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Abstract

This paper addresses the dual challenges of low accuracy and slow speed in spatio-temporal prediction by proposing a Grid Graph
Convolutional Network with Neighborhood Learning (GN-GCN). Leveraging the GeoSOT-4D global grid system for discrete spatio-
temporal encoding, the model constructs grid-based knowledge graphs and integrates static graph neural networks, neighborhood grid
computation, and temporal evolution units to jointly capture semantic, spatial, and temporal dependencies. Enhanced by a High-level
Training and Low-level Testing (HTLT) strategy, GN-GCN achieves state-of-the-art performance in various spatio-temporal tasks,
significantly outperforming conventional methods in both accuracy and computational efficiency for complex real-world scenarios.

1. Introduction

Spatio-temporal prediction has emerged as a critical technology
in addressing complex real-world challenges across diverse
domains. Current applications span spatio-temporal knowledge
completion (e.g., inferring missing entities or relations in
dynamic environments), low-altitude traffic congestion and
trajectory prediction for urban air mobility systems, and
meteorological forecasting to support autonomous drone
operations (Li et al., 2021). These tasks require models to
seamlessly integrate semantic, spatial, and temporal
dependencies while handling heterogeneous data structures.

Traditional approaches often struggle with the inherent
complexity of multi-scale spatio-temporal interactions,
particularly in scenarios demanding fine-grained spatial

partitioning and long-term temporal reasoning (Huang, Su, and
Wang 2024). There are two main issues that need to be addressed
in the current spatio-temporal prediction task.

On one hand, the accuracy of spatio-temporal prediction is poor.
One is that the scene elements are complex, including
environmental factors such as meteorology and hydrology,
historical public opinion information, economic and political
information, rule libraries, etc. In this special application scenario,
traditional vector oriented modeling methods are difficult to
achieve unified spatio-temporal level association aggregation
and relation calculation (Chen, Deng, and Chen 2017); Secondly,
the accuracy of relation extraction is low. Traditional methods
focus on all relations related to entities, which have low
information value density and do not directly contribute to
inference and prediction, often reducing prediction accuracy;
Thirdly, information combination is prone to overload, and the
explosive growth of big data in intelligence, monitoring, and
control can lead spatio-temporal prediction models into the
dilemma of information combination overload.

On the other hand, the speed of spatio-temporal prediction is slow.
Firstly, the situation changes rapidly, and traditional spatio-
temporal prediction theory cannot meet the fast prediction of
system intentions in real-time changing situations (Zhang et al.,
2020); The second is the influence of multiple forces, and the
environment is often in a state of multi-party anxiety. Traditional

object-oriented spatio-temporal reasoning requires traversing all
force entities, so the prediction time will significantly increase
with the increase of forces(Zhang et al., 2024); The third
requirement is high response speed, making it particularly
important to achieve near real-time completion of spatio-
temporal prediction.

Based on the above two main issues, it is more important to
quickly organize and extract various elements, and ultimately
carry out various spatio-temporal predictions and knowledge
learning. In recent years, the emergence of spatio-temporal grids
has proposed a new way of knowledge representation and
management. The discreteness of grids determines that they can
describe spatio-temporal relations in a finite way, which is
simpler, more unique, and more limited than objectification
methods in describing spatio-temporal, topology, orientation, and
distance(Qian et al., 2019).

Therefore, this paper proposes a spatio-temporal prediction
architecture based on grid graph convolutional networks. Based
on the GeoSOT-4D (GeoSOT-3D+GeoSOT-T) global gird
system (Han et al., 2022), all elements in the environment are
spatio-temporal encoded, and the grid spatio-temporal
knowledge graph is associated with the entities in the system to
construct the spatio-temporal and semantic relations of the graph.
Subsequently, a Grid graph convolutional network with
neighborhood learning was established to perform spatio-
temporal prediction tasks in complex spatio-temporal scenarios,
such as spatio-temporal knowledge reasoning, airspace
congestion prediction, and meteorological risk prediction.

2. Grid graph convolutional network
2.1 GeoSOT-4D

GeoSOT-4D is mainly composed of GeoSOT-3D and GeoSOT-
T, which discretize space and time respectively (Han, and Qu
2025). In this paper, GeoSOT-3D (Geographic Coordinate
Subdividing Grid with One Dimension Integrated Coding on 2"
Tree-3D) is selected as the coding scheme for 3D subdivision
framework to establish an abstract environment (Zhai et al.,
2021), as shown in Figure 1. The subdivision of GeoSOT-3D is
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to expand the latitude and longitude to a space of 512 °x 512 °,
and use the equal latitude and longitude recursive quadtree
partitioning method to perform multi-scale subdivision on the
expanded space. The altitude is mapped to 512 degrees,
corresponding to the airspace range from an altitude of 50000
kilometers to the center of the earth (Han et al., 2023). The
GeoSOT-3D is a 32 level multi-scale octree solid grid that
uniquely identifies and stores internal information for each
discrete element in the spatial domain through grid encoding
(Liu et al., 2022).
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Figure 1. GeoSOT-3D earth subdivision grid for spatio-
temporal prediction (Han et al., 2022).

The time subdivision of spatio-temporal knowledge mainly
focuses on the time adverbials in the quadruple, encoding the
time slices in time. The time encoding adopts the GeoSOT-T time
discretization architecture, which discretizes time into time
intervals of different lengths and assigns a unique binary
encoding to discretize time into longer "time periods". Compared
with time point labels in string form, GeoSOT-T can reduce
storage capacity and serve as an easily recognizable encoding
scheme for computers to identify time periods. Based on the
GeoSOT-T time partitioning model, the time information of
entities and relations can be uniquely and discretely represented
by time encoding. Through GeoSOT-T time partitioning
encoding, spatio-temporal knowledge can effectively incorporate
temporal neighborhoods into the computational system and
construct temporal logical relations through multi-scale temporal
hierarchies.

2.2 Grid Spatio-temporal knowledge graph

Grid spatio-temporal knowledge graph simplifies multiple layers
into a grid map, and integrates political, economic, and
environmental information from the perspective of global
strategy and dynamics through the grid. As shown in Figure 2, a
unified grid diagram is used to horizontally correlate the grids
through spatial knowledge and vertically correlate them through
temporal knowledge. By using grid coding, the computational
complexity is much lower than that of latitude and longitude
vector coordinate maps, making calculations more efficient and
faster, with speeds up to tens or even hundreds of times faster,
and independent of the number of entities. When an entity enters
another grid spatio-temporal region, it can also synchronize the

environmental properties of the grid where the entity is located
for updates, thereby completing subsequent spatio-temporal
predictions.
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Figure 2. The framework of grid Spatio-temporal knowledge
graph (Han et al., 2023).

2.3 Grid graph convolutional network with neighborhood
learning

Because of the difficulty of utilizing hidden spatio-temporal
information, spatio-temporal knowledge graph (KG) reasoning
tasks in real geographic environments suffer from low accuracy
and poor interpretability(Chen, Jia, and Xiang 2020). Our
proposed grid graph convolutional network architecture
incorporates neighborhood learning for spatio-temporal KG
reasoning, achieving superior performance in knowledge
completion tasks compared to conventional graph neural
networks. The grid neighborhood mechanism addresses sparse
connectivity in traditional graph structures by leveraging
GeoSOT-3D subdivision's inherent regularity.

As shown in Figure 3, the grid graph convolutional network (GN-
GCN) comprises three components: a static graph neural network
for semantic knowledge, a neighborhood grid calculation module
for spatial knowledge, and a time evolution unit for temporal
knowledge (Han, Qu, and Jiang 2025). Temporal information and
spatial topological relations are representable through grid
coding, where spatio-temporal grid neighborhoods exhibit graph-
like semantics. This enables learning structural dependencies
within temporal and spatial relations.
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Figure 3. The framework of Grid graph convolutional network
with neighborhood learning (GN-GCN) (Han, Qu, and Jiang
2025).

3. Grid graph convolutional network for spatio-temporal
knowledge reasoning

Spatio-temporal geographic scenarios encompass numerous
spatio-temporal facts. Unlike semantic facts, these exhibit
characteristics such as high sparsity and a multitude of relations
(Shbita et al., 2023). Spatio-temporal knowledge reasoning
involves inferring missing spatio-temporal entities or relations
within these facts (Sioutis, and Long 2022).

3.1 HTLT algorithm

The grid graph convolutional network (GN-GCN) leverages the
multi-scale aggregation property of the GeoSOT grid system to
enhance model training accuracy and efficiency. Its core
principle, Hierarchical Training and Low-level Testing (HTLT),
operates across multiple GeoSOT grid scales. Training occurs at
higher (coarser) grid levels to meet the computational and
structural demands of spatio-temporal scenes and graphs.
Information learned at these higher levels is then transferred,
utilizing the inherent recursive coding topology of GeoSOT, for
faster testing and inference at the original (finer) data resolution
level. This approach fully exploits the GeoSOT multi-scale
discrete grid model.

Crucially, GeoSOT enables parameter and information sharing
between different grid levels within the same spatial region,
making it highly suitable for multi-scale spatial structure learning.
The HTLT algorithm thus leverages the advantages of coarse
grids (improved prediction accuracy) while maintaining the
flexibility of the original fine grid size without information loss.
Furthermore, it reduces GPU memory requirements during
testing, enhancing overall efficiency.

3.2 Loss function

For spatio-temporal knowledge reasoning, grid graph
convolutional network employs a customized loss function to
evaluate prediction performance:

Ee =3¥T_, 3E | hits(s,p,i,t)Decoder(s,p), (1)

where  hits(s,p,i,t) = binary validation operator ensuring
data integrity

Decoder (s, p) =the decoder calculation component of
the likelihood of spatio-temporal entity

3.3 Results

Compared to existing models (e.g., RE-GCN, CyGNet, RE-NET),
GN-GCN achieves state-of-the-art (SOTA) performance in
spatio-temporal reasoning. Specifically, its Mean Reciprocal
Rank (MRR) reaches 48.33 for spatio-temporal entity prediction
and 54.06 for relation prediction. These results represent
improvements of 6.32 (18.16%) and 6.64 (15.67%) over the best-
performing baselines, respectively. Experimental analysis
indicates that GN-GCN's superior performance primarily stems
from incorporating dedicated temporal and spatial dependency
modules and effectively capturing regional associations via
GeoSOT grid domain coordinates.

4. Grid graph convolutional network for airspace
congestion prediction

Airspace congestion prediction is a critical challenge in modern
air traffic management systems (Alharbi, Petrunin, and
Panagiotakopoulos 2023). With the rapid growth of the aviation
industry, air traffic density continues to increase, particularly
near busy routes and hub airports, leading to more frequent
congestion phenomena (Xiang, Liu, and Luo 2016). Airspace
congestion prediction aims to integrate event data, traffic
sentiment, meteorological conditions, airspace utilization, and
spatio-temporal relations to rapidly identify congestion points
and regions in large-scale spatio-temporal scenarios, providing
early warnings for flight operators and airspace managers to
enable proactive mitigation (Sudarsanan, and Kostiuk 2024).
Congestion not only reduces flight punctuality and transportation
efficiency but also elevates safety risks (Watkins et al., 2021).
Therefore, accurate prediction of future congestion is essential
for optimizing air traffic management, improving flow
distribution, and enhancing operational efficiency (Wu et al.,
2024).

The rapid expansion of urban areas and the gradual opening of
low-altitude airspace have intensified congestion challenges,
with unmanned and manned aerial vehicle densities projected to
surge dramatically (Cummings, and Mahmassani 2024). For
instance, China’s Low-Altitude Economy Development Report
(2024) predicts that its low-altitude economy will exceed
10.6446 trillion RMB by 2026 (Huang, Su, and Wang 2024), with
over 1.987 million registered drones as of August 2024 (LIAO,
XU, and YE 2024). In large-scale low-altitude operations,
uneven spatiotemporal resource allocation inevitably leads to
congestion at high-traffic origins/destinations and peak hours
(Stuive, and Gzara 2024). Unlike ground vehicles, low-altitude
congestion cannot be fully resolved through manual intervention,
and relying solely on heterogeneous onboard collision avoidance
systems may fail to rapidly resolve conflicts, increasing collision
risks, which is shown in Figure 4 (Zhang et al., 2024). Thus,
proactive congestion prediction and early warnings are
imperative for urban airspace safety (She, and Ouyang 2021).
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Figure 4. Possible scenarios of congestion in low altitude
airspace.

For trajectory and congestion prediction tasks in low-altitude
airspace, the grid graph convolutional network with
neighborhood learning architecture demonstrates exceptional
capability in learning complex motion patterns (Wu et al., 2024).
By modeling airspace trajectories as temporal sequences of grid
transitions, the network captures both micro-scale movement
characteristics (through grid-level features) and macro-scale
traffic trends (via hierarchical grid aggregation). The
neighborhood convolution operator adaptively weights adjacent
grids based on their historical transition probabilities and current
traffic states, effectively encoding congestion propagation
patterns.

4.1 Airspace congestion analysis formula

Upon completing parameter learning, the grid graph
convolutional network model acquires the capability to predict
aircraft trajectories during target prediction periods. By
integrating these trajectory predictions with airspace attributes, it
ultimately aggregates congestion forecasts for critical airspace
sectors within designated regions. This aggregation process
systematically combines spatial-temporal trajectory distributions
with airspace capacity constraints, enabling multi-scale
congestion evaluation through probabilistic fusion and rule-
based reasoning mechanisms.

To operationalize airspace congestion prediction using the GN-
GCN model, this paper aggregates predicted trajectories across
temporal intervals and spatial grids. Adaptive congestion
thresholds are established for each 3D spatial grid cell coordinate
(ij,z) by integrating meteorological impacts and airspace class
constraints, which is formalized as:

ijz k
Tijz B- Ccategory Hk 11— eatherMUz (2
where  T;;, = maximum tolerable aircraft count for spatial
grid (i,j,z) under congestion

B = baseline threshold (maximum aircraft capacity
under standard conditions)

. . C . ijz
After consulting with aviation experts, Ceategory €
{Cunrestrictea = L Cninor = 0.8, Cmajor = 0.5} represents
airspace  class  coefficient; WJE,iner € (WiRHRACT = (5

wyind =02, Wran, . =01} denotes weather impact
coefficients; Mika is intensity level of weather type & in spatial

grid (i,j,z). By the calculation of T;,, the airspace congestion
severity S;;, in grid (i,/,2) is quantified via a piecewise function:

0,if Ny, < 0.5T;,
w,if 0.5T;;; < Nijz <Tijz,  (3)

Sijz = 0.5Tyj,
1, lf Nijz > Tijz
where  N;j, = predicted aircraft count by GN-GCN model
Sijz € [0,1] = normalized congestion severity (0
means complete airspace freedom,l means critical congestion)

4.2 Probability grid map

In airspace congestion prediction, GN-GCN can visualize
different probabilities in a spatio-temporal probabilistic grid map.
Based on the intention of the system entity in the global
environment, the spatio-temporal probability grid map uses grids
as the basic unit to display the impact range of airspace
congestion through different color intensities. In this paper, an
airspace congestion probability grid map is also established based
on the airspace predicted congestion severity S;;, to dynamically
display the congestion prediction of each airspace grid, as shown
in Figure 5.
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Figure 5. The representation of spatio-temporal congestion
probability grid map.

The airspace congestion probability grid can summarize the
reasoning of the movement trends of aircrafts based on GN-GCN,
and finally conduct congestion risk assessment and prediction for
the airspace scenarios. In the grid map, the darker the color of the
grid, the higher the congestion risk S;;, of the area during the
predicted time interval. If S;;, > 0.6, it is necessary to provide
congestion warnings to nearby aircraft for pre-evacuation to
relieve local risks. This paper can help to achieve proactive
airspace  traffic management through early warning
dissemination by airspace congestion probability grid map.

4.3 Results

After comparative experiments with other time-series models,
this paper further evaluates the GN-GCN model across extended
temporal intervals for airspace trajectory prediction. As detailed
in Table 1, short-term predictions achieve lower MSE and MAE
values, while both metrics exhibit a gradual yet acceptable
increase as the prediction horizon extends, reflecting the inherent
challenges of long-term forecasting common to time-series
models. Results confirm that GN-GCN maintains reliable
trajectory prediction accuracy within a five-hour horizon, with
MSE and MAE deviations remaining within operational
tolerances. Across all intervals, the model achieves an MRR of
0.8318, with Hit@1, Hit@3, and Hit@10 scores of 73.60%,
92.43%, and 97.63%, respectively. These metrics indicate that
the ground-truth trajectory positions are consistently ranked
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within the top-three predicted spatial grids in over 92% of cases,
demonstrating the GN-GCN model’s practical applicability for
airspace decision support.

Predict time period MSE MAE
=1 0.0057 0.0207

T=2 0.0073 0.0264

=3 0.0064 0.0244

Short-term T=4 0.0052 0.0196
T=5 0.0053 0.0202

T=6 0.0099 0.0358

Average 0.0066 0.0245

=7 0.0056 0.0226

T=28 0.0092 0.0333

T=9 0.0100 0.0358

Long-term =10 0.0099 0.0356
=11 0.0085 0.0314

T=12 0.0098 0.0354

Average 0.0089 0.0324

Table 1. The result indicators of airspace congestion prediction
using grid graph convolution network model.

5. Grid graph convolutional network for meteorological
prediction

The grid graph convolutional network framework further proves
effective in meteorological prediction by learning the temporal
evolution of weather elements (e.g., wind, precipitation,
turbulence) across grid hierarchies. The model successfully
generates dynamic meteorological knowledge graphs that encode
spatio-temporal relatios between weather phenomena at different
altitudes and resolutions (Han et al., 2023). This capability
enables predictive risk assessment for low-altitude flight
operations through probabilistic reasoning over the learned graph
structure. By integrating real-time sensor data with historical
weather patterns, the system demonstrates high accuracy in
predicting hazardous meteorological conditions 30 minutes in
advance, significantly outperforming conventional numerical
weather prediction models in localized scenarios. The grid-based
knowledge representation naturally supports the fusion of
heterogenecous data sources, including satellite observations,
ground station reports, and flight trajectory data, establishing a
robust foundation for safety-critical decision-making in urban air
mobility systems. In the future, this paper will conduct more in-
depth research on meteorological risks based on grid graph
convolutional neural networks.

6. Conclusions

The GN-GCN framework resolves critical spatio-temporal
prediction limitations by unifying GeoSOT-4D grid encoding
with neighborhood-driven graph convolutions, effectively
addressing accuracy bottlenecks through multi-scale dependency
learning and accelerating computation via grid-based topological
optimization. Experimental validation demonstrates superior

performance: achieving SOTA MRR in spatio-temporal
knowledge reasoning, reliable trajectory and meteorological
forecasting for airspace management. This work establishes a
versatile foundation for safety-critical applications in urban air
mobility and emergency response, with future research directed
toward enhancing dynamic grid adaptation and cross-domain
generalization capabilities.
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