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Abstract

Due to rapid urbanization and the continuous increase in building stock, significant challenges arise for historic district preservation.
To overcome the persistent challenge of insufficient small-scale unauthorized structure detection in dense historic districts—a critical
limitation of existing deep learning-based change detection frameworks—this paper introduces a Siamese network integrated with a
lightweight visual transformer, effectively resolving subtle change omission in complex scenarios. The model utilizes context-aware
local enhancement to capture high-frequency local information, significantly improving its accuracy in identifying changed regions.
Within the change detection network, a CNN feature extractor first performs downsampling on the input image pair to preliminarily
extract feature information. Subsequently, a semantic extraction module extracts and enhances semantic information from the feature
maps. Finally, a prediction module calculates the differences between the features of the two images and generates the change
prediction results. The reasrech comprehensively validated the model on the public LEVIR-CD dataset. Experimental results
demonstrate significant improvements in performance metrics compared to other models. The findings indicate that the improved
model also performs excellently on this dataset, verifying its effectiveness and robustness, and showcasing its ability to substantially
reduce both omissions and false detections. This study offers a solution for high-accuracy remote sensing change detection by
improving deep learning-based models.

1. Introduction

1.1 Research Background

Historic districts refer to urban or rural areas that preserve a
significant number of historical remnants (such as buildings,
street layouts, spatial patterns, etc.), possess a specific historical
character, embody local cultural characteristics, and hold high
historical, cultural, artistic, social, or scientific value. Historic
districts, rich in architectural and spatial landmarks that embody
diverse periods, bear witness to a multifaceted social past.
However, with the continuous advancement of urbanization in
China and the ever-increasing number of buildings, the
protection of historic districts faces severe challenges (Zhang et
al., 2016). Traditional manual inspection methods struggle to
efficiently monitor subtle changes in the urban fabric and
architectural features of these districts. Unauthorized
modifications, damage, or improper renovations can lead to
irreversible loss of cultural heritage.

To address the preservation needs of historic districts, the
utilization of Remote Sensing Change Detection techniques is
necessitated. Remote sensing change detection technology
offers a new approach for large-scale dynamic monitoring of
historic districts. Change detection is a technique for identifying
differences in the state of observed objects or phenomena by
examining them at different times (Lyu et al., 2016). It holds
significant application value in numerous fields, such as land
cover change monitoring (Lyu et al., 2018), urban expansion
and change studies (Liu et al., 2020), and natural disaster
assessment (Li et al., 2019). With the recent continuous
progress in theories and technologies within the Artificial
Intelligence (AI) field, deep learning methods have gradually
been applied to change detection, enhancing its development
prospects and potential (Peng et al., 2019). Deep learning
techniques possess exceptional feature extraction and

representation capabilities, enabling them to fully exploit the
deep feature information within remote sensing imagery.
Compared to traditional change detection methods constrained
by manually designed features, deep learning algorithms can
better represent complex surface conditions in images, thereby
yielding more accurate change detection results.

However, with the development of high-spatial-resolution
imagery, current deep learning methods exhibit certain
limitations when confronted with rich spatial feature
information, diverse scale characteristics of ground objects, and
the massive volume of remote sensing data (Peng er al., 2020).
Consequently, neural network-based algorithms still suffer from
issues such as insufficient capability to detect pseudo-changes,
inadequate multi-scale feature extraction, missed detection of
small objects, incomplete detection of changed regions,
insufficient extraction of semantic information, and poor
representation of image difference information. To address
these challenges, this paper proposes a Siamese network
integrated with a lightweight vision Transformer (Lightweight
ViT).

1.2 Current Related Work

The development of deep learning and big data technologies has
led to significant advancements in remote sensing image change
detection in fields such as computer vision. By utilizing deep
learning-based methods, change features can be directly learned
from dual-phase, multi-phase, or time series remote sensing
images, and change maps can be generated via image
segmentation. These features demonstrate strong robustness,
and compared to traditional methods, deep learning approaches
not only eliminate the impact caused by dependence on change
difference images but also handle remote sensing data acquired
from different sensors, exhibiting strong versatility.
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Currently, various remote sensing image change detection
models have been gradually proposed based on convolutional
neural networks, stacked autoencoders, deep belief networks,
deep neural networks, and recurrent neural networks. For
example, Zhang et al. (2016) analyzed the outstanding feature
extraction capabilities of denoising autoencoder models and
applied them to change detection in SAR and optical images,
achieving remarkable results. Recurrent neural network models
are typically used to handle time series data, and since multi-
phase remote sensing images are inherently related to temporal
changes, some researchers have applied recurrent neural
networks to change detection in remote sensing images. Lyu et
al. (2016) successfully applied the Long Short-Term Memory
(LSTM) model in the field of land cover change detection in
remote sensing images for the first time, demonstrating change
detection over a 20-year time span.

Fully Convolutional Networks (FCN) are widely used in image
classification and change detection. They utilize deconvolution
to extract change maps from high-dimensional features,
enabling FCN to perform change detection in an end-to-end
manner. Liu et al. (2020) improved FCN using the idea of
depthwise separable convolution, making the network more
lightweight and enhancing its performance. Li et al. (2019)
incorporated unsupervised modules into FCN, achieving
unsupervised change detection. In 2015, a variant network
based on the FCN structure, named U-Net, was published. Due
to its superior performance in semantic segmentation tasks,
many scholars have also utilized this model for change
detection tasks. For instance, Peng et al. (2019) proposed an
end-to-end change detection method based on U-Net++, which
uses early fused dual-phase remote sensing images as input to
the convolutional neural network. Peng et al. (2020) also
incorporated differential enhancement dense attention blocks
into the U-Net++ structure for change detection in dual-phase
optical remote sensing images.

Siamese neural networks can perform comparisons between
images using multiple inputs, with shared weights between the
two subnetworks, reducing the number of network parameters
and ensuring features are extracted in the same manner. This
approach is widely used in remote sensing image change
detection, with many researchers opting for Siamese neural
network models in their studies. Hughes et al. (2018) designed a
pseudo-Siamese convolutional neural network with two
different subnetwork structures, applying it to change detection
in optical and SAR images. Daudt et al. (2018) took U-Net as a
baseline and designed three different Siamese fully
convolutional network structures for change detection based on
different feature fusion or difference extraction methods. Zhang
et al. (2020) proposed a dual-branch structure that extracts
highly expressive deep features and uses a deep supervision
recognition network to classify deep feature differences for
change detection in remote sensing images. Chen et al. (2020)
introduced a dual-attention Siamese network structure that
effectively captures long-term dependencies through a dual
attention mechanism, resulting in more discriminative feature
representations. Additionally, they employed a weighted
bilateral contrastive loss to adjust the influence of invariant
pixels in public datasets, reducing the weight of invariant
features and achieving certain results.

Furthermore, other scholars have proposed different processes
and model structures for change detection. For example, Gong
et al. (2017) applied Generative Adversarial Networks (GAN)
for change detection. Wu et al. (2021) performed image
segmentation based on Graph Convolutional Networks (GCN),

then constructed graphs from image patches for change
recognition. Chen et al. (2022) developed a change detection
network based on a Transformer approach that combines an
encoder and decoder with semantic features.

2. Research Methodology

Given the prevalent insufficient extraction of semantic
information in current building change detection models—
which leads to loss of detail features (particularly multi-scale
details) and consequent incomplete boundary delineation—we
propose a context-aware enhanced Siamese network for change
detection. The architecture comprises: (1) a CNN-based feature
extraction module, (2) asemantic token extraction module, (3) a
semantic enhancement module, (4) context-aggregating
encoder-decoder blocks, and (5) a prediction head. This design
strategically reinforces semantic representation to refine image
features, thereby enhancing detection precision and ultimately
improving the model's capacity to extract precise building
change information from remote sensing data.

Figure 1. Operational Workflow of the Model.

2.1 CNN-based feature extraction module

The CNN module can utilize multiple convolutional layers to
achieve hierarchical feature representation and leverage a larger
receptive field to capture global contextual information. When
the change scenarios are relatively concentrated and the areas of
change are densely distributed, this approach can yield superior
detection results. This module is capable of simultaneously
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processing dual-timeinput images to extract spatial-spectral
features ranging from shallow to intermediate levels. Its
structure is fundamentally similar to that of the VGG network,
but it incorporates fewer convolutional kernels and exhibits
lower computational complexity, akin to ResNet18 (K et al.,
2016). Its structure is illustrated in Figure 2.

The model consists of 34 layers and is divided into five stages,
incorporating downsampling operations. Most of these layers
are composed of 3×3 convolutional kernels with appropriate
padding, except for the initial layer, which utilizes a 7×7 kernel.
The network concludes with a global average pooling layer
followed by a fully connected layer with 1000 output nodes.
The pooling layers are employed to progressively reduce the
spatial dimensions of the feature maps, thereby decreasing the
number of parameters and computational cost. The fully
connected layer further consolidates the features for
classification. When processing an input RGB image of
224×224 pixels, the model traverses these five stages,
undergoing gradual spatial reduction until the feature maps
reach a 1×1 dimension. This results in a 1D feature vector,
which is subsequently processed by the fully connected layer
for feature classification and class probability output. It can be
expressed mathematically as:

  ( )i iF softmax Avgpool Conv X (1)

Where Xi is the input image at the i-th time point, and Fi is the
corresponding feature of the image output from the CNN
feature extraction module at the i-th time point.

Figure 2. The structure of the CNN feature extraction module.

2.2 Semantic Token Extraction Module

The Semantic Tokenizer extracts semantic information and
obtains semantic tokens from the feature maps of dual-temporal
remote sensing images extracted by the CNN module. It
segments the images based on semantic information, and these
semantic tokens are aggregated to form a set of token sets. Let
F1 and F2 denote the feature maps of the dual-temporal input
images, with height, width, and channel dimensions represented
as H×W×C. The Semantic Token Extraction Module will
produce two sets of tokens, referred to as T1 and T2.

Assuming that Fi (for i=1,2 ) represents a pixel in the feature
map, applying pointwise convolution to each such pixel in the

feature maps will yield L semantic groups, where each group
corresponds to a distinct semantic concept. The computation
process can be expressed as follows:

1
( )

L

i i j i
j

Output T Extraction F w F


    (2)

where wj represents the weights for each semantic group.

2.3 Semantic enhancement module

The Semantic Enhancement Module is implemented by the
Cloblock module, where the Cloblock module is divided into a
local branch and a global branch (Fan et al., 2023). It processes
the token sequences from the Semantic Tokenizer and utilizes a
self-attention mechanism to establish long-range dependencies
between the tokens. By stacking multiple Transformer encoder
layers, this module learns complex interactions between objects
and scenes, capturing contextual relationships at the level of
semantics throughout the entire image. This capability is
essential for accurately interpreting the changing semantic
context.

The Cloblock module consists of a local branch and a global
branch, the structure of which is shown in Figure 3:

Figure 3. The structure of the two branches of the Cloblock
module.

In the diagram, FC represents the fully connected layer and
DWConv denotes Depthwise Convolution. In global branch,
first, the key (K) and value (V) vectors undergo downsampling,
followed by the standard attention mechanism applied to the
query (Q), key (K), and value (V) vectors to extract low-
frequency global information. Specifically, the query vector Qi,
key vector Ki, and value vector Vi are generated by applying
linear transformations to the tokens. Subsequently, Ki and Vi

undergo downsampling before being subjected to the attention
operation alongside Qi to obtain the output. The process can be
represented by the following formula:

 , ( ), ( )global i i iA Attention Q Pool K Pool V (3)

In the local branch, during this process, the query (Q) and key
(K) undergo a depthwise convolution, followed by the
computation of the Hadamard product between Q and K. A
series of transformations are then applied to obtain the context-
aware weights A1. After passing through two fully connected
layers (FC) as well as the Swish and Tanh activation functions,
higher-quality context-aware weights A2 are obtained. Finally,
these weights are jointly computed with the value (V), which
has also undergone depthwise convolution, to produce the
output Alocal. The process can be represented by the following
formula:
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( )sV DWconv V (4)

( )sQ DWconv Q (5)

( )sK DWconv K (6)

(7)

1
2

AA Tanh
d

   
 

(8)

(9)

Here, d is the number of token's channels, the symbol "☉ "
represents the Hadamard product. Thus, both the local branch
and the global branch have been obtained, and their fusion
results in the final output:

  ,out local globalA FC Concat A A (10)

"Concat" means to concatenate the two outputs along the
channel dimension.

2.4 Context-aggregating encoder-decoder blocks

Following semantic enhancement, the subsequent step involves
transforming the tokens into pixel-level features. This task is
achieved by modeling contextual dependencies and refining
image features through an Encoder-Decoder architecture
operating on tokens at each timestep. The encoder receives the
semantically enriched dual-temporal token sequences and
derives contextually enriched tokens via multi-head self-
attention mechanisms. These tokens are subsequently refined by
the decoder based on the relationship between each pixel and
the final token set, thereby revealing information pertaining to
objective changes within the image data. The specific process
can be expressed by the following formulae:

i* i
final finalT Transformer_Encoder(T ) (11)

i* i i*
finalF Transformer_Decoder(F ,T ) (12)

Here, i takes the values of 1 and 2, representing the two
temporal points.

2.5 Detection head

The primary objective of change detection is to identify and
extract information pertaining to surface changes by comparing
remote sensing imagery acquired at different temporal epochs.
For building targets, such changes can be characterized as either
their emergence or disappearance. This phenomenon can be
effectively represented in the image domain by computing the
absolute difference between the features extracted from the two
time points. Consequently, the structure of the detection head is
intentionally kept relatively simple. It utilizes the semantically
enriched features encoded by the Transformer and employs a
very shallow fully convolutional network (FCN) to perform
change discrimination. Specifically, given the two upsampled
feature maps F1 and F2 output from the preceding stage, the
absolute difference between these dual-temporal feature sets is
computed. This resulting difference map is subsequently passed

through a classifier and finally processed by a softmax function
to generate the predicted change probability map P, formulated
as follows:

  1* 2*P softmax g | F F |  (13)

3. Experiment

3.1 Dataset

This study employs the LEVIR-CD dataset for model training
and evaluation. LEVIR-CD is a publicly available, large-scale,
high-resolution benchmark dataset for remote sensing image
change detection, constructed by a research team from Wuhan
University (Chen et al., 2020). The dataset comprises 637 pairs
of bitemporal remote sensing image patches (with temporal
intervals ranging approximately from 5 to 14 years). Each pair
consists of two 1024×1024 pixel images of the same
geographical area at 0.5-meter per pixel resolution,
accompanied by corresponding pixel-level binary change masks.
Primarily covering urban areas in Texas, USA (e.g., Austin,
League City), the dataset focuses on building changes
(construction and demolition), with approximately 31,333
independent changed building instances annotated. It provides
an official split into training set (445 pairs), validation set (64
pairs), and test set (128 pairs), ensuring fair and reproducible
evaluation. The scenes encompass diverse building types and
complex conditions (e.g., illumination variations, shadows,
vegetation occlusion), establishing LEVIR-CD as a challenging
standard benchmark widely adopted for building change
detection algorithms within the research community.

To validate the generalization capability of the model, this study
conducted experiments on a private dataset. The proposed
model was applied to detect remote sensing images of the
Shichahai historical districts in Beijing, China, at two time
points: 2013 and 2023. Each image has a resolution of
[256×256] pixels and encompasses the hutong neighborhoods,
water bodies, and traditional architectural clusters within the
Shichahai historical districts, documenting the processes of
urban renewal and landscape evolution under the constraints of
cultural heritage.

3.2 Parameter Settings

The proposed method was evaluated on the LEVIR-CD
benchmark. All models were trained using the Adam optimizer
with an initial learning rate of 5×10⁻⁴ and cosine annealing
scheduler. Training configurations included: batch size = 8,
maximum epochs = 1,000, and fixed random seed (11) for
reproducibility. Data augmentation followed the standard
protocol with random cropping and flipping. Data Preparation:
High-resolution (1024×1024) images from LEVIR-CD were
processed into 256×256 patches using a sliding window
approach (50% overlap) to balance contextual preservation and
computational demands. The resulting 14,328 patches
underwent an 8:2 training-validation split, with rigorous spatial
stratification ensuring that there was no geographic overlap
between the training and validation sets.

The implementation is executed using Python 3.9 and the
PyTorch framework on an NVIDIA GeForce RTX 4060 GPU
(8GB VRAM) with CUDA acceleration. A balanced weighted
cross-entropy loss function is utilized. To ensure reproducibility,
all experiments fix the random seed to 11 and are conducted in a
single-GPU environment.
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3.3 Result

In this study, our model was compared with several other
models using the publicly available LEVIR-CD dataset. We
selected the following change detection models for comparative
experiments: FC-Siam-Di (Daudt et al., 2018), FC-Siam-Conc
(Daudt et al., 2018), DTCTSCN (Liu et al., 2020), BIT (Chen et
al., 2021), and SNUNet (Fang et al., 2021). In the experiments,
Precision (Pre), Recall (Rec), F1-score (F1), Intersection over
Union (IoU), and Overall Accuracy (OA) were selected as
accuracy metrics to quantitatively assess the detection precision
of building changes. The quantitative analysis of the model's
accuracy is shown in the table below:

models Pre/% Rec/% F1/% IoU/% OA/%

FC-Siam-Di 89.53 83.31 86.31 75.92 98.67
FC-Siam-Conc 91.99 76.77 83.69 71.96 98.49
DTCTSCN 88.53 86.83 87.67 78.05 98.77

BIT 89.24 89.37 89.31 80.68 98.92
SNUNet 89.18 87.17 88.16 78.83 98.82
Ours 91.68 90.18 90.92 82.16 98.97

Table 1. Quantitative Comparison Results of LEVIR-CD
Dataset

Figure 4. Visual Results on LEVIR-CD Dataset.

Compared to FC-Siam-Di, FC-Siam-Conc, DTCTSCN, BIT,
and SNUNet, the Recall metric improved by 6.87%, 13.41%,
3.35%, 0.81%, and 3.01%, respectively. The F1 metric saw
increases of 4.61%, 7.23%, 3.25%, 1.61%, and 2.76%,
respectively. Overall, our model demonstrates superior
performance in terms of Recall, F1 score, Intersection over
Union (IoU), and overall accuracy (OA) compared to the other
models, with a significant improvement in accuracy. We

conducted a qualitative analysis of our model's performance on
the test set, comparing it with other models, and the visual
representation of the results is shown in Figure 4.

In the figure:
GT (Ground Truth): Manually annotated changed regions
(reference data).
Image1 & Image2: Dual-temporal remote sensing images.
White pixels: Correctly detected building changes (True
Positives).
Black pixels: Correctly identified unchanged areas (True
Negatives).
Green pixels: Omitted changes (False Negatives; actual changes
undetected).
Red pixels: False alarms (False Positives; erroneous change
detection).

Red and green pixels quantitatively represent commission errors
(false positives) and omission errors (false negatives),
respectively. The spatial extent of these colored areas directly
correlates with prediction inaccuracies—larger areas indicate
greater errors. Fig. 4 showcases results across diverse
challenging scenarios: severe vegetation occlusion (e.g., h, j),
densely built-up areas (e.g., d), and small-target changes (e.g., e,
k). Crucially, our model demonstrates significantly smaller
red/green areas than comparative methods in all cases. This
empirical evidence confirms a marked reduction in both
commission and omission error rates, substantiating the superior
performance of our approach.

3.4 Model Generalization Capability Verification in
Historical Districts

The Shichahai historical districts Change Detection Dataset is a
remote sensing image dataset constructed for the detailed
analysis of urban changes within the historical and cultural
protection zone of Shichahai in Beijing. The detection results of
the proposed model for the historical districts are illustrated in
Figure 5.

Figure 5. The prediction results of the model on the Shichahai
Change Detection Dataset.

As illustrated in the figure, the proposed model exhibits robust
performance in practical applications, excelling in detecting
historical building changes within urban districts. This further
demonstrates the model's strong generalization capability.

4. Conclusion

This study proposes a novel lightweight change detection model
that aims to efficiently and accurately identify building changes
in high-resolution remote sensing imagery, particularly in
historical districts, by combining a twin network with a
lightweight visual Transformer. The architecture employs a
context-aware local enhancement module that captures high-
frequency local details through a two-branch structure in
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conjunction with depthwise convolution. Extensive validation in
the LEVIR-CD benchmark has demonstrated its leading
performance (F1: 90.92%, IoU: 82.16%, OA: 98.97%),
significantly outperforming existing methods in complex
scenarios involving vegetation occlusion, dense urban
environments, and small target changes. Importantly, when
applied to the Shichahai historical district dataset, the model
exhibits exceptional generalization capabilities, confirming its
robustness in real-world cultural heritage monitoring scenarios.
By effectively balancing precision and recall through the dual-
branch structure and semantic labeling enhancement mechanism,
this work provides a solution with both computational
efficiency and practical value for large-scale urban dynamic
analysis and heritage preservation, advancing the technological
development in the field of high-resolution remote sensing
building change detection.

Although our proposed model achieves improved accuracy in
identifying changes within historical districts, the study still
presents some limitations. Specifically, our model exhibits a
relatively high computational cost (parameter count). Future
research will focus on reducing model complexity and
computational burden while maintaining or even enhancing
accuracy. Furthermore, extending the model's capability for
fine-grained identification of 3D structural changes and their
underlying causes – such as renovation, restoration, and
demolition – is also essential. This enhancement will provide
stronger decision-making support for smart city renewal and the
targeted preservation of cultural heritage.
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