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Abstract

Railroad slope detection is crucial for railroad inspection. However, traditional stability detection methods face challenges such as
high costs, subjectivity, and reliance on prior information. To address these issues, we propose an automatic change detection
algorithm based on a two-stage oblique photogrammetric model.The algorithm begins by extracting point cloud data from the
structure and performs encryption and alignment preprocessing to eliminate spatial bias. It then dynamically selects core points to
construct a cylindrical analysis domain, followed by comparing the differences in projected distances between the two phases of the
point cloud against a preset threshold to identify changes.Experimental results demonstrate that our algorithm significantly
outperforms traditional C2C and C2M methods in accurately detecting substantial changes, filtering out unrealistic alterations,
adapting to various terrains, and reducing costs while enhancing efficiency. Notably, the algorithm achieves a maximum recognition
accuracy of 96.825% at a threshold of 1 mm, underscoring its sophistication and effectiveness.

1. Introduction

As one of the most important modes of transport in China, the
state invests heavily each year to advance railroad science and
technology. In 2023, national fixed asset investment in railroads
exceeded 760 billion yuan, resulting in the commissioning of
over 3,000 kilometers of new lines, including 2,500 kilometers
of high-speed rail. This rapid expansion of the railroad network,
along with the integration of old and new lines, has not only
significantly reduced travel times and improved transportation
efficiency but has also effectively promoted the coordinated
development of regional economies and social progress
(Ouyang and Yi, 2020).

Railroad slopes, as critical components of the railroad system,
directly impact the safety and reliability of railroad operations
(Liu et al., 2023). However, with the continuous extension of
operational mileage and the accumulation of operational time,
factors such as complex and variable weather conditions and
geological movements can lead to permanent and irreparable
damage to railroad slopes. Issues such as slope deterioration
occur frequently, severely affecting the safety and stability of
railroad transportation (Deng et al., 2025; Zhang et al., 2024).
To ensure the stable operation of the railroad industry, it is
essential to regularly monitor changes in the surrounding
environment and take appropriate measures. Therefore,
realizing precise location and intelligent detection of areas
undergoing changes in railroad slopes is crucial.

Traditional large-scale change detection methods primarily rely
on manual inspections and instrumental measurements. These
include collecting 3D spatial data of the region using devices
such as UAV tilt photography (Yu et al. 2022), interferometric
synthetic aperture radar, and airborne or vehicle-mounted 3D
laser scanners (Mukupa et al. 2017, Zhang et al. 2019).
Subsequently, changes in the region are analyzed through image
processing and manual interpretation. However, these methods
face several challenges, including significant consumption of

human and material resources, low efficiency in data acquisition
and processing, and a high degree of subjectivity (Shao et al.
2023). In recent years, target detection algorithms based on
deep convolutional neural networks have gained popularity in
change detection applications(Ren et al. 2016). While these
techniques significantly enhance recognition accuracy and
efficiency, overcoming many limitations of traditional methods,
their performance can be constrained in scenarios with limited
data or complex environments due to their reliance on large
datasets and prior knowledge (Dong et al. 2024). In contrast to
traditional methods and deep learning techniques, employing a
multi-phase oblique photogrammetric model for change
detection offers distinct advantages. This approach leverages
precise geometric features within the model (Liu et al. 2023),
minimizing the influence of subjective factors, thereby
enhancing identification accuracy and stability. It allows for the
accurate identification of various change areas, providing a
scientific basis for timely maintenance measures.

Building on the previous discussion, we propose an automated
change detection algorithm tailored for two-phase oblique
photogrammetric models of slope structures. This algorithm
enables automated identification and dynamic assessment of
change areas by analyzing the geometric features of ioblique
photogrammetric models. It begins by extracting vertex point
cloud data from each structure, followed by preprocessing, and
then compares and analyzes this data with multi-phase datasets
to accurately identify change areas and mark their
corresponding locations within the model.

In summary, our contributions are as follows:

‘A key advantage of our approach is the implementation of a
KD-tree data structure, which significantly enhances detection
efficiency by enabling rapid spatial queries. This allows for
quicker identification of relevant points within the point cloud,
thereby streamlining the change detection process.
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- Compared to traditional manual interpretation and deep
learning methods, our approach visualizes the spatial
morphology and structural relationships of change areas through
the oblique photogrammetric model. This not only reduces the
need for manual intervention but also overcomes the limitations
of data dependency, enhancing the robustness of detection in
complex environments.

2. Two-phase model change detection

The two-phase oblique photogrammetric model change
detection algorithm proposed in this paper facilitates the
detection and analysis of structural changes through a series of
systematic processes. First, the vertex point cloud data from the
two-phase model is up-sampled and densified to enhance point
cloud density while preserving detailed features. Second, due to
the differences in local coordinate systems established by the
two-phase model, point cloud alignment is necessary to
eliminate spatial deviations between the two sets of point cloud
data, ensuring consistent spatial reference. Finally, core points
are dynamically selected, and the search radius is determined
based on the original point cloud data. The normal vector
direction of the fitting plane is calculated using the local point
cloud distribution, and a cylindrical analysis domain is
constructed along this direction. The change region is identified
by comparing the scalar differences of the projections—
specifically, the projections of each point in the two-phase point
cloud within the cylindrical region against the projection of the
core point along the normal vector direction. If the difference
exceeds a predetermined minimum threshold, the area is
classified as a change region.

2.1 Preprocessing of vertex point clouds

The vertex point cloud data extracted from the oblique
photogrammetric model is generated by dense matching of
UAV-acquired oblique photographic images. However, this data
presents two main issues: first, the distribution of vertices
within the model is relatively sparse, and many triangular facets
are narrow, leading to the presence of voids and gaps in the
point cloud data of slope structures. Second, for comparative
analysis, it is necessary to utilize data from multi-temporal
models. However, differences in the local coordinate
transformation matrices constructed by these various time-phase
models result in deviations between the point cloud data of the
two models. To address these issues, the following
preprocessing steps are required.

To achieve upsampling and densification of point cloud data
while preserving the original geometric features of ground
objects, this study combines linear interpolation and barycentric
interpolation for triangulated facet interpolation. In gently
sloping areas, the longest edge PiP2 of the triangular mesh is
first identified, with its length denoted as Lmax. A preset
interpolation step t is then used to dynamically calculate the
segmentation number N, and interpolation points along the
longest edge are generated using the linear formula:

O= P1+]’\[;(P2—Pl)(i:1,2,...,N), (1)

For the shortest edge PiPs, if the initially computed
interpolation point fall outside the range of this edge, a parallel
line is constructed to find intersections with neighboring edges,
ensuring valid point insertions.
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Figure 1. Schematic of linear interpolation.

In the case of concave regions, a refined interpolation method is
employed based on the triangular mesh. The longest edge of the
triangle, denoted as Lmax, is used in conjunction with a preset
interpolation step length. The total number of segments M is
dynamically calculated, generating parameters r and s. The
condition »+ s <1 ensures that the interpolation points remain
within the triangular region. Ultimately, the following formula
is used to generate a uniform distribution of the interpolation
points:

O=r-Pts-P+(-r—-s)-Ps, )

P;
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Figure 2. Schematic of center of gravity interpolation.

By adaptively employing linear interpolation in gently sloping
areas and rounded comner interpolation in concave regions, this
strategy facilitates accurate densification by efficiently
upsampling the point cloud data while preserving the original
geometric features of the ground objects.

After upsampling, the differing local coordinate systems of the
two-stage model result in spatial offsets of the point cloud data
within the same region, necessitating alignment and correction.
Initially, the sample consensus initial alignment (SAC-IA)
algorithm is employed for coarse alignment. This algorithm
selects sampling points from the point cloud data by predefining
the number of iterative sampling points and establishing a
minimum distance threshold between them to ensure
representativeness. It then identifies candidate points with
similar fast point feature histograms (FPFH) eigenvalues and
calculates the error Li, using a penalty function to prepare for
subsequent accurate alignment, as expressed in the following
formula:
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N e, wtll 1< m,

2
H(l)= SNE)!
Sy (2 fl=m), izl 1> m,

where || ll. || = Norm of the error vector

mi = Preset threshold.

Building on the coarse alignment, the generalized iterative
closest point (GICP) algorithm is employed for precise
alignment by integrating the local covariance matrix of the two-
phase point cloud. This algorithm introduces a probabilistic
model during the minimization step of the standard iterative
closest point (ICP) algorithm while continuing to utilize the
standard Euclidean distance to establish corresponding
relationships. By ensuring alignment accuracy, the algorithm
reduces complexity and enhances computational efficiency,
further improving the geometric consistency of the two-phase
point cloud data and accurately calculating the alignment error.

(a) Point cloud before preprocessing (b) Point cloud after preprocessing

Figure 3. Two phases of point cloud data preprocessing results.

2.2 Selection of core points and calculation of normal
vectors

Due to the high density of the upsampled and densified point
cloud data, along with the geometric representativeness of the
model vertex data itself, the algorithm directly uses the vertex
data of the original model as the core point sampling set Qcore.
The upsampled two-phase point cloud data is designated as the
source point set Qori and the difference set Quitr respectively, to
ensure computational efficiency. After establishing the initial
search radius r, iterative step hr, and the maximum search radius
I'max, @ radius search is conducted for each core point in the
source point set Qori to obtain the local point cloud set Piocal.
Next, an augmented matrix A is constructed for singular value
decomposition (SVD) to derive the fitting plane parameters.
Through singular value decomposition, matrix A is decomposed
into the product of three matrices U, X, and V, where matrix U
represents the left singular vector, matrix V is the right singular
vector; and X is is the singular value matrix arranged in
descending order. The plane normal vector n is determined by
the third column of Vand is perpendicular to the fitting plane.
The direction of the normal vector is consistently corrected
according to the spatial distribution characteristics of the
differential point cloud to ensure that it points in the direction of
the differential point cloud. The plane fit quality parameter Gconf
is calculated using the following equation:

Jconf =2 X O-l +4 X 0-2 > 4

where 61,02 = Distribution
components within the plane
coefficient term = Empirical value

intensity of  principal

Each core point undergoes an iterative process to determine the
optimal radius ropt. Ultimately, the optimal normal vector nopt
corresponding to ropt is used to construct the cylindrical analysis
domain.

()

rOPt :arg rE{r,rZ/lA(l"lfwrmﬂx a)conf , (5)
2.3 Establishing a cylindrical analysis domain and

computing change distances

After setting the cylindrical radius rey, both the initial
cylindrical depth dstart and the iteration step hey are defined as
half of the cylinder radius. For points located within the
cylinder Py, two constraints must be simultaneously satisfied:
the radial constraint and the axial constraint.

cyl core < dnow ! (6)

noth(P -P )

(Pt = Peore) | e % (Pt = Prore) [ €120 )

where  nopt = The optimal normal vector corresponding to ropt
After identifying the set of points Qcy that meet the constraints
of the cylindrical domain, the weight of each point in the
variation distance calculation is determined using the following
weight function, which is based on the geometric relationship
between the points and the cylindrical axes:

2
_ ||B -R:ore P
2 > T

cyl

W =exp

€0, ®)

where Teyl = Radius of a cylinder

According to this weighting formula, the larger the Euclidean
distance between point P; and the current core point, the smaller
i will be. This reduces the influence of points that are distant
from the core point in the distance calculation. Once the weights
for each point are determined, the weighted average of the
projected scalars of the two-phase point cloud is calculated
separately according to the following formula:

N
Zizla)iti (P-P )Y

H= N ’ ti:nopt XN\~ oore

©

where ti= The projection scalar of the points in the cylinder
to the current core point

i = Weighting coefficient for each point calculated
according to Eq.(8)
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The deformation estimate Ap is derived from the following
formula:

Ap= |:uori '/Udiff| , (10)

where pori = The weighted average of the projected scalars
of the source point cloud at the current core point.

pdairt = The weighted average of the projected scalars
of the differential point cloud at the current core point

3. Experimental process
3.1 Experimental data

To verify the feasibility and accuracy of the proposed automatic
change detection algorithm for slope modeling, we conducted
experiments using model data from the Nanwan Railway
section in Xinzhou City, Shanxi Province. The process for
acquiring experimental data is as follows: First, we performed
multi-angle image acquisition of the railroad section using UAV
aerial photography technology to ensure complete coverage and
an adequate overlap rate of the images. This approach allowed
us to quickly obtain high-resolution images, providing rich
detail for subsequent modeling. Next, we utilized Context
Capture software to convert the image data into a high-quality
3D model, enabling the construction of a two-stage railroad
slope model. Finally, we extracted the vertex cloud data of the
slope structures from the model by isolating the individual slope
components.

Figure 4 illustrates the overall layout of the railroad section,
showcasing various components such as slopes, tracks, drains,
and side slopes.

Figure 4. Experimental data.

3.2 Change detection in slope structures

After preprocessing the point cloud data at the top of the slope
structure, we employed the two-stage model change detection
algorithm for analysis. The parameters of the algorithm were set
as follows: the core point set Qcore Was constructed from the
initial point cloud data to serve as the reference benchmark; the
two-stage point cloud data were up-sampled to create the source
point set Qori and the differential point set Quitr , which were
used for comparative analysis.

In the normal vector calculation stage, the initial search radius r
was set to 30 cm, with an iteration step hr of 2.5 cm, and a
maximum radius rmax of 50 cm. Optimal normal vectors were
selected adaptively for cylindrical domain fitting, with a fitted

cylinder radius rcy1 of 30 cm, and a maximum cylindrical depth
dmax of 1.0 m.

Figure 5 presents the results of change detection on slope
structures using C2C (Ggirardeau-montaut et al. 2005), C2M
(Monserrat et al. 2008), and our method. In the figure,
unchanged areas are marked in blue, while red areas indicate
locations where significant changes have occurred. Green areas
represent misidentified regions—those that exceed a preset
threshold but do not actually reflect meaningful changes in the
model.

The determination of misidentified areas was validated by
examining high-resolution UAV images. This validation

revealed that the differences between the two-phase models in
the green areas were due to minor coordinate deviations
remaining after registration, rather than substantial changes such
as slope soil loosening or crack expansion. Consequently, these
areas were classified as regions of non-real change.

(a) C2C (b) C2M (c) Our method

Figure 5. Slope inspection results.

Based on the calculated change distances, the identified change
areas can be initially categorized into yellow and red regions.
As illustrated in Figure 6, the results of slope structure change
detection show that yellow areas represent slight changes,
which may be characterized by minor vegetation cover or slight
soil erosion. In contrast, red areas indicate significant changes,
potentially involving more severe soil structure loosening or
localized subsidence.

Area of slight change Area of significant change

Figure 6. Results of the classification of areas of slope change.

3.3 Experimental analysis

After completing the slope change detection, this study assesses
the recognition accuracy and misrecognition rate of our
algorithm across various thresholds. Recognition accuracy is
defined as the ratio of the number of change regions identified
by the algorithm to the total number of actual change regions
present. In contrast, the false recognition rate is defined as the
ratio of incorrectly identified regions to the total number of
recognized change regions.
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The results indicate that the choice of thresholds significantly
affects detection accuracy. Lower thresholds enhance the rate of
change detection but also increase the likelihood of false
identifications, as they are more susceptible to noise and
registration residuals. Conversely, higher thresholds reduce the
rate of false alarms but may lead to the omission of moderate
deformations, thereby compromising the completeness of the
detection.

Table 1 presents the recognition accuracies and false
recognition rates at various thresholds, offering a quantitative
foundation for the subsequent analysis of the results.

Threshold Ccorrect Wrong Actual Aaccuracy Fr?altie
(mm) area area  change (%) (%)
1 61 7 63 96.825 10.294
3 60 4 63 95.238 6.25
5 57 3 63 90.476 5.0
7 55 1 63 87.302 1.786
9 51 0 63 80.952 0.0
10 46 0 63 73.016 0.0
Table 1. Recognition accuracy and false recognition rate under
different thresholds

As shown in Table 1, as the threshold increases, both the
number of correctly recognized change regions and the number
of incorrectly recognized regions exhibit a decreasing trend,
leading to an overall decline in recognition accuracy. At a
threshold value of 1 mm, the number of correctly recognized
regions reaches its maximum, with a recognition accuracy of
96.825%; however, the false recognition rate is relatively high
at 10.294%. When the threshold is raised to a certain critical
value, the false recognition rate drops to 0%, but detection
accuracy falls to a minimum of 73.016%, resulting in a
significant risk of missed detections. This indicates that a lower
threshold facilitates the identification of more change regions
but increases the likelihood of misidentification, while a higher
threshold reduces misidentification at the cost of potentially
overlooking some actual change regions.

Based on this analysis, this paper determines the optimal
threshold value according to practical requirements. The change
regions identified by the algorithm are labeled in the model, as
illustrated in Fig. 7. Through this model labeling, the
distribution of change areas in slopes and drains can be clearly
observed, with several representative change areas highlighted
in red.

Figure 7. Model labeling results.

As illustrated in Figure 7, changes in the slope structure are
primarily concentrated in areas of surface damage attributed to
vegetation growth. This is evidenced by local cracks in the
surface soil, which occur due to the expansion of the root
system. The growth of the vegetation root system not only
damages the surface layer of the slope but may also lead to the
loosening of the soil structure, thereby increasing the risk of
landslides and reducing slope stability. The detection results
indicate that the algorithm proposed in this paper provides
valuable data support for the protection of railroad slopes and
holds practical significance for ensuring line safety.

4. Conclusion

We proposed in this study for the automatic detection of
changes in railroad slopes is based on a biphasic oblique
photographic model. It identifies areas of change through a
structured process that includes extracting the vertex point
cloud data of the structure, followed by preprocessing steps
such as up-sampling to increase density while preserving
features, and alignment to eliminate spatial offsets caused by
coordinate discrepancies. Subsequently, core points are selected,
normal vectors are calculated, and cylindrical analysis domains
are constructed to facilitate comparisons between the biphasic
point clouds within these domains, focusing on the differences
in projected scales.

Experiments conducted on data from the Nanwan Railway
section in Xinzhou, Shanxi, demonstrate that this method
outperforms traditional techniques, such as C2C and C2M. It
accurately extracts significant variations at comparable
thresholds ~ while effectively filtering out unrealistic
interferences, such as residual alignment bias. An analysis of
accuracy and false recognition rates across different thresholds
confirms that the appropriate selection of thresholds strikes a
balance between these metrics, thereby minimizing the risks of
excessive underdetection or false recognition.

Moreover, marking changes in the model allows for the
visualization of their locations and extents, thereby guiding
maintenance efforts, supporting dynamic health assessments,
advancing whole-life intelligent maintenance, reducing costs,
and enhancing railroad safety.
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