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Abstract 

 

Railroad slope detection is crucial for railroad inspection. However, traditional stability detection methods face challenges such as 

high costs, subjectivity, and reliance on prior information. To address these issues, we propose an automatic change detection 

algorithm based on a two-stage oblique photogrammetric model.The algorithm begins by extracting point cloud data from the 

structure and performs encryption and alignment preprocessing to eliminate spatial bias. It then dynamically selects core points to 

construct a cylindrical analysis domain, followed by comparing the differences in projected distances between the two phases of the 

point cloud against a preset threshold to identify changes.Experimental results demonstrate that our algorithm significantly 

outperforms traditional C2C and C2M methods in accurately detecting substantial changes, filtering out unrealistic alterations, 

adapting to various terrains, and reducing costs while enhancing efficiency. Notably, the algorithm achieves a maximum recognition 

accuracy of 96.825% at a threshold of 1 mm, underscoring its sophistication and effectiveness. 

 

 

1. Introduction 

As one of the most important modes of transport in China, the 

state invests heavily each year to advance railroad science and 

technology. In 2023, national fixed asset investment in railroads 

exceeded 760 billion yuan, resulting in the commissioning of 

over 3,000 kilometers of new lines, including 2,500 kilometers 

of high-speed rail. This rapid expansion of the railroad network, 

along with the integration of old and new lines, has not only 

significantly reduced travel times and improved transportation 

efficiency but has also effectively promoted the coordinated 

development of regional economies and social progress 

(Ouyang and Yi, 2020).  

 

Railroad slopes, as critical components of the railroad system, 

directly impact the safety and reliability of railroad operations 

(Liu et al., 2023). However, with the continuous extension of 

operational mileage and the accumulation of operational time, 

factors such as complex and variable weather conditions and 

geological movements can lead to permanent and irreparable 

damage to railroad slopes. Issues such as slope deterioration 

occur frequently, severely affecting the safety and stability of 

railroad transportation (Deng et al., 2025; Zhang et al., 2024). 

To ensure the stable operation of the railroad industry, it is 

essential to regularly monitor changes in the surrounding 

environment and take appropriate measures. Therefore, 

realizing precise location and intelligent detection of areas 

undergoing changes in railroad slopes is crucial. 

 

Traditional large-scale change detection methods primarily rely 

on manual inspections and instrumental measurements. These 

include collecting 3D spatial data of the region using devices 

such as UAV tilt photography (Yu et al. 2022), interferometric 

synthetic aperture radar, and airborne or vehicle-mounted 3D 

laser scanners (Mukupa et al. 2017, Zhang et al. 2019). 

Subsequently, changes in the region are analyzed through image 

processing and manual interpretation. However, these methods 

face several challenges, including significant consumption of 

human and material resources, low efficiency in data acquisition 

and processing, and a high degree of subjectivity (Shao et al. 

2023). In recent years, target detection algorithms based on 

deep convolutional neural networks have gained popularity in 

change detection applications(Ren et al. 2016). While these 

techniques significantly enhance recognition accuracy and 

efficiency, overcoming many limitations of traditional methods, 

their performance can be constrained in scenarios with limited 

data or complex environments due to their reliance on large 

datasets and prior knowledge (Dong et al. 2024). In contrast to 

traditional methods and deep learning techniques, employing a 

multi-phase oblique photogrammetric model for change 

detection offers distinct advantages. This approach leverages 

precise geometric features within the model (Liu et al. 2023),  

minimizing the influence of subjective factors, thereby 

enhancing identification accuracy and stability. It allows for the 

accurate identification of various change areas, providing a 

scientific basis for timely maintenance measures. 

 

Building on the previous discussion, we propose an automated 

change detection algorithm tailored for two-phase oblique 

photogrammetric models of slope structures. This algorithm 

enables automated identification and dynamic assessment of 

change areas by analyzing the geometric features of ioblique 

photogrammetric models. It begins by extracting vertex point 

cloud data from each structure, followed by preprocessing, and 

then compares and analyzes this data with multi-phase datasets 

to accurately identify change areas and mark their 

corresponding locations within the model.  

 

In summary, our contributions are as follows: 

 

·A key advantage of our approach is the implementation of a 

KD-tree data structure, which significantly enhances detection 

efficiency by enabling rapid spatial queries. This allows for 

quicker identification of relevant points within the point cloud, 

thereby streamlining the change detection process.  
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· Compared to traditional manual interpretation and deep 

learning methods, our approach visualizes the spatial 

morphology and structural relationships of change areas through 

the oblique photogrammetric model. This not only reduces the 

need for manual intervention but also overcomes the limitations 

of data dependency, enhancing the robustness of detection in 

complex environments.  

2. Two-phase model change detection  

The two-phase oblique photogrammetric model change 

detection algorithm proposed in this paper facilitates the 

detection and analysis of structural changes through a series of 

systematic processes. First, the vertex point cloud data from the 

two-phase model is up-sampled and densified to enhance point 

cloud density while preserving detailed features. Second, due to 

the differences in local coordinate systems established by the 

two-phase model, point cloud alignment is necessary to 

eliminate spatial deviations between the two sets of point cloud 

data, ensuring consistent spatial reference. Finally, core points 

are dynamically selected, and the search radius is determined 

based on the original point cloud data. The normal vector 

direction of the fitting plane is calculated using the local point 

cloud distribution, and a cylindrical analysis domain is 

constructed along this direction. The change region is identified 

by comparing the scalar differences of the projections—

specifically, the projections of each point in the two-phase point 

cloud within the cylindrical region against the projection of the 

core point along the normal vector direction. If the difference 

exceeds a predetermined minimum threshold, the area is 

classified as a change region. 

2.1 Preprocessing of vertex point clouds 

The vertex point cloud data extracted from the oblique 

photogrammetric model is generated by dense matching of 

UAV-acquired oblique photographic images. However, this data 

presents two main issues: first, the distribution of vertices 

within the model is relatively sparse, and many triangular facets 

are narrow, leading to the presence of voids and gaps in the 

point cloud data of slope structures. Second, for comparative 

analysis, it is necessary to utilize data from multi-temporal 

models. However, differences in the local coordinate 

transformation matrices constructed by these various time-phase 

models result in deviations between the point cloud data of the 

two models. To address these issues, the following 

preprocessing steps are required. 

 

To achieve upsampling and densification of point cloud data 

while preserving the original geometric features of ground 

objects, this study combines linear interpolation and barycentric 

interpolation for triangulated facet interpolation. In gently 

sloping areas, the longest edge P1P2 of the triangular mesh is 

first identified, with its length denoted as Lmax. A preset 

interpolation step t is then used to dynamically calculate the 

segmentation number N, and interpolation points along the 

longest edge are generated using the linear formula: 

 

 1 2 1 1,( )( )2, ,i
i

Q P P P i N
N

= +  − =  , (1) 

 

For the shortest edge P1P3, if the initially computed 

interpolation point fall outside the range of this edge, a parallel 

line is constructed to find intersections with neighboring edges, 

ensuring valid point insertions. 
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Figure 1. Schematic of linear interpolation. 

 

In the case of concave regions, a refined interpolation method is 

employed based on the triangular mesh. The longest edge of the 

triangle, denoted as Lmax, is used in conjunction with a preset 

interpolation step length. The total number of segments M is 

dynamically calculated, generating parameters r and s. The 

condition 1r s+   ensures that the interpolation points remain 

within the triangular region. Ultimately, the following formula 

is used to generate a uniform distribution of the interpolation 

points: 

 

 1 2 3( )1iQ r P s P r s P=  +  + − −  , (2) 
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Figure 2. Schematic of center of gravity interpolation. 

 

By adaptively employing linear interpolation in gently sloping 

areas and rounded corner interpolation in concave regions, this 

strategy facilitates accurate densification by efficiently 

upsampling the point cloud data while preserving the original 

geometric features of the ground objects. 

 

After upsampling, the differing local coordinate systems of the 

two-stage model result in spatial offsets of the point cloud data 

within the same region, necessitating alignment and correction. 

Initially, the sample consensus initial alignment (SAC-IA) 

algorithm is employed for coarse alignment. This algorithm 

selects sampling points from the point cloud data by predefining 

the number of iterative sampling points and establishing a 

minimum distance threshold between them to ensure 

representativeness. It then identifies candidate points with 

similar fast point feature histograms (FPFH) eigenvalues and 

calculates the error Li, using a penalty function to prepare for 

subsequent accurate alignment, as expressed in the following 

formula: 
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where  il‖‖ = Norm of the error vector 

 ml = Preset threshold. 

 

Building on the coarse alignment, the generalized iterative 

closest point (GICP) algorithm is employed for precise 

alignment by integrating the local covariance matrix of the two-

phase point cloud. This algorithm introduces a probabilistic 

model during the minimization step of the standard iterative 

closest point (ICP) algorithm while continuing to utilize the 

standard Euclidean distance to establish corresponding 

relationships. By ensuring alignment accuracy, the algorithm 

reduces complexity and enhances computational efficiency, 

further improving the geometric consistency of the two-phase 

point cloud data and accurately calculating the alignment error. 

 

(a) Point cloud before preprocessing (b) Point cloud after preprocessing
 

Figure 3. Two phases of point cloud data preprocessing results. 

2.2 Selection of core points and calculation of normal 

vectors 

Due to the high density of the upsampled and densified point 

cloud data, along with the geometric representativeness of the 

model vertex data itself, the algorithm directly uses the vertex 

data of the original model as the core point sampling set Qcore. 

The upsampled two-phase point cloud data is designated as the 

source point set Qori and the difference set Qdiff respectively, to 

ensure computational efficiency. After establishing the initial 

search radius r, iterative step hr, and the maximum search radius 

rmax, a radius search is  conducted for each core point in the 

source point set Qori to obtain the local point cloud set Plocal. 

Next, an augmented matrix A is constructed for singular value 

decomposition (SVD) to derive the fitting plane parameters. 

Through singular value decomposition, matrix A is decomposed 

into the product of three matrices U, Σ, and V, where matrix U 

represents the left singular vector, matrix V is the right singular 

vector; and Σ is is the singular value matrix arranged in 

descending order. The plane normal vector n is determined by 

the third column of Vand is perpendicular to the fitting plane. 

The direction of the normal vector is consistently corrected 

according to the spatial distribution characteristics of the 

differential point cloud to ensure that it points in the direction of 

the differential point cloud. The plane fit quality parameter σconf 

is calculated using the following equation: 

 

 conf 1 2=2 +4σ σ σ  , (4) 

 

where  σ1,σ2 = Distribution intensity of principal 

components within the plane 

 coefficient term = Empirical value 

 

Each core point undergoes an iterative process to determine the 

optimal radius ropt. Ultimately, the optimal normal vector nopt 

corresponding to ropt is used to construct the cylindrical analysis 

domain. 
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2.3 Establishing a cylindrical analysis domain and 

computing change distances 

After setting the cylindrical radius rcyl, both the initial 

cylindrical depth dstart and the iteration step hcyl are defined as 

half of the cylinder radius. For points located within the 

cylinder Pcyl, two constraints must be simultaneously satisfied: 

the radial constraint and the axial constraint. 

 

 ( )opt cyl core now-n P P d  , (6) 

 ( ) ( )cyl core opt cyl core opt cyl- - -p p n p p n r





 , (7) 

 

where  nopt = The optimal normal vector corresponding to ropt 

 

After identifying the set of points Qcyl that meet the constraints 

of the cylindrical domain, the weight of each point in the 

variation distance calculation is determined using the following 

weight function, which is based on the geometric relationship 

between the points and the cylindrical axes: 
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where  rcyl = Radius of a cylinder 

 

According to this weighting formula, the larger the Euclidean 

distance between point Pi and the current core point, the smaller 

ωi will be. This reduces the influence of points that are distant 

from the core point in the distance calculation. Once the weights 

for each point are determined, the weighted average of the 

projected scalars of the two-phase point cloud is calculated 

separately according to the following formula: 
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where  ti= The projection scalar of the points in the cylinder 

to the current core point 

 ωi = Weighting coefficient for each point calculated 

according to Eq.(8) 
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The deformation estimate Δμ is derived from the following 

formula: 

 

 ori diff= - , (10) 

 

where  μori = The weighted average of the projected scalars 

of the source point cloud at the current core point. 

 μdiff = The weighted average of the projected scalars 

of the differential point cloud at the current core point 

3. Experimental process 

3.1 Experimental data 

To verify the feasibility and accuracy of the proposed automatic 

change detection algorithm for slope modeling, we conducted 

experiments using model data from the Nanwan Railway 

section in Xinzhou City, Shanxi Province. The process for 

acquiring experimental data is as follows: First, we performed 

multi-angle image acquisition of the railroad section using UAV 

aerial photography technology to ensure complete coverage and 

an adequate overlap rate of the images. This approach allowed 

us to quickly obtain high-resolution images, providing rich 

detail for subsequent modeling. Next, we utilized Context 

Capture software to convert the image data into a high-quality 

3D model, enabling the construction of a two-stage railroad 

slope model. Finally, we extracted the vertex cloud data of the 

slope structures from the model by isolating the individual slope 

components. 

 

Figure 4 illustrates the overall layout of the railroad section, 

showcasing various components such as slopes, tracks, drains, 

and side slopes. 

 

Figure 4. Experimental data. 

3.2 Change detection in slope structures 

After preprocessing the point cloud data at the top of the slope 

structure, we employed the two-stage model change detection 

algorithm for analysis. The parameters of the algorithm were set 

as follows: the core point set Qcore was constructed from the 

initial point cloud data to serve as the reference benchmark; the 

two-stage point cloud data were up-sampled to create the source 

point set Qori and the differential point set Qdiff , which were 

used for comparative analysis. 

 

In the normal vector calculation stage, the initial search radius r 

was set to 30 cm, with an iteration step hr of 2.5 cm, and a 

maximum radius rmax of 50 cm.  Optimal normal vectors were 

selected adaptively for cylindrical domain fitting, with a fitted 

cylinder radius  rcyl of 30 cm, and a maximum cylindrical depth 

dmax of 1.0 m. 

 

Figure 5 presents the results of change detection on slope 

structures using C2C (Ggirardeau-montaut et al. 2005), C2M 

(Monserrat et al. 2008), and our method. In the figure, 

unchanged areas are marked in blue, while red areas indicate 

locations where significant changes have occurred. Green areas 

represent misidentified regions—those that exceed a preset 

threshold but do not actually reflect meaningful changes in the 

model.  

 

The determination of misidentified areas was validated by 

examining high-resolution UAV images. This validation 

revealed that the differences between the two-phase models in 

the green areas were due to minor coordinate deviations 

remaining after registration, rather than substantial changes such 

as slope soil loosening or crack expansion. Consequently, these 

areas were classified as regions of non-real change. 

 

Figure 5. Slope inspection results. 

 

Based on the calculated change distances, the identified change 

areas can be initially categorized into yellow and red regions.  

As illustrated in Figure 6, the results of slope structure change 

detection show that yellow areas represent slight changes, 

which may be characterized by minor vegetation cover or slight 

soil erosion. In contrast, red areas indicate significant changes, 

potentially involving more severe soil structure loosening or 

localized subsidence. 

 

 

Figure 6. Results of the classification of areas of slope change. 

3.3 Experimental analysis 

After completing the slope change detection, this study assesses 

the recognition accuracy and misrecognition rate of our 

algorithm across various thresholds. Recognition accuracy is 

defined as the ratio of the number of change regions identified 

by the algorithm to the total number of actual change regions 

present. In contrast, the false recognition rate is defined as the 

ratio of incorrectly identified regions to the total number of 

recognized change regions. 
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The results indicate that the choice of thresholds significantly 

affects detection accuracy. Lower thresholds enhance the rate of 

change detection but also increase the likelihood of false 

identifications, as they are more susceptible to noise and 

registration residuals. Conversely, higher thresholds reduce the 

rate of false alarms but may lead to the omission of moderate 

deformations, thereby compromising the completeness of the 

detection. 

 

Table 1 presents the recognition accuracies and false 

recognition rates at various thresholds, offering a quantitative 

foundation for the subsequent analysis of the results. 

 

Threshold 

(mm) 
Ccorrect 

area 

Wrong 

area 
Actual 

change 

Aaccuracy 

(%) 

False 

rate 

(%) 

1 61 7 63 96.825 10.294 

3 60 4 63 95.238 6.25 

5 57 3 63 90.476 5.0 

7 55 1 63 87.302 1.786 

9 51 0 63 80.952 0.0 

10 46 0 63 73.016 0.0 

Table 1. Recognition accuracy and false recognition rate under 

different thresholds 

 

As shown in Table 1, as the threshold increases, both the 

number of correctly recognized change regions and the number 

of incorrectly recognized regions exhibit a decreasing trend, 

leading to an overall decline in recognition accuracy. At a 

threshold value of 1 mm, the number of correctly recognized 

regions reaches its maximum, with a recognition accuracy of 

96.825%; however, the false recognition rate is relatively high 

at 10.294%. When the threshold is raised to a certain critical 

value, the false recognition rate drops to 0%, but detection 

accuracy falls to a minimum of 73.016%, resulting in a 

significant risk of missed detections. This indicates that a lower 

threshold facilitates the identification of more change regions 

but increases the likelihood of misidentification, while a higher 

threshold reduces misidentification at the cost of potentially 

overlooking some actual change regions.  

 

Based on this analysis, this paper determines the optimal 

threshold value according to practical requirements. The change 

regions identified by the algorithm are labeled in the model, as 

illustrated in Fig. 7. Through this model labeling, the 

distribution of change areas in slopes and drains can be clearly 

observed, with several representative change areas highlighted 

in red. 

 

 

Figure 7. Model labeling results. 

 

As illustrated in Figure 7, changes in the slope structure are 

primarily concentrated in areas of surface damage attributed to 

vegetation growth. This is evidenced by local cracks in the 

surface soil, which occur due to the expansion of the root 

system. The growth of the vegetation root system not only 

damages the surface layer of the slope but may also lead to the 

loosening of the soil structure, thereby increasing the risk of 

landslides and reducing slope stability. The detection results 

indicate that the algorithm proposed in this paper provides 

valuable data support for the protection of railroad slopes and 

holds practical significance for ensuring line safety.  

4. Conclusion 

We proposed in this study for the automatic detection of 

changes in railroad slopes is based on a biphasic oblique 

photographic model. It identifies areas of change through a 

structured process that includes extracting the vertex point 

cloud data of the structure, followed by preprocessing steps 

such as up-sampling to increase density while preserving 

features, and alignment to eliminate spatial offsets caused by 

coordinate discrepancies. Subsequently, core points are selected, 

normal vectors are calculated, and cylindrical analysis domains 

are constructed to facilitate comparisons between the biphasic 

point clouds within these domains, focusing on the differences 

in projected scales. 

 

Experiments conducted on data from the Nanwan Railway 

section in Xinzhou, Shanxi, demonstrate that this method 

outperforms traditional techniques, such as C2C and C2M. It 

accurately extracts significant variations at comparable 

thresholds while effectively filtering out unrealistic 

interferences, such as residual alignment bias. An analysis of 

accuracy and false recognition rates across different thresholds 

confirms that the appropriate selection of thresholds strikes a 

balance between these metrics, thereby minimizing the risks of 

excessive underdetection or false recognition. 

 

Moreover, marking changes in the model allows for the 

visualization of their locations and extents, thereby guiding 

maintenance efforts, supporting dynamic health assessments, 

advancing whole-life intelligent maintenance, reducing costs, 

and enhancing railroad safety. 
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