
Grid graph convolutional network with neighborhood  
learning for spatio-temporal prediction 

 
 

Bing Han 1,3, Tengteng Qu 2 

 
1 School of Mathematical Sciences, Peking University, Beijing 100871, China - hanbing@stu.pku.edu.cn 

2 School of Mechanics and Engineering Science, Peking University, Beijing 100871, China - tengteng.qu@pku.edu.cn 
3 Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China 

 
 
Keywords: Grid graph convolutional network, neighborhood learning, discrete grid, spatio-temporal prediction. 
 
 
Abstract 
 
This paper addresses the dual challenges of low accuracy and slow speed in spatio-temporal prediction by proposing a Grid Graph 
Convolutional Network with Neighborhood Learning (GN-GCN). Leveraging the GeoSOT-4D global grid system for discrete spatio-
temporal encoding, the model constructs grid-based knowledge graphs and integrates static graph neural networks, neighborhood grid 
computation, and temporal evolution units to jointly capture semantic, spatial, and temporal dependencies. Enhanced by a High-level 
Training and Low-level Testing (HTLT) strategy, GN-GCN achieves state-of-the-art performance in various spatio-temporal tasks, 
significantly outperforming conventional methods in both accuracy and computational efficiency for complex real-world scenarios. 
 
 

1. Introduction 

Spatio-temporal prediction has emerged as a critical technology 
in addressing complex real-world challenges across diverse 
domains. Current applications span spatio-temporal knowledge 
completion (e.g., inferring missing entities or relations in 
dynamic environments), low-altitude traffic congestion and 
trajectory prediction for urban air mobility systems, and 
meteorological forecasting to support autonomous drone 
operations (Li et al., 2021). These tasks require models to 
seamlessly integrate semantic, spatial, and temporal 
dependencies while handling heterogeneous data structures. 
Traditional approaches often struggle with the inherent 
complexity of multi-scale spatio-temporal interactions, 
particularly in scenarios demanding fine-grained spatial 
partitioning and long-term temporal reasoning (Huang, Su, and 
Wang 2024). There are two main issues that need to be addressed 
in the current spatio-temporal prediction task. 
 
On one hand, the accuracy of spatio-temporal prediction is poor. 
One is that the scene elements are complex, including 
environmental factors such as meteorology and hydrology, 
historical public opinion information, economic and political 
information, rule libraries, etc. In this special application scenario, 
traditional vector oriented modeling methods are difficult to 
achieve unified spatio-temporal level association aggregation 
and relation calculation (Chen, Deng, and Chen 2017); Secondly, 
the accuracy of relation extraction is low. Traditional methods 
focus on all relations related to entities, which have low 
information value density and do not directly contribute to 
inference and prediction, often reducing prediction accuracy; 
Thirdly, information combination is prone to overload, and the 
explosive growth of big data in intelligence, monitoring, and 
control can lead spatio-temporal prediction models into the 
dilemma of information combination overload. 
 
On the other hand, the speed of spatio-temporal prediction is slow. 
Firstly, the situation changes rapidly, and traditional spatio-
temporal prediction theory cannot meet the fast prediction of 
system intentions in real-time changing situations  (Zhang et al., 
2020); The second is the influence of multiple forces, and the 
environment is often in a state of multi-party anxiety. Traditional 

object-oriented spatio-temporal reasoning requires traversing all 
force entities, so the prediction time will significantly increase 
with the increase of forces(Zhang et al., 2024); The third 
requirement is high response speed, making it particularly 
important to achieve near real-time completion of spatio-
temporal prediction. 
 
Based on the above two main issues, it is more important to 
quickly organize and extract various elements, and ultimately 
carry out various spatio-temporal predictions and knowledge 
learning. In recent years, the emergence of spatio-temporal grids 
has proposed a new way of knowledge representation and 
management. The discreteness of grids determines that they can 
describe spatio-temporal relations in a finite way, which is 
simpler, more unique, and more limited than objectification 
methods in describing spatio-temporal, topology, orientation, and 
distance(Qian et al., 2019). 
 
Therefore, this paper proposes a spatio-temporal prediction 
architecture based on grid graph convolutional networks. Based 
on the GeoSOT-4D (GeoSOT-3D+GeoSOT-T) global gird 
system (Han et al., 2022), all elements in the environment are 
spatio-temporal encoded, and the grid spatio-temporal 
knowledge graph is associated with the entities in the system to 
construct the spatio-temporal and semantic relations of the graph. 
Subsequently, a Grid graph convolutional network with 
neighborhood learning was established to perform spatio-
temporal prediction tasks in complex spatio-temporal scenarios, 
such as spatio-temporal knowledge reasoning, airspace 
congestion prediction, and meteorological risk prediction. 
 

2. Grid graph convolutional network 

2.1 GeoSOT-4D 

GeoSOT-4D is mainly composed of GeoSOT-3D and GeoSOT-
T, which discretize space and time respectively (Han, and Qu 
2025). In this paper, GeoSOT-3D (Geographic Coordinate 
Subdividing Grid with One Dimension Integrated Coding on 2n 
Tree-3D) is selected as the coding scheme for 3D subdivision 
framework to establish an abstract environment (Zhai et al., 
2021), as shown in Figure 1. The subdivision of GeoSOT-3D is 
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to expand the latitude and longitude to a space of 512 °× 512 °, 
and use the equal latitude and longitude recursive quadtree 
partitioning method to perform multi-scale subdivision on the 
expanded space. The altitude is mapped to 512 degrees, 
corresponding to the airspace range from an altitude of 50000 
kilometers to the center of the earth (Han et al., 2023). The 
GeoSOT-3D is a 32 level multi-scale octree solid grid that 
uniquely identifies and stores internal information for each 
discrete element in the spatial domain through grid encoding  
(Liu et al., 2022). 
 

 
Figure 1. GeoSOT-3D earth subdivision grid for spatio-

temporal prediction (Han et al., 2022). 
 
The time subdivision of spatio-temporal knowledge mainly 
focuses on the time adverbials in the quadruple, encoding the 
time slices in time. The time encoding adopts the GeoSOT-T time 
discretization architecture, which discretizes time into time 
intervals of different lengths and assigns a unique binary 
encoding to discretize time into longer "time periods". Compared 
with time point labels in string form, GeoSOT-T can reduce 
storage capacity and serve as an easily recognizable encoding 
scheme for computers to identify time periods. Based on the 
GeoSOT-T time partitioning model, the time information of 
entities and relations can be uniquely and discretely represented 
by time encoding. Through GeoSOT-T time partitioning 
encoding, spatio-temporal knowledge can effectively incorporate 
temporal neighborhoods into the computational system and 
construct temporal logical relations through multi-scale temporal 
hierarchies. 
 
2.2 Grid Spatio-temporal knowledge graph 

Grid spatio-temporal knowledge graph simplifies multiple layers 
into a grid map, and integrates political, economic, and 
environmental information from the perspective of global 
strategy and dynamics through the grid. As shown in Figure 2, a 
unified grid diagram is used to horizontally correlate the grids 
through spatial knowledge and vertically correlate them through 
temporal knowledge. By using grid coding, the computational 
complexity is much lower than that of latitude and longitude 
vector coordinate maps, making calculations more efficient and 
faster, with speeds up to tens or even hundreds of times faster, 
and independent of the number of entities. When an entity enters 
another grid spatio-temporal region, it can also synchronize the 

environmental properties of the grid where the entity is located 
for updates, thereby completing subsequent spatio-temporal 
predictions. 
 
 

 
Figure 2. The framework of grid Spatio-temporal knowledge 

graph (Han et al., 2023). 
 
2.3 Grid graph convolutional network with neighborhood 
learning 

 
Because of the difficulty of utilizing hidden spatio-temporal 
information, spatio-temporal knowledge graph (KG) reasoning 
tasks in real geographic environments suffer from low accuracy 
and poor interpretability(Chen, Jia, and Xiang 2020). Our 
proposed grid graph convolutional network architecture 
incorporates neighborhood learning for spatio-temporal KG 
reasoning, achieving superior performance in knowledge 
completion tasks compared to conventional graph neural 
networks. The grid neighborhood mechanism addresses sparse 
connectivity in traditional graph structures by leveraging 
GeoSOT-3D subdivision's inherent regularity. 
 
As shown in Figure 3, the grid graph convolutional network (GN-
GCN) comprises three components: a static graph neural network 
for semantic knowledge, a neighborhood grid calculation module 
for spatial knowledge, and a time evolution unit for temporal 
knowledge (Han, Qu, and Jiang 2025). Temporal information and 
spatial topological relations are representable through grid 
coding, where spatio-temporal grid neighborhoods exhibit graph-
like semantics. This enables learning structural dependencies 
within temporal and spatial relations. 
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Figure 3. The framework of Grid graph convolutional network 
with neighborhood learning (GN-GCN) (Han, Qu, and Jiang 

2025). 
 
3. Grid graph convolutional network for spatio-temporal 

knowledge reasoning 

Spatio-temporal geographic scenarios encompass numerous 
spatio-temporal facts. Unlike semantic facts, these exhibit 
characteristics such as high sparsity and a multitude of relations 
(Shbita et al., 2023). Spatio-temporal knowledge reasoning 
involves inferring missing spatio-temporal entities or relations 
within these facts (Sioutis, and Long 2022). 
 
3.1 HTLT algorithm 

The grid graph convolutional network (GN-GCN) leverages the 
multi-scale aggregation property of the GeoSOT grid system to 
enhance model training accuracy and efficiency. Its core 
principle, Hierarchical Training and Low-level Testing (HTLT), 
operates across multiple GeoSOT grid scales. Training occurs at 
higher (coarser) grid levels to meet the computational and 
structural demands of spatio-temporal scenes and graphs. 
Information learned at these higher levels is then transferred, 
utilizing the inherent recursive coding topology of GeoSOT, for 
faster testing and inference at the original (finer) data resolution 
level. This approach fully exploits the GeoSOT multi-scale 
discrete grid model.  
 
Crucially, GeoSOT enables parameter and information sharing 
between different grid levels within the same spatial region, 
making it highly suitable for multi-scale spatial structure learning. 
The HTLT algorithm thus leverages the advantages of coarse 
grids (improved prediction accuracy) while maintaining the 
flexibility of the original fine grid size without information loss. 
Furthermore, it reduces GPU memory requirements during 
testing, enhancing overall efficiency. 
 
3.2 Loss function 

For spatio-temporal knowledge reasoning, grid graph 
convolutional network employs a customized loss function to 
evaluate prediction performance: 
 

𝐹!" = ∑ ∑ ℎ𝑖𝑡𝑠(𝑠, 𝑝, 𝑖, 𝑡)𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝑠, 𝑝)#
$%&

'
(%& ,   (1) 

 
where  ℎ𝑖𝑡𝑠(𝑠, 𝑝, 𝑖, 𝑡)  = binary validation operator ensuring 
data integrity 
 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝑠, 𝑝) = the decoder calculation component of 
the likelihood of spatio-temporal entity 
 

3.3 Results 

Compared to existing models (e.g., RE-GCN, CyGNet, RE-NET), 
GN-GCN achieves state-of-the-art (SOTA) performance in 
spatio-temporal reasoning. Specifically, its Mean Reciprocal 
Rank (MRR) reaches 48.33 for spatio-temporal entity prediction 
and 54.06 for relation prediction. These results represent 
improvements of 6.32 (18.16%) and 6.64 (15.67%) over the best-
performing baselines, respectively. Experimental analysis 
indicates that GN-GCN's superior performance primarily stems 
from incorporating dedicated temporal and spatial dependency 
modules and effectively capturing regional associations via 
GeoSOT grid domain coordinates. 
 

4. Grid graph convolutional network for airspace 
congestion prediction 

Airspace congestion prediction is a critical challenge in modern 
air traffic management systems (Alharbi, Petrunin, and 
Panagiotakopoulos 2023). With the rapid growth of the aviation 
industry, air traffic density continues to increase, particularly 
near busy routes and hub airports, leading to more frequent 
congestion phenomena (Xiang, Liu, and Luo 2016). Airspace 
congestion prediction aims to integrate event data, traffic 
sentiment, meteorological conditions, airspace utilization, and 
spatio-temporal relations to rapidly identify congestion points 
and regions in large-scale spatio-temporal scenarios, providing 
early warnings for flight operators and airspace managers to 
enable proactive mitigation (Sudarsanan, and Kostiuk 2024). 
Congestion not only reduces flight punctuality and transportation 
efficiency but also elevates safety risks (Watkins et al., 2021). 
Therefore, accurate prediction of future congestion is essential 
for optimizing air traffic management, improving flow 
distribution, and enhancing operational efficiency (Wu et al., 
2024). 
 
The rapid expansion of urban areas and the gradual opening of 
low-altitude airspace have intensified congestion challenges, 
with unmanned and manned aerial vehicle densities projected to 
surge dramatically (Cummings, and Mahmassani 2024). For 
instance, China’s Low-Altitude Economy Development Report 
(2024) predicts that its low-altitude economy will exceed 
10.6446 trillion RMB by 2026 (Huang, Su, and Wang 2024), with 
over 1.987 million registered drones as of August 2024  (LIAO, 
XU, and YE 2024). In large-scale low-altitude operations, 
uneven spatiotemporal resource allocation inevitably leads to 
congestion at high-traffic origins/destinations and peak hours 
(Stuive, and Gzara 2024). Unlike ground vehicles, low-altitude 
congestion cannot be fully resolved through manual intervention, 
and relying solely on heterogeneous onboard collision avoidance 
systems may fail to rapidly resolve conflicts, increasing collision 
risks, which is shown in Figure 4 (Zhang et al., 2024). Thus, 
proactive congestion prediction and early warnings are 
imperative for urban airspace safety (She, and Ouyang 2021). 
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Figure 4. Possible scenarios of congestion in low altitude 

airspace. 
 
For trajectory and congestion prediction tasks in low-altitude 
airspace, the grid graph convolutional network with 
neighborhood learning architecture demonstrates exceptional 
capability in learning complex motion patterns  (Wu et al., 2024). 
By modeling airspace trajectories as temporal sequences of grid 
transitions, the network captures both micro-scale movement 
characteristics (through grid-level features) and macro-scale 
traffic trends (via hierarchical grid aggregation). The 
neighborhood convolution operator adaptively weights adjacent 
grids based on their historical transition probabilities and current 
traffic states, effectively encoding congestion propagation 
patterns. 
 
4.1 Airspace congestion analysis formula 

Upon completing parameter learning, the grid graph 
convolutional network model acquires the capability to predict 
aircraft trajectories during target prediction periods. By 
integrating these trajectory predictions with airspace attributes, it 
ultimately aggregates congestion forecasts for critical airspace 
sectors within designated regions. This aggregation process 
systematically combines spatial-temporal trajectory distributions 
with airspace capacity constraints, enabling multi-scale 
congestion evaluation through probabilistic fusion and rule-
based reasoning mechanisms.  
 
To operationalize airspace congestion prediction using the GN-
GCN model, this paper aggregates predicted trajectories across 
temporal intervals and spatial grids. Adaptive congestion 
thresholds are established for each 3D spatial grid cell coordinate 
(i,j,z) by integrating meteorological impacts and airspace class 
constraints, which is formalized as: 
 
𝑇$)* = 𝐵 ∙ 𝐶+,("-!./

$)* ∙ ∏ (1 −𝑊0",(1".
2 𝑀$)*

2 )3
2%& ,   (2) 

 
where  𝑇$)*  = maximum tolerable aircraft count for spatial 
grid (i,j,z) under congestion 
 𝐵  = baseline threshold (maximum aircraft capacity 
under standard conditions) 
 
After consulting with aviation experts, 𝐶+,("-!./

$)* ∈
{𝐶43."5(.$+("6 = 1, 𝐶7$3!. = 0.8, 𝐶7,)!. = 0.5}  represents  
airspace class coefficient; 𝑊0",(1".

2 ∈ {𝑊0",(1".
(1436". = 0.5, 

𝑊0",(1".
0$36 = 0.2,  𝑊0",(1".

.,$3 = 0.1}  denotes weather impact 
coefficients; 𝑀$)*

2  is intensity level of weather type k in spatial 

grid (i,j,z). By the calculation of 𝑇$)* , the airspace congestion 
severity 𝑆$)* in grid (i,j,z) is quantified via a piecewise function: 
 

𝑆$)* = D

0, 𝑖𝑓	𝑁$)* ≤ 0.5𝑇$)*
8!"#9:.<'!"#
:.<'!"#

, 𝑖𝑓	0.5𝑇$)* < 𝑁$)* ≤ 𝑇$)*
1,			𝑖𝑓	𝑁$)* > 𝑇$)*

,   (3) 

 
where  𝑁$)* = predicted aircraft count by GN-GCN model 
 𝑆$)* ∈ [0,1]  = normalized congestion severity (0 
means complete airspace freedom,1 means critical congestion) 
 
4.2 Probability grid map 

In airspace congestion prediction, GN-GCN can visualize 
different probabilities in a spatio-temporal probabilistic grid map. 
Based on the intention of the system entity in the global 
environment, the spatio-temporal probability grid map uses grids 
as the basic unit to display the impact range of airspace 
congestion through different color intensities. In this paper, an 
airspace congestion probability grid map is also established based 
on the airspace predicted congestion severity 𝑆$)* to dynamically 
display the congestion prediction of each airspace grid, as shown 
in Figure 5.  
 

 
Figure 5. The representation of spatio-temporal congestion 

probability grid map. 
 

The airspace congestion probability grid can summarize the 
reasoning of the movement trends of aircrafts based on GN-GCN, 
and finally conduct congestion risk assessment and prediction for 
the airspace scenarios. In the grid map, the darker the color of the 
grid, the higher the congestion risk 𝑆$)*  of the area during the 
predicted time interval. If 𝑆$)* > 0.6, it is necessary to provide 
congestion warnings to nearby aircraft for pre-evacuation to 
relieve local risks. This paper can help to achieve proactive 
airspace traffic management through early warning 
dissemination by airspace congestion probability grid map. 
 
4.3 Results 

After comparative experiments with other time-series models, 
this paper further evaluates the GN-GCN model across extended 
temporal intervals for airspace trajectory prediction. As detailed 
in Table 1, short-term predictions achieve lower MSE and MAE 
values, while both metrics exhibit a gradual yet acceptable 
increase as the prediction horizon extends, reflecting the inherent 
challenges of long-term forecasting common to time-series 
models. Results confirm that GN-GCN maintains reliable 
trajectory prediction accuracy within a five-hour horizon, with 
MSE and MAE deviations remaining within operational 
tolerances. Across all intervals, the model achieves an MRR of 
0.8318, with Hit@1, Hit@3, and Hit@10 scores of 73.60%, 
92.43%, and 97.63%, respectively. These metrics indicate that 
the ground-truth trajectory positions are consistently ranked 
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within the top-three predicted spatial grids in over 92% of cases, 
demonstrating the GN-GCN model’s practical applicability for 
airspace decision support. 
 

Predict time period MSE MAE 

Short-term 

𝜏 = 1 0.0057 0.0207 

𝜏 = 2 0.0073 0.0264 

𝜏 = 3 0.0064 0.0244 

𝜏 = 4 0.0052 0.0196 

𝜏 = 5 0.0053 0.0202 

𝜏 = 6 0.0099 0.0358 

Average 0.0066 0.0245 

Long-term 

𝜏 = 7 0.0056 0.0226 

𝜏 = 8 0.0092 0.0333 

𝜏 = 9 0.0100 0.0358 

𝜏 = 10 0.0099 0.0356 

𝜏 = 11 0.0085 0.0314 

𝜏 = 12 0.0098 0.0354 

Average 0.0089 0.0324 

Table 1. The result indicators of airspace congestion prediction 
using grid graph convolution network model. 

 
5. Grid graph convolutional network for meteorological 

prediction 

The grid graph convolutional network framework further proves 
effective in meteorological prediction by learning the temporal 
evolution of weather elements (e.g., wind, precipitation, 
turbulence) across grid hierarchies. The model successfully 
generates dynamic meteorological knowledge graphs that encode 
spatio-temporal relatios between weather phenomena at different 
altitudes and resolutions (Han et al., 2023). This capability 
enables predictive risk assessment for low-altitude flight 
operations through probabilistic reasoning over the learned graph 
structure. By integrating real-time sensor data with historical 
weather patterns, the system demonstrates high accuracy in 
predicting hazardous meteorological conditions 30 minutes in 
advance, significantly outperforming conventional numerical 
weather prediction models in localized scenarios. The grid-based 
knowledge representation naturally supports the fusion of 
heterogeneous data sources, including satellite observations, 
ground station reports, and flight trajectory data, establishing a 
robust foundation for safety-critical decision-making in urban air 
mobility systems. In the future, this paper will conduct more in-
depth research on meteorological risks based on grid graph 
convolutional neural networks. 
 

6. Conclusions 

The GN-GCN framework resolves critical spatio-temporal 
prediction limitations by unifying GeoSOT-4D grid encoding 
with neighborhood-driven graph convolutions, effectively 
addressing accuracy bottlenecks through multi-scale dependency 
learning and accelerating computation via grid-based topological 
optimization. Experimental validation demonstrates superior 

performance: achieving SOTA MRR in spatio-temporal 
knowledge reasoning, reliable trajectory and meteorological 
forecasting for airspace management. This work establishes a 
versatile foundation for safety-critical applications in urban air 
mobility and emergency response, with future research directed 
toward enhancing dynamic grid adaptation and cross-domain 
generalization capabilities. 
 

Acknowledgements  

This work was funded by the National Key Research and 
Development Program of China (2024YFF1400802) and the 
Beijing Nova Program (No. 20240484563). 
 

References 

Alharbi, A., Petrunin, I., and Panagiotakopoulos, D., 2023. Deep 
Learning Architecture for UAV Traffic-Density 
Prediction. Drones 7 (2). doi: 10.3390/drones7020078. 

Chen, J., Deng, S., and Chen, H. 2017. CrowdGeoKG: 
Crowdsourced Geo-Knowledge Graph. Paper 
presented at the Knowledge Graph and Semantic 
Computing. Language, Knowledge, and Intelligence, 
Singapore, 2017//. 

Chen, X., Jia, S., and Xiang, Y., 2020. A review: Knowledge 
reasoning over knowledge graph. Expert Systems with 
Applications 141. doi: 10.1016/j.eswa.2019.112948. 

Cummings, C., and Mahmassani, H., 2024. Airspace Congestion, 
flow Relations, and 4-D fundamental Diagrams for 
advanced urban air mobility. Transportation Research 
Part C: Emerging Technologies 159. doi: 
10.1016/j.trc.2023.104467. 

Han, B., and Qu, T., 2025. A dynamic airspace grid map based 
on 3D subdivision framework. The International 
Archives of the Photogrammetry, Remote Sensing and 
Spatial Information Sciences XLVIII-G-2025:555-60. 
doi: 10.5194/isprs-archives-XLVIII-G-2025-555-2025. 

Han, B., Qu, T., and Jiang, J., 2025. GN-GCN: Grid 
neighborhood-based graph convolutional network for 
spatio-temporal knowledge graph reasoning. ISPRS 
Journal of Photogrammetry and Remote Sensing 
220:728-39. doi: 10.1016/j.isprsjprs.2025.01.023. 

Han, B., Qu, T., Tong, X., Jiang, J., Zlatanova, S., Wang, H., and 
Cheng, C., 2022. Grid-optimized UAV indoor path 
planning algorithms in a complex environment. 
International Journal of Applied Earth Observation 
and Geoinformation 111. doi: 
10.1016/j.jag.2022.102857. 

Han, B., Qu, T., Tong, X., Wang, H., Liu, H., Huo, Y., and Cheng, 
C., 2023. AugGKG: a grid-augmented geographic 
knowledge graph representation and spatio-temporal 
query model. International Journal of Digital Earth 16 
(2):4934-57. doi: 10.1080/17538947.2023.2290569. 

Huang, H., Su, J., and Wang, F.-Y., 2024. The Potential of Low-
Altitude Airspace: The Future of Urban Air 
Transportation. IEEE Transactions on Intelligent 
Vehicles 9 (8):5250-4. doi: 10.1109/tiv.2024.3483889. 

Li, Z., Jin, X., Li, W., Guan, S., Guo, J., Shen, H., Wang, Y., and 
Cheng, X., 2021. "Temporal Knowledge Graph 
Reasoning Based on Evolutional Representation 
Learning." In Proceedings of the 44th International 
ACM SIGIR Conference on Research and 
Development in Information Retrieval, 408-17. 

LIAO, X., XU, C., and YE, H., 2024. Benefits and challenges of 
constructing low-altitude air route network 
infrastructure for developing low-altitude economy. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025 
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-55-2025 | © Author(s) 2025. CC BY 4.0 License.

 
59



 

Bulletin of Chinese Academy of Sciences 39 (11):1966-
81. 

Liu, Y., Zhang, X., Huang, F., Zhang, B., and Li, Z., 2022. Cross-
Attentional Spatio-Temporal Semantic Graph 
Networks for Video Question Answering. IEEE Trans 
Image Process 31:1684-96. doi: 
10.1109/TIP.2022.3142526. 

Qian, C., Yi, C., Cheng, C., Pu, G., Wei, X., and Zhang, H., 2019. 
GeoSOT-Based Spatiotemporal Index of Massive 
Trajectory Data. ISPRS International Journal of Geo-
Information 8 (6). doi: 10.3390/ijgi8060284. 

Shbita, B., Knoblock, C. A., Duan, W., Chiang, Y.-Y., Uhl, J. H., 
Leyk, S., Kirrane, S., Ngonga Ngomo, A.-C., Kirrane, 
S., and Ngonga Ngomo, A.-C., 2023. Building spatio-
temporal knowledge graphs from vectorized 
topographic historical maps. Semantic Web 14 (3):527-
49. doi: 10.3233/sw-222918. 

She, R., and Ouyang, Y., 2021. Efficiency of UAV-based last-
mile delivery under congestion in low-altitude air. 
Transportation Research Part C: Emerging 
Technologies 122. doi: 10.1016/j.trc.2020.102878. 

Sioutis, M., and Long, Z., 2022. "Hybrid AI Systems Grounded 
on Qualitative Spatio-Temporal Reasoning." In 
Proceedings of the 12th Hellenic Conference on 
Artificial Intelligence, 1-. 

Stuive, L., and Gzara, F., 2024. Airspace network design for 
urban UAV traffic management with congestion. 
Transportation Research Part C: Emerging 
Technologies 169. doi: 10.1016/j.trc.2024.104882. 

Sudarsanan, V. S., and Kostiuk, P. F., 2024. "Predicting Air 
Traffic Congestion at Arrival Fixes Using Deep 
Learning for Operational Disruption Forecast and 
Monitoring." In Aiaa Aviation Forum and Ascend 2024. 

Watkins, L., Sarfaraz, N., Zanlongo, S., Silbermann, J., Young, 
T., and Sleight, R., 2021. "An Investigative Study Into 
An Autonomous UAS Traffic Management System 
For Congested Airspace Safety." In 2021 IEEE 
International Conference on Communications 
Workshops (ICC Workshops), 1-6. 

Wu, C., Ding, H., Fu, Z., and Sun, N., 2024. Air Traffic Flow 
Prediction in Aviation Networks Using a Multi-
Dimensional Spatiotemporal Framework. Electronics 
13 (19). doi: 10.3390/electronics13193803. 

Xiang, J., Liu, Y., and Luo, Z., 2016. Flight safety measurements 
of UAVs in congested airspace. Chinese Journal of 
Aeronautics 29 (5):1355-66. doi: 
10.1016/j.cja.2016.08.017. 

Zhai, W., Han, B., Li, D., Duan, J., and Cheng, C., 2021. A low-
altitude public air route network for UAV management 
constructed by global subdivision grids. PLoS One 16 
(4):e0249680. doi: 10.1371/journal.pone.0249680. 

Zhang, W., Pan, W., Zhu, X., Yang, C., Du, J., and Yin, J., 2024. 
Identification of Traffic Flow Spatio-Temporal 
Patterns and Their Associated Weather Factors: A Case 
Study in the Terminal Airspace of Hong Kong. 
Aerospace 11 (7). doi: 10.3390/aerospace11070531. 

Zhang, Z., Zhuang, F., Zhu, H., Shi, Z., Xiong, H., and He, Q., 
2020. Relational Graph Neural Network with 
Hierarchical Attention for Knowledge Graph 
Completion. Proceedings of the AAAI Conference on 
Artificial Intelligence 34 (05):9612-9. doi: 
10.1609/aaai.v34i05.6508. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025 
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-55-2025 | © Author(s) 2025. CC BY 4.0 License.

 
60




