the maximum distance value D, is identified.
A simplification threshold ¢ is set. If Dyax < &, all intermediate
points on the curve are discarded, and the straight line segment
is used as an approximation of the curve. If Dya > ¢, the point
with the maximum distance is used as a boundary to divide the
curve into two parts. The above process is then recursively
applied to each part until all points have been processed. When
all curve points are processed, the segmented points are
connected in sequence to form a polyline, which serves as an
approximation of the original curve. The result of key point
extraction using the Douglas-Peucker algorithm is shown in
Figure 7.
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—B— feature-curve
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Figure 7. Key Point Extraction Using the Douglas-Peucker
Algorithm

4.3.2  Optimization of Contour Key Points: To address the
issue of adjacent edges not being perpendicular at building
corners, key point optimization is required. The principle is
illustrated in Figure 8, where the blue lines represent the
original contour and the red lines represent the boundary after
key point optimization. First, the longest edge direction is
selected as the reference for optimization. Then, the angle
between each pair of vectors is calculated. If the dot product of
two vectors is zero, it indicates a right angle. If the dot product
is non-zero, it is checked against a threshold. If the threshold is
exceeded, the position of the key point needs to be adjusted to
change the direction and magnitude of the vector such that the
dot product becomes zero, thereby achieving perpendicularity.

B Y
re et =

Figure 8. Key Point Optimization Principle
5. Experiments and Results

The experimental setup included a computer configured with an
NVIDIA GRID RTX8000-24Q GPU and an Intel(R) Core(TM)
i5-8300H CPU operating at 2.30 GHz. Software: A virtual deep
learning environment on Windows OS. The Python version
used was 3.7, with PyTorch 1.7.0 (GPU version) and CUDA
10.1. All other libraries were compatible with this setup.
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In this study, ContextCapture Center was used to reconstruct
point clouds from aerial photogrammetric data and to generate
accuracy reports. For LiDAR data, DJI Terra was employed to
process the raw data into point clouds. Point cloud tiling and
labeling were subsequently performed using CloudCompare, a
software platform that supports a variety of 3D point cloud
processing algorithms.

5.1 Point Cloud Segmentation Based on PointNet++

5.1.1 Dataset Preparation and Labeling: Since the data
acquisition platforms have an extended capture range, the
merged point cloud obtained after registration is first trimmed to
remove excess points outside the boundaries of the study area.
Due to limitations in computational power, the entire point
cloud cannot be directly used for training and testing. Therefore,
the point cloud is divided into smaller, similarly sized blocks
and split into training and testing datasets. In this experiment,
the ratio of the training dataset to the testing dataset is set at 2:1.
The partial area of the training dataset is shown in Figure 9, and
the partial area of the testing dataset is shown in Figure 10.

Aea 1 Area 2

areas, serving as input for subsequent supervised learning using
the PointNet++ deep learning model.

5.1.2  PointNet++ Segmentation Results and Analysis: The
segmentation results obtained after training and testing with the
collected multi-source fused dataset using PointNet++ are
shown in Figure 11.

Area 3 Area 4

Figure 9. Sample area from the training dataset

Area 1
Area 2

Area 3

Figure 10. Sample area from the testing dataset

Each partitioned point cloud region was imported into
CloudCompare for label creation. Within each region, building
points and non-building points were assigned scalar values of 0
and 1, respectively. After labeling all regions, the data were
saved separately according to the designated training and testing

(a) Ground Truth labels (b) PointNet++

segmentation results
Figure 11. Comparison of Point Cloud Semantic Segmentation
Results

The point cloud semantic segmentation accuracy of the model is
shown in Table 4. Although there is a certain degree of
confusion in the experimental area, the Intersection over Union
(IoU) values remain above 0.8. This indicates that the accuracy
generally meets the requirements. When evaluating accuracy,
we should not only consider the IoU values but also assess them
in relation to the specific requirements of the task. In this study,
the primary objective is to extract point cloud data of buildings.
Based on the segmentation results, this goal has been effectively
achieved. Therefore, it can be concluded that the experimental
results meet the expected requirements.

Area TIoU
Area 1 0.8890
Area 2 0.8846
Area 3 0.8109
Area 4 0.8123
Area 5 0.8222
Area 6 0.9391

Table 4. Accuracy Metrics for PointNet++ Segmentation

5.2 Building Contour Extraction Results

5.2.1 Extraction of Initial Contour Lines: The building
point cloud extracted through the PointNet++ network is
projected onto the XOY plane. This step aims to eliminate the
height information along the Z-axis, thereby focusing on the
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geometric shape of the building on the horizontal plane. The
Alpha-shapes algorithm is then applied to process the projected
point cloud to accurately extract the boundary points of the
building, with the results shown in Figure 12.

S0 Project & = Alpha
— = Hrnd]

i shapes | ... ..

Figure 12. Contour Extraction Results

5.2.2  Contour Regularization: The result of extracting key
points from the initial building contour using the Douglas-
Peucker algorithm is shown in Figure 13. The blue points
represent the initial boundary points obtained through the
Alpha-shapes algorithm, which closely follow the actual
building outlines and depict the geometric characteristics of the
structures. The red points are the selected key points retained
after filtering, providing a simplified yet representative outline
of the building > s geometry. As shown in the figure, the
number of points is significantly reduced, and the spatial
distribution of the key points is more reasonable, effectively
capturing the main corners and changes in the building shape.

Figure 13. Key Point Extraction Result

Saving and connecting the red points in Figure 13 to form a line
still cannot serve as the final building contour. As shown in the
left image of Figure 14, connecting these points results in an
irregular shape. Therefore, further regularization is needed to
transform it into the shape shown in the right image, which
presents a rectangular form with all angles being right angles.

L]

Figure 14. Building contour before (left) and after (right)
regularization.

5.3 Accuracy Verification and Analysis

To evaluate the feasibility and accuracy of the proposed method,
building area and perimeter were selected as key metrics and
compared with ground truth measurements and the building
footprints fitted by CloudCompare from point cloud data.

As illustrated in Figure 15 (left), the contours extracted by
CloudCompare approximate the overall building geometry at a
macro level. However, noticeable discrepancies are observed in
local details, resulting in reduced geometric fidelity. In contrast,

the contours extracted by our proposed method (Figure 15, right)

closely match the actual building shapes, demonstrating higher
consistency in both visual structure and boundary alignment.
These results suggest that although CloudCompare provides a
coarse approximation, it lacks the precision required for

accurate contour delineation, especially in detailed structural
modeling.

Figure 15. CloudCompare Fitting Results vs. Actual Geometry

The quantitative results presented in Tables 5 - 7 further
confirm the superiority of our method. In terms of area
extraction (Table 6), CloudCompare yields an average relative
error of 17.8%, while our method achieves a significantly lower
error of 3.7%, representing a 79.2% improvement. In complex
cases such as Building 4, where rooftop structures cause
CloudCompare to overestimate area by up to 40.7%, our
method effectively reduces this error to 11.1% through the
application of Z-axis threshold projection and geometric
regularization.

Regarding perimeter extraction (Table 7), our method maintains
a high degree of geometric fidelity, with an average relative
error of just 2.6%. For Buildings 2 and 5, the relative errors are
as low as 0.8% and 2.0%, respectively. These results indicate
that the proposed contour regularization strategy not only
suppresses noise-induced distortions but also effectively
preserves architectural orthogonality.

The marked improvement in accuracy is attributed to three key
technical innovations:

(1) 3D - 3D multimodal point cloud fusion based on ICP, which
eliminates 2D/3D misalignment errors common in traditional
approaches;

(2) Z-thresholded deep segmentation using PointNet++, which
filters out rooftop interference and improves structural
segmentation;

(3) Angle-constrained contour regularization, which ensures
that final contours maintain orthogonal characteristics typical of
building footprints.

Building Ground2 CloudC(z)mpare Proposed2
Truth (m?) (m?) Method (m?)
Building 1 67.6 80.4 65.4
Building 2 188.7 201.9 187.0
Building 3 53.8 63.1 51.8
Building 4 27.0 38 30.0
Building 5 51.1 63.3 49.0

Table 5. Building area extraction results and comparison

Buildin CloudCompare  Proposed Method
€ Rel. Err. (%) Rel. Err. (%)
Building 1 18.9% 3.3%
Building 2 7.0% 0.9%
Building 3 17.3% 3.7%
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Building 4 40.7% 11.1%
Building 5 23.9% 4.1%
Average 17.8% 3.7%

Table 6. Relative area errors of proposed method vs.

CloudCompare
Building Ground Proposed Proposed Method
Truth (m) Method (m) Rel. Err. (%)

Building 1 41.7 403 3.4%
Building 2 63.1 63.6 0.8%
Building 3 31.1 30.5 1.9%
Building 4 213 22.6 6.1%
Building 5 30.3 29.7 2.0%

Average 2.6%

Table 7. Perimeter accuracy of the proposed method

In summary, the proposed method clearly outperforms
traditional heuristic-based approaches such as CloudCompare in
both area and perimeter accuracy. By leveraging an end-to-end
deep learning framework and fusing LiDAR with
photogrammetric point clouds, the method achieves superior
geometric precision and robustness. It is particularly effective
for modeling complex urban and heritage environments with
structural irregularities, occlusions, and noise. This makes it
highly applicable to urban planning, architectural surveying,
heritage documentation, and smart city development.

6. Conclusions

This study presents a novel end-to-end framework for building
contour extraction, integrating LiDAR and photogrammetric
point clouds via precise 3D-3D registration and deep geometric
segmentation. By introducing a Z-axis threshold projection, the
method effectively filters rooftop noise, focusing contour
extraction on structural walls. The use of PointNet++ enables
robust semantic segmentation across multimodal data, while
contour regularization via Alpha-shapes, Douglas-Peucker
simplification, and angle-constrained vector optimization
ensures geometrically faithful and orthogonalized outlines.
Experimental results on heritage structures demonstrate that our
approach significantly outperforms conventional tools such as
CloudCompare, reducing area and perimeter errors to 3.7% and
2.6%, respectively. This study presents a unified pipeline that
combines multimodal 3D fusion, deep learning, and geometric
regularization for building contour extraction. It offers a robust
and scalable solution for complex urban and heritage modeling
scenarios.
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