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Abstract 

 

Simultaneous building extraction and height estimation from single-view satellite imagery via multi-task learning presents a viable 

solution for large-scale urban 3D reconstruction. However, balancing the weights across different tasks and reducing conflicts 

between them remains a challenging problem. In this paper, we propose a Mamba-CNN based network to more effectively capture 

the spatial distribution of buildings. Additionally, we propose a cross-task feature fusion module to facilitate information exchange 

between tasks. Experiments conducted on the Vaihingen dataset demonstrate significant improvements achieved by the proposed 

method. 

 

 

1. Introduction 

Buildings constitute the primary components of urban areas, 

and analyzing their spatial distribution and attributes such as 

height holds significant importance for urban planning (Son et 

al., 2023), population estimation (Boo et al., 2022), and disaster 

management (Zheng et al., 2021). With advancements in remote 

sensing technology and deep learning, building extraction and 

height estimation from satellite imagery have facilitated large-

scale 3D urban reconstruction. 

 

Traditionally, building extraction and height estimation have 

been regarded as two separate tasks, and their results are 

combined to generate 3D building models. However, it is 

challenging to accomplish both tasks directly from a single 

image. Remote sensing images have inter-class similarity and 

intra-class difference, which bring difficulties to semantic 

segmentation. For height estimation, the same object may 

correspond to multiple different heights. Recent studies have 

shown that there is a strong correlation between the height 

changes and semantic changes of buildings. Jointly performing 

building extraction and height estimation tasks can promote 

both tasks simultaneously. D3-Net (Carvalho et al., 2020) 

proposed a single-encoder-dual-decoder architecture to jointly 

generate pixel-level building segmentation maps and height 

estimation maps. SCE-Net (Xing et al., 2022b) further improved 

cross-task feature interaction through dedicated modules. 

However, challenges remain due to task-specific semantic 

inconsistencies in remote sensing imagery (e.g., different 

objects sharing similar heights) and the difficulty in balancing 

inter-task weights. 

 

To address the aforementioned issues, we propose BiMamba3D, 

a novel network architecture that integrates CNN and Mamba 

frameworks. BiMamba3D employs the encoder of 

MambaVision to extract features. After utilizing shallow 

decoders to separately learn features for building segmentation 

and height estimation, a Cross-task Mamba Module (CMM) is 

introduced to facilitate information exchange between the two 

tasks. 

 

2. Related work 

2.1 Single-task learning 

2.1.1 Building segmentation: Building extraction has 

undergone a transformation from traditional methods based on 

geometry and regional segmentation to deep learning-driven 

approaches. Early methods relied on handcrafted features (Hao 

et al., 2019; Liasis & Stavrou, 2016) and had limited 

applicability. Deep learning methods treat building 

segmentation as a pixel classification problem, and by 

introducing Convolutional Neural Networks (CNN) to improve 

the model, the segmentation accuracy has been enhanced. 

 

Fully Convolutional Networks (FCNs) (Long et al., 2015) were 

the first to replace the fully connected layers in traditional 

convolutional neural networks with convolutional layers, 

enabling pixel-wise prediction for inputs of arbitrary sizes. 

Since then, methods such as U-Net (‘U-Net’, 2015) and 

DeepLab (L.-C. Chen et al., 2018) have significantly advanced 

semantic segmentation technology. Recent studies often adopt 

specific strategies to improve network frameworks targeting 

specific issues in building extraction, such as multi-scale 

problems (R. Li et al., 2021; Xu et al., 2022; Zhou et al., 2022), 

uncertainty issues (J. Li et al., 2024), and the problem of small 

inter-class differences and large intra-class differences 

(Hamaguchi, 2024), thereby achieving more excellent 

performance. 

 

The introduction of transformer has brought a new perspective 

to building segmentation. Through the self-attention mechanism, 

it can perform global context modeling and capture the spatial 

distribution patterns of building clusters, overcoming the 

limitations of CNN in terms of receptive fields. Chen et al. 

(2022) proposed combining Swin transformer with channel and 

spatial enhancement technologies to extract multi-scale features 

and achieve accurate building extraction. To improve the 

computational efficiency of transformer, STT (K. Chen et al., 

2021) introduced a dual-path transformer framework, 
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representing buildings as sparse feature vectors in the feature 

space from both spatial and channel perspectives. In addition, 

since CNN is good at local feature extraction, most existing 

transformer-based building segmentation methods adopt a 

hybrid design, aiming to combine the advantages of 

convolutional neural networks and transformer. Zhang et al. 

(2024) designed a dual-branch structure that can capture both 

global dependencies and local features, and integrate them into 

a multi-scale global-local context representation with enhanced 

boundary features. Fu et al, (2024) proposed a parallel CNN-

transformer architecture and introduced an interactive self-

attention mechanism to fuse multi-level features from the two 

branches. 

 

2.1.2 Building height estimation: Early monocular 

elevation estimation mainly includes random field models and 

CNN models. The core idea of random fields is to estimate 

building heights by modeling the spatial dependencies between 

pixels or regions and using the constraints of single-point 

features and neighborhood structures. Studies used Markov 

Random Field (MRF) and Conditional Random Field (CRF) to 

model the local and global structures of images. Considering 

that local features cannot provide sufficient information for 

predicting depth values, Batra (Batra & Saxena, 2012) modeled 

the relationships between adjacent regions. To obtain both local 

and global features, Saxena et al. (Saxena et al., 2008) 

calculated the features of four adjacent regions of a specified 

region and used the Laplacian model and MRF to estimate 

elevation. 

 

Inspired by depth estimation tasks, researchers have introduced 

neural networks to estimate building heights. In terms of 

network frameworks, monocular elevation estimation mainly 

includes single-task learning and multi-task learning. Single-

task learning directly uses neural networks for height value 

regression. IM2HEIGHT (Mou et al., 2018) first realized the 

mapping from single-view images to DSM using a fully 

convolutional network architecture. Amirkolaee et al. (2019) 

proposed a CNN with an encoder-decoder structure. In the 

encoder part, ResNet is used to model global and local features; 

in the decoder part, upsampling operations are utilized to 

increase the size of elevation results. Karatsiolis et al. (2021) 

proposed IMG2nDSM to estimate the heights of buildings and 

vegetation from a single aerial image. IM2ELEVATION (C.-J. 

Liu et al., 2020) improved the feature aggregation method by 

combining the features of the encoding layer with those of the 

final decoding layer, achieving good results. Xing et al. (2022a) 

proposed a gated feature aggregation method, which enhances 

the height estimation effect and preserves clearer object 

boundaries and contours by effectively combining low-level and 

high-level features. 

 

LUMNet (Du et al., 2024) significantly improved the accuracy 

of height estimation by combining prior knowledge and multi-

scale feature extraction. Mao et al. (Mao, Chen, et al., 2023) 

designed the SFFDE method, which integrates global and local 

information, and proposed a building modeling framework that 

combines building entity extraction and elevation estimation. 

 

Due to the non-linear nature of surface object heights in remote 

sensing images and their extremely large dynamic range, some 

studies have attempted to convert the elevation estimation 

problem into a height interval classification problem. Li et al. 

(2022) divided height values into intervals with gradually 

increasing gaps, transformed the regression problem into an 

ordinal regression problem, and used ordinal loss for network 

training. Through post-processing techniques, the predicted 

height map of each image patch is converted into a seamless 

height map. 

 

Feng et al. (2022) defined height discretization rules and 

introduced a distance penalty index, converting continuous 

ground height values into a soft probability distribution. In the 

inference stage, the predicted height is obtained by means of 

soft weighted summation. Wang et al. (2024) used the SAM 

model to filter out the background, and then proposed to use 

SAdabins to optimize the results of the regression task. Chen et 

al. (2023) proposed to adopt adaptive intervals in network 

design and clipped a small number of deviation values 

generated by the network. 

 

2.2 Multi-task learnin 

Multi-task learning attempts to make the building shapes in the 

obtained DSM more regular by simultaneously learning 

semantic segmentation information and building height 

information. How to balance the weight allocation among multi-

task learning and how to promote feature exchange between 

different task branches are two key research directions in multi-

task learning. LIGHT (Mao, Sun, et al., 2023) designed a 

unified multi-scale feature branch and proposed a gated cross-

task interaction module to alleviate the feature gap between 

different tasks. Liu et al. (2022) realized feature interaction 

between semantic segmentation and elevation extraction tasks 

by designing a cross-task adaptive propagation module, while 

learning global context information and local geometric features. 

Feng et al. (2023) proposed a calibration and refinement 

attention module to filter inconsistent features between the two 

tasks, and introduced adjacent pixel affinity loss and soft-

weighted ordinal loss for the two tasks to optimize the direction 

of task gradients. 

 

3. Method  

This paper presents a multi-task learning network, BiMamba3D, 

designed to jointly perform building segmentation and height 

estimation. The network architecture consists of encoder, 

decoder, a cross-task information interaction module CMM and 

two task-specific prediction heads. By incorporating the Mamba 

architecture, BiMamba3D can more effectively capture long-

range spatial relationships in images, such as the global 

structure of buildings. Meanwhile, through the CMM, the 

semantic boundary information from the segmentation task can 

guide the edge refinement in height estimation. Conversely, the 

height gradient information can feedback to facilitate instance 

separation in the segmentation task. 

 

3.1 Decoder 

We use the encoder of MambaVision for feature extraction, 

following (Hatamizadeh & Kautz, 2025). We employ two U-

shaped decoder structures for auxiliary semantic segmentation 

and height estimation decoding, respectively, which gradually 

reconstruct spatial resolution through hierarchical feature fusion. 

 

Let the encoder extract four levels of features 1 2 3 4{ , , , }X X X X . 

The number of channels in each feature map is denoted as 

1 2 3 4{ , , , } (196,392,784,1568)C C C C = , and all features are spatially 

aligned through appropriate upsampling operations during 

decoding. 

 

The decoder first projects the deepest feature map 
4 /8 /8

4
C H WX    into a unified channel space using a 3×3  
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Figure 1. Pipeline of BiMamba3D.

 

convolution followed by batch normalization and ReLU 

activation, denoted as 4D . This representation is then 

iteratively upsampled and fused with the corresponding 

encoder features at each level via lateral connections: 

 

4 4

3 3 4

2 2 3

1 1 2

ConvBNReLU

ConvBNReLU ) Upsample ConvBNReLU

ConvBNReLU

)

) Upsample ConvBNReLU

ConvBNReLU ) Upsample

( )

( ( ( ))

( ( ( )

(ConvBNR (eL( )U

)

D X

D X D

D X D

D X D

=

=

=

+

+

= +

,  (1) 

 

At each stage, feature maps are processed by a convolutional 

block before fusion, ensuring alignment in the feature domain. 

All upsampling operations are bilinear with a scale factor of 2, 

ensuring a gradual restoration of spatial resolution. 

 

The fused high-resolution representation 1D  is refined through 

two additional convolutional layers: 

 
 

1ConvBNReLU ConvBNReLU( ))( DF = ,    (2) 

 

To further enlarge the resolution to match the original input 

scale, the decoder applies two successive upsampling blocks, 

each consisting of a 3×3 convolution (with reduced channels), 

ReLU activation, and bilinear upsampling. Finally, a 1×1 

convolution maps the feature to the desired number of output 

channels.  

 

We instantiate this decoder architecture twice, forming a dual-

head decoder design. Semantic segmentation branch outputs a 

n-channel per-pixel semantic label map: 

 

     1
1 2 3 4Decoder ), ( , , ,segseg segf Y X X X X= ,  (3) 

 

where n denotes the number of semantic segmentation classes.  

 

Height estimation branch outputs a single-channel normalized 

elevation map: 

 

      1
1 2 3 4Decoder ), ( , , ,dsmdsm dsmf Y X X X X= ,      (4) 

 

 

3.2 CMM 

To facilitate effective information exchange between the 

semantic segmentation and height estimation tasks, we propose 

a CMM module that performs both channel-wise and spatial-

wise mutual enhancement. The CMM module leverages 

intermediate task-specific decoder features—denoted as 
C H W

segf    and C H W
dsmf   , and integrates them to 

produce a task-agnostic, enriched representation that benefits 

both downstream heads. These features are first projected into a 

unified latent space via 1×1 convolution: 

 

1 1 1 1Conv ( ),    Conv ( )seg seg dsm dsmf f f f = = ,          (5) 

 

To model cross-task dependencies at each spatial location, we 

treat the task features at a given spatial coordinate as a 

sequence across tasks. Specifically, we flatten the spatial 

dimensions and form a task-wise sequence at each location 

 

flatten( ) ,    =flatten( )N C N C
seg seg dsm dsmg f g f =   , (6) 

  2Concat( ,  ) N C

seq seg dsmf g g =  ,  (7) 

 

where N=H×W. We then reshape this into a task sequence for 

each spatial location: 

 

  2Reshape( ) N C

seq seqf f   =  ,  (8) 

 

Each 2-element sequence represents the task-specific features 

for a single spatial location. This formulation allows us to 

model the task interaction as a temporal sequence of length 2, 

with Mamba acting as the sequence encoder. The Mamba block 

is applied to the reshaped sequence: 

 

  2

encodee Mamba( ) N C

seqf f  =  ,  (9) 

 

We then reshape the encoded outputs back to task-specific 

feature maps: 

 

  ,out out C H W

seg dsmf f   , (10) 
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These are obtained by slicing the sequence and reshaping 

accordingly. Finally, a residual connection is applied to 

preserve the original features: 

 

  ,final out final out

seg seg seg dsm dsm dsmf f f f f f= + = + ,  (11) 

 

This residual fusion ensures that the learned interactions act as 

modulation rather than complete replacement, preserving task-

specific knowledge while injecting cross-task awareness. 

 

3.3 Task-specific Prediction Heads 

After performing cross-task interaction using the CMM module, 

we obtain globally enhanced task-specific feature maps final

segf  

and final

dsmf .To produce the final predictions, we employ 

lightweight, task-specific prediction heads that transform these 

enriched features into their respective output spaces. 

 

The segmentation head is implemented as a simple yet effective 

convolutional classifier. It maps the feature final

segf  to a multi-

channel per-pixel class probability map. The structure consists 

of two convolutional layers with an intermediate non-linearity: 

 

  2

1 1 3 3Conv (Relu(Conv ( ))) segB C H Wfinal

seg segY f
  

 =  , (12) 

 

where segC  is  the number of semantic classes. The 3×3 

convolution captures local spatial context, while the 1×1 

convolution projects the features to class logits. The head 

operates directly on the globally enhanced features without 

further upsampling or fusion, preserving the high-level 

consistency established by the interaction module. 

 

The height estimation prediction head follows a similar 

structure, tailored for single-channel regression. Given final

dsmf , 

the head produces a normalized height estimation map: 

 

  2 1

1 1 3 3Conv (Relu(Conv ( )))final B H W

dsm segY f   

 =  , (13) 

 

3.4 Loss Function 

To enhance the learning capacity of our multitask architecture, 

we propose a multi-stage supervision strategy that incorporates 

predictions from both early and late stages of the task heads. In 

particular, our framework produces two sets of predictions for 

each task: one from the initial decoder heads and another from 

the refined, post-interaction heads. These intermediate 

predictions act as auxiliary outputs that guide the learning 

process at different abstraction levels. To integrate all these 

outputs effectively during training, we design a joint loss 

formulation based on task uncertainty weighting, which allows 

the network to adaptively balance different loss components. 

 

We adopt a hybrid loss for the height estimation prediction task 

and a cross-entropy loss for semantic segmentation. The height 

estimation loss includes pixel-wise L1 loss, gradient 

consistency loss, and structural similarity (SSIM) loss, 

combined as follows: 

 

 
1 (1 SSIM)dsm l grad grad ssimL L L = +  +  − ,         (14) 

 

In our experiments, we empirically set 0.5grad = , 

0.1ssim = ,following prior work. 

For semantic segmentation, we use the standard pixel-wise 

cross-entropy loss: 

 

 
_CrossEntropy( , )seg seg seg gtL Y Y= ,         (15) 

 

To combine losses from multiple prediction stages, we 

introduce learnable uncertainty weighting variables following 

the approach of (Cipolla et al., 2018). Each task-specific loss is 

weighted by an inverse-variance term that is learned during 

training, enabling the model to adjust the relative importance of 

different losses automatically. The total loss is formulated as: 

 

 ( ) ( )

( )
{ , } {1,2}

1 1
log

2exp(log ) 2
i i

total t ti
t seg dsm i t

L L 
 

=  +  , (16) 

 

where ( )i

t  are learnable log-variance parameters 

corresponding to each task and stage. These values are 

optimized jointly with the network parameters. 

 

4. Experiment 

4.1 Implementation Details 

All experiments in this paper were conducted on a DELL 

T5820 server running Windows 10. The hardware 

configuration includes an Intel(R) Core(TM) i9-10980XE CPU 

and a RTX 3090 GPU. The deep learning framework used is 

PyTorch. The number of training epochs is set to 150. The 

Adam optimizer is used with an initial learning rate of 0.0001, 

and a learning rate decay strategy is applied after 80 epochs. 

For parameter initialization, the feature extractor utilized 

weights MambaVision-L2-512-21K which pretrained on 

ImageNet-2K dataset. 

 

4.2 Experimental results 

In the experimental evaluation, we compare the performance of 

BiMamba3D against several methods on semantic 

segmentation and building height estimation tasks. The results 

are presented in the Table 1. BiMamba3D achieves the highest 

mIOU of 84.1, outperforming the second-best method ASSEH 

by 0.7. This indicates superior pixel-level classification 

accuracy in distinguishing building regions from background. 

For height estimation, BiMamba3D demonstrates the lowest 

RMSE of 1.03 meters and MAE of 1.02 meters, outperforming 

SCE-Net and ASSEH. These results highlight its capability to 

accurately predict building heights with finer details.  

 

Method mIOU RMSE MAE 

D3-Net - 2.08 1.26 

BAMTL - 1.76 1.07 

SCE-Net 81.4 1.75 1.13 

ASSEH 83.4 1.14 - 

BiMamba3D 84.1 1.03 1.02 

Table 1 Quantitative comparison on the Vaihingen dataset. 

 

Figure 2 shows the height estimation results of Bimamba3D on 

the Vaihingen dataset, where Figure 2a) shows the height 

estimation results of Bimamba3D, and Figure 2b) shows the 

ground truth. it can be seen that Bimamba3D not only achieves 

more accurate height estimation results, but also has a clearer 

and more complete geometric structure. This indicates that 
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through cross-task learning, the height estimation task of 

Bimamba3D has learned the geometric information from the 

semantic segmentation task. 

 

Figure 2. Height estimation on Vaihingen dataset. 

 

Figure 3 shows the segmentation results of BiMamba3D on the 

Vaihingen dataset, where Figure 3a presents the model's 

prediction results and Figure 3b shows the ground truth. It can 

be observed that the segmentation results of BiMamba3D 

exhibit relatively regular and complete shapes. 

 

 
Figure 3. Segmentation on Vaihingen dataset. 

 

4.3 Abolation Experiments 

Table 2 shows that after adding the CMM module, both the 

mIOU and RMSE of the model have been improved. This 

improvement across both tasks validates the effectiveness of 

our CMM and the integration of CNN-Mamba architectures, 

which enable bidirectional knowledge transfer between 

segmentation and height estimation. Compared to 

MambaVision, which uses a single-task decoder, BiMamba3D 

shows significant gains in mIOU, underscoring the benefits of 

our multi-task learning framework. 

 

Method mIOU RMSE MAE 

MambaVision 82.9 - - 

BiMamba3D 

(without CMM) 
81.8 1.54 1.31 

BiMamba3D 84.1 1.03 1.02 

Table 2 Ablation experiments on the Vaihingen dataset. 

Figures 4 and 5 illustrate the model results with and without the 

CMM module. Specifically, Figures 4(a) and 5(a) show the 

height estimation results and semantic segmentation results 

without the CMM module, while Figures 4(b) and 5(b) display 

the height estimation results and semantic segmentation results 

with the CMM module added. It can be seen that after adding 

the CMM module, the height estimation results have better 

geometric integrity and exhibit geometric consistency between 

different image patches. At the same time, the geometric 

appearance of the semantic segmentation results has also been 

significantly improved. 

 

 
Figure 4. Height Estimation Results Before Adding CMM 

Module. 

 
Figure 5. Segmentation Results Before Adding CMM Module. 

 

5. Conclusion 

This paper proposes a concise and efficient multi-task learning 

network, BiMamba3D, to address the issues of building 

segmentation and building height estimation in single-view 

remote sensing images. The network shares features between 

the semantic segmentation task and the height estimation task 

by designing a cross-task information interaction module, 

enabling implicit constraints between the two tasks and 

improving performance. In addition, the weights of the loss 

function are adjusted in an adaptive manner, allowing the 

model to jointly optimize the two tasks. Experiments on the 

Vaihingen dataset verify the effectiveness of the proposed 

method. 
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