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Abstract

Simultaneous building extraction and height estimation from single-view satellite imagery via multi-task learning presents a viable
solution for large-scale urban 3D reconstruction. However, balancing the weights across different tasks and reducing conflicts
between them remains a challenging problem. In this paper, we propose a Mamba-CNN based network to more effectively capture
the spatial distribution of buildings. Additionally, we propose a cross-task feature fusion module to facilitate information exchange
between tasks. Experiments conducted on the Vaihingen dataset demonstrate significant improvements achieved by the proposed

method.

1. Introduction

Buildings constitute the primary components of urban areas,
and analyzing their spatial distribution and attributes such as
height holds significant importance for urban planning (Son et
al., 2023), population estimation (Boo et al., 2022), and disaster
management (Zheng et al., 2021). With advancements in remote
sensing technology and deep learning, building extraction and
height estimation from satellite imagery have facilitated large-
scale 3D urban reconstruction.

Traditionally, building extraction and height estimation have
been regarded as two separate tasks, and their results are
combined to generate 3D building models. However, it is
challenging to accomplish both tasks directly from a single
image. Remote sensing images have inter-class similarity and
intra-class difference, which bring difficulties to semantic
segmentation. For height estimation, the same object may
correspond to multiple different heights. Recent studies have
shown that there is a strong correlation between the height
changes and semantic changes of buildings. Jointly performing
building extraction and height estimation tasks can promote
both tasks simultaneously. D3-Net (Carvalho et al., 2020)
proposed a single-encoder-dual-decoder architecture to jointly
generate pixel-level building segmentation maps and height
estimation maps. SCE-Net (Xing et al., 2022b) further improved
cross-task feature interaction through dedicated modules.
However, challenges remain due to task-specific semantic
inconsistencies in remote sensing imagery (e.g., different
objects sharing similar heights) and the difficulty in balancing
inter-task weights.

To address the aforementioned issues, we propose BiMamba3D,
a novel network architecture that integrates CNN and Mamba
frameworks. BiMamba3D employs the encoder of
MambaVision to extract features. After utilizing shallow
decoders to separately learn features for building segmentation
and height estimation, a Cross-task Mamba Module (CMM) is
introduced to facilitate information exchange between the two
tasks.

2. Related work
2.1 Single-task learning

2.1.1 Building segmentation: Building extraction has
undergone a transformation from traditional methods based on
geometry and regional segmentation to deep learning-driven
approaches. Early methods relied on handcrafted features (Hao
et al., 2019; Liasis & Stavrou, 2016) and had limited
applicability. Deep learning methods treat building
segmentation as a pixel classification problem, and by
introducing Convolutional Neural Networks (CNN) to improve
the model, the segmentation accuracy has been enhanced.

Fully Convolutional Networks (FCNs) (Long et al., 2015) were
the first to replace the fully connected layers in traditional
convolutional neural networks with convolutional layers,
enabling pixel-wise prediction for inputs of arbitrary sizes.
Since then, methods such as U-Net (‘U-Net’, 2015) and
DeepLab (L.-C. Chen et al., 2018) have significantly advanced
semantic segmentation technology. Recent studies often adopt
specific strategies to improve network frameworks targeting
specific issues in building extraction, such as multi-scale
problems (R. Li et al., 2021; Xu et al., 2022; Zhou et al., 2022),
uncertainty issues (J. Li et al., 2024), and the problem of small

inter-class differences and large intra-class differences
(Hamaguchi, 2024), thereby achieving more excellent
performance.

The introduction of transformer has brought a new perspective
to building segmentation. Through the self-attention mechanism,
it can perform global context modeling and capture the spatial
distribution patterns of building clusters, overcoming the
limitations of CNN in terms of receptive fields. Chen et al.
(2022) proposed combining Swin transformer with channel and
spatial enhancement technologies to extract multi-scale features
and achieve accurate building extraction. To improve the
computational efficiency of transformer, STT (K. Chen et al.,
2021) introduced a dual-path transformer framework,
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representing buildings as sparse feature vectors in the feature
space from both spatial and channel perspectives. In addition,
since CNN is good at local feature extraction, most existing
transformer-based building segmentation methods adopt a
hybrid design, aiming to combine the advantages of
convolutional neural networks and transformer. Zhang et al.
(2024) designed a dual-branch structure that can capture both
global dependencies and local features, and integrate them into
a multi-scale global-local context representation with enhanced
boundary features. Fu et al, (2024) proposed a parallel CNN-
transformer architecture and introduced an interactive self-
attention mechanism to fuse multi-level features from the two
branches.

2.1.2 Building height estimation: Early monocular
elevation estimation mainly includes random field models and
CNN models. The core idea of random fields is to estimate
building heights by modeling the spatial dependencies between
pixels or regions and using the constraints of single-point
features and neighborhood structures. Studies used Markov
Random Field (MRF) and Conditional Random Field (CRF) to
model the local and global structures of images. Considering
that local features cannot provide sufficient information for
predicting depth values, Batra (Batra & Saxena, 2012) modeled
the relationships between adjacent regions. To obtain both local
and global features, Saxena et al. (Saxena et al., 2008)
calculated the features of four adjacent regions of a specified
region and used the Laplacian model and MRF to estimate
elevation.

Inspired by depth estimation tasks, researchers have introduced
neural networks to estimate building heights. In terms of
network frameworks, monocular elevation estimation mainly
includes single-task learning and multi-task learning. Single-
task learning directly uses neural networks for height value
regression. IM2HEIGHT (Mou et al., 2018) first realized the
mapping from single-view images to DSM using a fully
convolutional network architecture. Amirkolaee et al. (2019)
proposed a CNN with an encoder-decoder structure. In the
encoder part, ResNet is used to model global and local features;
in the decoder part, upsampling operations are utilized to
increase the size of elevation results. Karatsiolis et al. (2021)
proposed IMG2nDSM to estimate the heights of buildings and
vegetation from a single aerial image. IM2ELEVATION (C.-J.
Liu et al., 2020) improved the feature aggregation method by
combining the features of the encoding layer with those of the
final decoding layer, achieving good results. Xing et al. (2022a)
proposed a gated feature aggregation method, which enhances
the height estimation effect and preserves clearer object
boundaries and contours by effectively combining low-level and
high-level features.

LUMNet (Du et al., 2024) significantly improved the accuracy
of height estimation by combining prior knowledge and multi-
scale feature extraction. Mao et al. (Mao, Chen, et al., 2023)
designed the SFFDE method, which integrates global and local
information, and proposed a building modeling framework that
combines building entity extraction and elevation estimation.

Due to the non-linear nature of surface object heights in remote
sensing images and their extremely large dynamic range, some
studies have attempted to convert the elevation estimation
problem into a height interval classification problem. Li et al.
(2022) divided height values into intervals with gradually
increasing gaps, transformed the regression problem into an
ordinal regression problem, and used ordinal loss for network
training. Through post-processing techniques, the predicted

height map of each image patch is converted into a seamless
height map.

Feng et al. (2022) defined height discretization rules and
introduced a distance penalty index, converting continuous
ground height values into a soft probability distribution. In the
inference stage, the predicted height is obtained by means of
soft weighted summation. Wang et al. (2024) used the SAM
model to filter out the background, and then proposed to use
SAdabins to optimize the results of the regression task. Chen et
al. (2023) proposed to adopt adaptive intervals in network
design and clipped a small number of deviation values
generated by the network.

2.2 Multi-task learnin

Multi-task learning attempts to make the building shapes in the
obtained DSM more regular by simultaneously learning
semantic segmentation information and building height
information. How to balance the weight allocation among multi-
task learning and how to promote feature exchange between
different task branches are two key research directions in multi-
task learning. LIGHT (Mao, Sun, et al., 2023) designed a
unified multi-scale feature branch and proposed a gated cross-
task interaction module to alleviate the feature gap between
different tasks. Liu et al. (2022) realized feature interaction
between semantic segmentation and elevation extraction tasks
by designing a cross-task adaptive propagation module, while
learning global context information and local geometric features.
Feng et al. (2023) proposed a calibration and refinement
attention module to filter inconsistent features between the two
tasks, and introduced adjacent pixel affinity loss and soft-
weighted ordinal loss for the two tasks to optimize the direction
of task gradients.

3. Method

This paper presents a multi-task learning network, BiMamba3D,
designed to jointly perform building segmentation and height
estimation. The network architecture consists of encoder,
decoder, a cross-task information interaction module CMM and
two task-specific prediction heads. By incorporating the Mamba
architecture, BiMamba3D can more effectively capture long-
range spatial relationships in images, such as the global
structure of buildings. Meanwhile, through the CMM, the
semantic boundary information from the segmentation task can
guide the edge refinement in height estimation. Conversely, the
height gradient information can feedback to facilitate instance
separation in the segmentation task.

3.1 Decoder

We use the encoder of MambaVision for feature extraction,
following (Hatamizadeh & Kautz, 2025). We employ two U-
shaped decoder structures for auxiliary semantic segmentation
and height estimation decoding, respectively, which gradually
reconstruct spatial resolution through hierarchical feature fusion.

Let the encoder extract four levels of features {X,, X,,X,,X,}.

The number of channels in each feature map is denoted as
{C..C,.C,,C,}=(196,392,784,1568) , and all features are spatially

aligned through appropriate upsampling operations during
decoding.

The decoder first projects the deepest feature map
X, el c~HBwis into a unified channel space using a 3>3
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Figure 1. Pipeline of BiMamba3D.

convolution followed by batch normalization and ReLU
activation, denoted as D, . This representation is then

iteratively upsampled and fused with the corresponding
encoder features at each level via lateral connections:

D, = ConvBNReLU(X,)

D, = ConvBNReLU(X,) + Upsample(ConvBNReLU(D,)) , 1)
D, = ConvBNReLU(X,) + Upsample(ConvBNReLU(D,))

D, = ConvBNReLU(X,) + Upsample(ConvBNReLU(D,))

At each stage, feature maps are processed by a convolutional
block before fusion, ensuring alignment in the feature domain.
All upsampling operations are bilinear with a scale factor of 2,
ensuring a gradual restoration of spatial resolution.

The fused high-resolution representation D, is refined through
two additional convolutional layers:

F = ConvBNReLU(ConvBNReLU(D))) » 3]

To further enlarge the resolution to match the original input
scale, the decoder applies two successive upsampling blocks,
each consisting of a 3>3 convolution (with reduced channels),
ReLU activation, and bilinear upsampling. Finally, a 1xl
convolution maps the feature to the desired number of output
channels.

We instantiate this decoder architecture twice, forming a dual-
head decoder design. Semantic segmentation branch outputs a
n-channel per-pixel semantic label map:

f.,, YL =Decoder, (X, X,, X5, X,) » (3)

seg ! 'seg seg
where n denotes the number of semantic segmentation classes.

Height estimation branch outputs a single-channel normalized
elevation map:

fdsm Ydsm - DECOderdsm(Xl’ XZ' X3’ X4) ! (4)

3.2 CMM

To facilitate effective information exchange between the
semantic segmentation and height estimation tasks, we propose
a CMM module that performs both channel-wise and spatial-
wise mutual enhancement. The CMM module leverages
intermediate  task-specific decoder features—denoted as
f,, ellerw and f, eloHw - and integrates them to

seg dsm

produce a task-agnostic, enriched representation that benefits
both downstream heads. These features are first projected into a
unified latent space via 11 convolution:

=Conv,, (fum) » ®)

steg :Convixl(fseg)’ fdsm
To model cross-task dependencies at each spatial location, we
treat the task features at a given spatial coordinate as a
sequence across tasks. Specifically, we flatten the spatial
dimensions and form a task-wise sequence at each location

@, = flatten(f,,)) e0 ™, g, =flatten(f,,)e0™c, (6)
frpg = CONCAL(Foqg, Ggom) €L V2 (7)

where N=HxW. We then reshape this into a task sequence for
each spatial location:

f., = Reshape(f,,) el ", (8)
Each 2-element sequence represents the task-specific features
for a single spatial location. This formulation allows us to
model the task interaction as a temporal sequence of length 2,
with Mamba acting as the sequence encoder. The Mamba block
is applied to the reshaped sequence:

foncocee = Mamba(f.,) el V>, )

encodee

We then reshape the encoded outputs back to task-specific
feature maps:

fout folrthl = CxHxW , (10)

seg !
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These are obtained by slicing the sequence and reshaping
accordingly. Finally, a residual connection is applied to
preserve the original features:

fs:qnal = fseg + fsg;t' fdgr:al = fdsm + deLr‘T: ! (11)
This residual fusion ensures that the learned interactions act as
modulation rather than complete replacement, preserving task-
specific knowledge while injecting cross-task awareness.

3.3 Task-specific Prediction Heads

After performing cross-task interaction using the CMM module,
we obtain globally enhanced task-specific feature maps f ™

seg
and ff To produce the final predictions, we employ

lightweight, task-specific prediction heads that transform these
enriched features into their respective output spaces.

The segmentation head is implemented as a simple yet effective
convolutional classifier. It maps the feature f™ to a multi-

seg

channel per-pixel class probability map. The structure consists
of two convolutional layers with an intermediate non-linearity:

Y2, = Conv,, (Relu(Conv, ,( ™)) e0 &=, (12)

seg seg

where C_, is the number of semantic classes. The 3>3

seg

convolution captures local spatial context, while the 1x1
convolution projects the features to class logits. The head
operates directly on the globally enhanced features without
further upsampling or fusion, preserving the high-level
consistency established by the interaction module.

The height estimation prediction head follows a similar
structure, tailored for single-channel regression. Given f®
the head produces a normalized height estimation map:

Y2, = Conv,, (Relu(Conv, ,(f,r))) el #=*¥,  (13)

3.4 Loss Function

To enhance the learning capacity of our multitask architecture,
we propose a multi-stage supervision strategy that incorporates
predictions from both early and late stages of the task heads. In
particular, our framework produces two sets of predictions for
each task: one from the initial decoder heads and another from
the refined, post-interaction heads. These intermediate
predictions act as auxiliary outputs that guide the learning
process at different abstraction levels. To integrate all these
outputs effectively during training, we design a joint loss
formulation based on task uncertainty weighting, which allows
the network to adaptively balance different loss components.

We adopt a hybrid loss for the height estimation prediction task
and a cross-entropy loss for semantic segmentation. The height
estimation loss includes pixel-wise L1 loss, gradient
consistency loss, and structural similarity (SSIM) loss,
combined as follows:

Lusn = Lt + Agrat - Lyrag + Aeaim - L= SSIM) 4 (14)

grad grad

In our
A

‘ssim

experiments, we empirically set 2

‘grad

=05 ,

=0.1,following prior work.

For semantic segmentation, we use the standard pixel-wise
cross-entropy loss:

L.y = CrossEntropy(Yy, Yoy o) 1 (15)

To combine losses from multiple prediction stages, we
introduce learnable uncertainty weighting variables following
the approach of (Cipolla et al., 2018). Each task-specific loss is
weighted by an inverse-variance term that is learned during
training, enabling the model to adjust the relative importance of
different losses automatically. The total loss is formulated as:

1 ), 1 16)
el = — - L + =logo " + (
b = 2 2 expiogem) o +2'00

where o  are learnable log-variance  parameters

corresponding to each task and stage. These values are
optimized jointly with the network parameters.

4. Experiment
4.1 Implementation Details

All experiments in this paper were conducted on a DELL
T5820 server running Windows 10. The hardware
configuration includes an Intel(R) Core(TM) i9-10980XE CPU
and a RTX 3090 GPU. The deep learning framework used is
PyTorch. The number of training epochs is set to 150. The
Adam optimizer is used with an initial learning rate of 0.0001,
and a learning rate decay strategy is applied after 80 epochs.
For parameter initialization, the feature extractor utilized
weights MambaVision-L2-512-21K  which pretrained on
ImageNet-2K dataset.

4.2 Experimental results

In the experimental evaluation, we compare the performance of
BiMamba3D against several methods on semantic
segmentation and building height estimation tasks. The results
are presented in the Table 1. BiMamba3D achieves the highest
mlOU of 84.1, outperforming the second-best method ASSEH
by 0.7. This indicates superior pixel-level classification
accuracy in distinguishing building regions from background.
For height estimation, BiMamba3D demonstrates the lowest
RMSE of 1.03 meters and MAE of 1.02 meters, outperforming
SCE-Net and ASSEH. These results highlight its capability to
accurately predict building heights with finer details.

Method mlOU RMSE MAE
D3-Net - 2.08 1.26
BAMTL - 1.76 1.07
SCE-Net 81.4 1.75 1.13
ASSEH 834 1.14 -
BiMamba3D 84.1 1.03 1.02

Table 1 Quantitative comparison on the Vaihingen dataset.

Figure 2 shows the height estimation results of Bimamba3D on
the Vaihingen dataset, where Figure 2a) shows the height
estimation results of Bimamba3D, and Figure 2b) shows the
ground truth. it can be seen that Bimamba3D not only achieves
more accurate height estimation results, but also has a clearer
and more complete geometric structure. This indicates that
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through cross-task learning, the height estimation task of
Bimamba3D has learned the geometric information from the
semantic segmentation task.

1500

2500 PPy 2500 0N

50 : 1000 1500 . 0 500 1000 1500
a) b)
Figure 2. Height estimation on Vaihingen dataset.

Figure 3 shows the segmentation results of BiMamba3D on the
Vaihingen dataset, where Figure 3a presents the model's
prediction results and Figure 3b shows the ground truth. It can
be observed that the segmentation results of BiMamba3D
exhibit relatively regular and complete shapes.

Figures 4 and 5 illustrate the model results with and without the
CMM module. Specifically, Figures 4(a) and 5(a) show the
height estimation results and semantic segmentation results
without the CMM module, while Figures 4(b) and 5(b) display
the height estimation results and semantic segmentation results
with the CMM module added. It can be seen that after adding
the CMM module, the height estimation results have better
geometric integrity and exhibit geometric consistency between
different image patches. At the same time, the geometric
appearance of the semantic segmentation results has also been
significantly improved.

Figure 3. Segmentation on Vaihingen dataset.

4.3 Abolation Experiments

Table 2 shows that after adding the CMM module, both the
mIOU and RMSE of the model have been improved. This
improvement across both tasks validates the effectiveness of
our CMM and the integration of CNN-Mamba architectures,
which enable bidirectional knowledge transfer between
segmentation and height estimation. Compared to
MambaVision, which uses a single-task decoder, BiMamba3D
shows significant gains in mlOU, underscoring the benefits of
our multi-task learning framework.

Method mIOU RMSE MAE
MambaVision 82.9 - -
BiMamba3D

81.8 1.54 1.31
(without CMM)
BiMamba3D 84.1 1.03 1.02

Table 2 Ablation experiments on the Vaihingen dataset.

Figure 5. Segmentation Results Before Adding CMM Module.

5. Conclusion

This paper proposes a concise and efficient multi-task learning
network, BiMamba3D, to address the issues of building
segmentation and building height estimation in single-view
remote sensing images. The network shares features between
the semantic segmentation task and the height estimation task
by designing a cross-task information interaction module,
enabling implicit constraints between the two tasks and
improving performance. In addition, the weights of the loss
function are adjusted in an adaptive manner, allowing the
model to jointly optimize the two tasks. Experiments on the
Vaihingen dataset verify the effectiveness of the proposed
method.
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