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Abstract

This paper introduces a novel 3D reconstruction method that leverages depth and normal priors within a 3D Gaussian splatting
framework. The approach aims to address the limitations of traditional 3D reconstruction methods, which often involve complex
pipelines, high computational and storage demands, and detail loss. Our method begins by constructing a low-precision global
Gaussian radiance field, followed by adaptive scene and data partitioning to enhance optimization efficiency while maintaining load
balance. We integrate AI-powered depth and normal estimation techniques to establish geometric priors, which effectively reduce
artifacts, accelerate convergence, and improve synthesis quality under sparse views. Furthermore, we propose a constraint
mechanism based on the shape and opacity of Gaussians to suppress floating artifacts and enhance model robustness. Experimental
results demonstrate that our method achieves better reconstruction quality, and strong generalization capabilities for large-scale 3D
reconstruction.

1. Introduction

Existing 3D reconstruction methods pose several challenges in
application scenarios (Schonberger et al., 2016). First, the
complex pipeline, including dense matching, 3D mesh
reconstruction, automated texture mapping, and so on, requires
substantial computational power and is time-consuming. Second,
the huge storage space needed for enormous geometry and
texture data consumes significant storage capacity. Third, there
is a significant loss of detail, especially in weak texture areas.
Fourth, for real-time rendering, a series of cumbersome post-
processing procedures, such as LOD generation, 3D mesh
refinement and texture refinement, are inevitable, which are also
time-consuming. All these challenges make existing 3D
reconstruction pipeline hard to apply to some scenarios, such as
emergency management of large-scale scene.

In recent years, novel view synthesis (NVS) has gained
increasing attention. NVS has been dominated by neural neural
radiance fields (NeRF) based methods in the past few years.
Block-NeRF (Tancik et al., 2022) and Mega-NeRF (Turki et al.,
2022) adopted the divide-and-conquer strategy in large-scene
radiance field reconstruction. Due to the long training time and
slow rendering speed of NeRF-based methods (Mildenhall et al.,
2021; Barron et al., 2022; Niemeyer et al., 2022), 3D Gaussian
splatting (3DGS) is proposed (Kerbl et al., 2023), which
achieves significant improvements in training time and
rendering speed. However, most existing 3DGS-based methods
are designed for small scenes. VastGaussian is the first work for
exploring the application of 3DGS under large-scale scenes
(Lin et al., 2024). CityGaussian (Liu et al., 2024) offers an
improved framework that integrates parallel training,
compression, and fast rendering based on Level of Detail.
However, in large-scale scene reconstruction, 3DGS-based
methods still encounter issues such as high memory
consumption, slow training speed, and poor reconstruction
quality under sparse views.

Aiming at the problems mentioned above, this paper proposes a
depth and normal priors guided 3D Gaussian Splatting to

achieve efficient 3D reconstruction. The method first constructs
a low-precision global 3D Gaussian radiance field as the initial
representation. Subsequently, based on 3D Gaussian
distribution perception technology, adaptive scene partitioning
and view partitioning are realized to improve optimization
efficiency while maintaining load balance. To accelerate
training, real-scene 3D data and AI-powered depth and normal
estimation techniques (Cao et al. 2022) are introduced to
establish geometric priors based on depth and normal
consistency, which effectively reduce artifacts, speed up
convergence, and improve synthesis quality under sparse views.
In addition, a constraint mechanism based on the shape and
opacity of Gaussians is proposed to suppress floating artifacts
and enhance model robustness.

2. Method

Figure 1. Overview of the proposed method.

We first generate a low-precision global 3D Gaussian radiance
field based on the initial SfM points. Then a adaptive scene
partitioning is performed based on the global 3D Gaussians. For
each block, the data is allocated by the position and visibility.
Based on the data partitioning, all the blocks are fine-tuned in
parallell. During the fine-tune process, the AI-powered depth
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and normal priors are introduced to enhance the quality of noval
view synthesis for each block. Finally, the whole scene is
achieved by fusing all the Gaussians in each block.

2.1 3D Gaussian Splatting Preliminary

The 3D Gaussian Splatting models a scene using a set of
discrete 3D Gaussian primitives. Each Gaussian primitive is
parameterized by 3D position �� , opacity �� ∈ [ 0,1], some
geometric properties, such as scales �� and rotation �� for
constructing Gaussian covariance, and spherical harmonics (SH)
coefficients �� ∈ �3×16 that determine the view-dependent
color �� . During rendering, the 3D Gaussians is projected into
camera space as 2D Gaussians. These 2D Gaussians are sorted
by depth and then rendered by alpha-blending to generate pixel
colors C .

� =
�=1

�

�����
�=1

�−1

1 − ��� , (1)

where C is the color value of a pixel. The RGB color of each
Gaussian primitive, denoted as ci, is calculated based on
spherical harmonics (SH) coefficients fi. The transparency
weight �� is determined by the projected 2D Gaussian
distribution and the learned opacity of the Gaussian.

For depth map, it also can be rendered following the alpha-
blending to generate pixel depth D.

� =
�=1

�

�����
�=1

�−1

1 − ��� , (2)

where the di is the depth value of the center point of Gaussian
primitive in camera space.

2.2 Adaptive Scene and Data Partitioning

In large-scale 3D reconstruction, adaptive scene partitioning is
vital for efficient computational resource management and high-
quality results. The conventional divide-and-conquer approach
involves splitting the scene into smaller sub-regions,
independently optimizing each, and merging the results.
However, this method faces challenges like uneven point cloud
distribution, occlusions, and computational load imbalance.

Partitioning based on SFM sparse point clouds is a common
approach but has limitations. While it provides a basic scene
structure, it fails to fully capture the scene's radiance field
Gaussian distribution, which is crucial for accurate
reconstruction. In this paper, we employ a global Gaussian
distribution based scene partitioning. This approach offers a
more accurate basis for dividing the scene into manageable
parts.

2.2.1 Low-Precision Global 3D Gaussian Radiance Field:
To overcome hardware limitations that can cause failures in
global Gaussian construction, a random view sampling policy is
employed to construct a low-precision global Gaussian radiance
field progressively.

The Gaussians is initializd with the SfM sparse point cloud.
Due to the GPU memory constraints, directly building a high-
precision global Gaussian radiance field is impractical. Instead,
we use a progressive approach with random view sampling. In
each iteration, we randomly select 500 images from the dataset
to optimize the Gaussians, gradually refining the parameters of
Gaussians over time. This method efficiently utilizes memory
and computational resources, as it avoids loading all images into
memory at once.

We conduct approximately 8,000 iterations to balance model
accuracy and resource usage. Each iteration updates the
Gaussian parameters based on the sampled images,
incrementally enhancing the radiance field. The iterative
process allows the gradual refinement of the Gaussian radiance
field, improving the quality of the reconstruction step by step.

2.2.2 Adaptive Scene Partitioning in Large-Scale 3D
Reconstruction: The process of splitting and pruning 3D
Gaussians, often used to refine the representation of the scene,
inherently changes their distribution compared with the initial
SfM sparse points. This dynamic distribution can be leveraged
to partition the scene adaptively, ensuring that each partition
contains a balanced and manageable number of Gaussians.

The 3D space is divided into a voxel grid, with each Gaussian
assigned to a voxel based on its center coordinates. The density
of Gaussians within each voxel is calculated to determine the
complexity of the scene in that region.

The scene is recursively partitioned into sub-blocks using a
binary tree structure based on the density. Blocks with higher
Gaussian density are divided into smaller sub-blocks. The
partitioning process continues until the number of Gaussians
within each block falls below a specified threshold. This ensures
that each block has a balanced computational load while
adapting to the varying density of the Gaussians.

2.2.3 Data Partitioning: For each block, we hope there are
sufficient supervision during optimization. However, different
views contribute variably to a block or partition, simply using
the views that fall within a block as supervision is often
insufficient, which can lead to several issues: 1) Incomplete
scene representation, The views within a block may not capture
the full context of the scene, leading to incomplete supervision
and potential reconstruction errors. 2) Occlusions and artifacts:
Intra-block views may not account for occlusions or complex
geometry, resulting in artifacts and inconsistencies in the final
reconstruction. 3) Limited detail: Restricting supervision to
intra-block views can limit the level of detail captured,
especially in areas where the block boundaries intersect with
significant scene features.

Visibility-based allocation addresses this by ensuring that each
block receives image data that is directly relevant to the content
within that block. For each block, determine which cameras
have a clear line of sight to the Gaussians within that block.
This involves projecting the block's Gaussians into the camera
views and checking for visibility. Based on visibility
calculations, select the most relevant views for each block.
These views should provide the best supervision for the
Gaussians within the block. Consider the number of visible
Gaussians and the quality of the view. Assign different weights
to views based on their relevance and contribution to the
reconstruction. Views with more visible Gaussians tend to
contribute more significantly to the block, which can be given
higher weights.

In addition to evaluating the contribution of different views
within a block, we also select views outside the block in a
similar way. By carefully choosing these external views, we
can gather more comprehensive information, which helps to
improve the accuracy and completeness of the scene
reconstruction. This approach ensures that both internal and
external views contribute effectively to the final result, leading
to a more detailed and precise 3D model.
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After the data partitioning is completed, each partition (block)
can be fine-tuned based on the global Gaussian radiance field.

2.3 AI-powered Geometric Regularization

Introducing depth and normal regularization is crucial for the
fine-tuning of each block. These geometric priors help mitigate
artifacts, improve geometric accuracy, and enhance quality of
novel view synthesis under insufficient supervision conditions,
especially in areas with sparse input views.

2.3.1 Depth Regularization: Depth maps provide precise
depth information, which helps in accurately placing the
Gaussians where the objects are. We introduce depth
regularization by Monocular depth estimation. In our work, a
pre-trained depth estimator, depth anything v2, is selected.
Different from prior work (Zhu et al., 2024), which align scale
between estimated depths and the scene by comparing the
estimated depths with the SfM sparse points. We employ
Pearson correlation similarity for soft depth supervision. The
Pearson correlation coefficient (Cohen et al., 2009) is both
scale-invariant and shift-invariant, which makes it well-suited
for evaluating the similarity of depth maps with different scales.

ℒ����ℎ = Corr �r, �e =
Cov �r, �e

Var �r ⋅ Var �e
, (3)

where �e donates the monocular depth estimated by the prior
estimator, �r is the rendered depth.

2.3.2 Normal Regularization: Normal maps offer detailed
information about the orientation of surfaces. The orientation
information helps in refining the shape and appearance of
Gaussians. In our work, we estimate the normal map from
estimated depth map �e as a supervisory signal for the scene by
calculating its gradient. Compared to using pre-trained models
for normal estimation, which involves significant complexities
and resource demands, the gradient of depth map offers a more
efficient alternative for normal map acquisition. These normals
guide the shape of Gaussian ellipsoids to better conform to
realistic surface geometries, thereby enhancing both scene
smoothness and geometric details. For a pixel (u,v) in a depth
map �, the normal vector can be computed as:

�(�, �) =
��(�, �)
��(�, �)

, (4)

where ��( ∙ ) is the gradient of depth, we use an L1 loss
directly during training to enforce this supervision effectively.

ℒ������ = ℒ1(�, ��), (5)

where � represents the normal from the gradient of Gaussian-
rendered depth map, �� represents the normal from the gradient
of the depth map of depth estimator.

Overall, our geometric regularization framework incorporates
two key components: monocular depth regularization,
monocular normal regularization. The overall composite loss
function is formally defined as follows:

ℒ��� = �1ℒ����ℎ + �2ℒ������, (6)

where �1, �2 represent the weights of each loss respectively.

2.4 Gaussian Primitive Constraints

In large-scale scenes, some areas inevitably have sparse image
data, and scene partitioning and data partitioning may increase
the probability of this situation. In this section, we first analyze
the behavior of Gaussians in such cases. Then, we introduce
constraint strategies for scale and opacity to further address the
challenges of Gaussian optimization when supervision is limited.

2.4.1 Shape Constraints: In the standard Gaussian
framework, the Gaussians with too large or small scale are
eliminated or split during densification iterations. However,
this approach proves to be unreliable in some low image overlap
scenarios.

In areas with low image overlap, the optimization process is
prone to generate the overly elongated and oversized Gaussian
ellipsoids to cover larger areas. Moreover, due to the lack of
sufficient supervision, these elongated and oversized Gaussians
can not be effectively split into smaller one during the adaptive
densification process. These Gaussians severely degrade the
quality of novel views synthesis. To detect and remove these
abnormal Gaussians, we introduce a abnormal Gaussian pruning
strategy that detect oversized Gaussians by their longest axis
and detect the overly elongated Gaussians by the ratio between
the longest and second-longest axes. The criterion is defined as
follows:

��� =
�1
�2

> �

�1 > �
, (7)

here, s1 and s2 represent the lengths of the longest and second-
longest axes of the Gaussian ellipsoid, respectively. r is the
threshold for alongated Gaussians detection, and t is the
threshold for oversized Gaussians detection.

The strategy is applied after a certain number of iterations
during the training process.

2.4.2 Opacity Constraints: In the standard Gaussian
framework, to prevent the optimization process from getting
stuck in local optima, the opacities of all Gaussians are
periodically reset during training. And a minimum opacity
threshold is applied throughout the training to remove
Gaussians that have opacities below this threshold, which helps
in eliminating artifacts and unnecessary Gaussians, improving
the overall quality and efficiency of the model.

However, this strategy encounters challenges in partitioned
scenes. The limited training images and minimal angle variation
within each block lead to insufficient supervision. This causes
some Gaussian opacities to get stuck in local optima, staying
above predefined threshold. These translucent Gaussians persist
near true surfaces, introducing floating artifacts and generating
blurred depth maps that weakening geometric regularizations
and lowering rendering quality.

To address this issue, we dynamically adjust the opacity
threshold.

��+1 = �� + Δ�, (8)
here, ��+1 , �� represents the current opacity threshold and
previous opacity threshold, while Δ� denotes the increment in
opacity value applied after each interval of iterations.
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3. Experiments

3.1 Experimental Setup

Datasets. Our method has been rigorously evaluated across
three real-world datasets: Mill19 (Turki et al., 2022), LLFF
(Mildenhall et al., 2019), DTU (Jensen et al., 2014) . The
Mill19 dataset consists of aerial images captured by real-world
drones, with each scene containing thousands of high-resolution
images. In both the training and testing phases, we maintained
the same dataset partitioning as Mega-NeRF (Turki et al., 2022).
To ensure a fair comparison across all experiments, we
uniformly applied a 4 × downsampling to each image,
following the approach of previous studies. The LLFF dataset
features 8 intricate forward-facing scenes. Following previous
research (Niemeyer et al., 2022), every eighth image is chosen
for testing, while the remaining images are used to uniformly
sample sparse training views. The DTU dataset comprises
numerous object-centric scenes, and we have selected 15 of
them, adhering to the same dataset split protocol. During
evaluation, background regions are masked. The image
resolutions for the LLFF, DTU are 1/8, 1/4 respectively.

We use PSNR, SSIM, and LPIPS metrics to quantitatively
evaluate the quality of reconstruction. Higher values of PSNR
and SSIM signify superior reconstruction quality, while lower
LPIPS scores reflect higher perceptual fidelity.

BaseLines. We choose some state-of-the-art synthesis methods
for comparison, including RegNeRF (Niemeyer et al., 2022) ,
FreeNeRF (Yang et al., 2023) and SparseNeRF (Wang et al.,
2023), 3DGS (Kerbl et al., 2023), FSGS (Zhu et al., 2024),
CityGaussian (Liu et al., 2024), VastGaussian (Lin et al., 2024).
For most baselines, we directly cite their best quantitative result
in their respective papers. For the 3DGS, we employ the results
from our own implementation.

Implementation Details. Our model is constructed based on
the official PyTorch implementation of 3D Gaussian Splatting.

Throughout all datasets, we conduct a total of 10,000 training
iterations. For the LLFF and DTU scenes, we set the adaptive
sampling rate within the range of 0.05 to 0.25. In terms of
geometric regularization, we utilize the Depth Anything V2
model, which is capable of predicting monocular depth for both
small-scale and large-scale scenes from images. This
regularization weights �1, �2 are set to 0.05. The Gaussian shape
constraints are activated at the 8,000th iteration, with the
parameters r and t set to 4 and 1.1. Regarding the opacity
constraint, the Δ�is set to 0.1. All experiments were carried out
using NVIDIA 4090 GPUs.

3.2 Comparsion with Other Methods

Mill19 Datasets. Compared to existing methods, our method
achieves comparable performance with CityGS, and
outperforms VastGS, 3DGS and Mega-NeRF in all scenes.
Compare with standard 3DGS, our method can capture more
high-frequency details. In contrast to CityGaussian (CityGS),
our method results in fewer artifacts, the quality of image
synthesis has been further enhanced, which primarily due to the
depth and normal regularization employed in this paper.
Although our method achieves the best PSNR in both scene, the
SSIM is a little bit lower than CityGS in residence sence and
LPIPS is higher than CityGS in Rubble. We attribute this to the
AI-based depth estimation. While it effectively reduces artifacts
and boosts visual quality, there is still estimation errors in
certain specific scenes, which might slightly affect the
reconstruction of some fine texture. Overall, the improvement
from the geometric regularization demonstrates that current
depth estimation pre-trained models (depth Anything) have
already exceeded our expectations.

Figure.1 shows a qualitative results. The standard 3DGS lost
many details in the scene. In contrast to the CityGS, although it
captures much richer details, it also exhibits some obvious
artifacts, especially in the regions with dense buildings, where
exists severe occlusions. Relatively, the rendering quality of our
method are closest to the ground truth.

Method
Residence Rubble

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Mega-NeRF 22.08 0.628 0.401 24.06 0.553 0.508

3DGS 20.82 0.769 0.254 24.73 0.772 0.284

VastGS 21.01 0.699 0.261 25.20 0.742 0.264

CityGS 22.00 0.813 0.211 25.77 0.813 0.228

Ours 22.61 0.810 0.207 25.88 0.815 0.229

Table1. Quantitative Comparison on large-scale scene dataset Mill19.
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GT 3DGS CityGS Ours

Figure 1. Qualitative comparison with SOTA methods on Mill19 dataset

LLFF Datasets. The quantitative result for the LLFF dataset
are presented in Table 2, demonstrating that our method
achieves the best performance in PSNR, SSIM, and LPIPS
metrics. Notably, our method substantially surpasses NeRF-
based method for sparse novel view synthesis under same
sparse input conditions. Compared to FSGS, our method
achieves an improvement of 0.96 dB in PSNR.

Method
LLFF

PSNR ↑ SSIM ↑ LPIPS ↓
RegNeRF 19.08 0.587 0.336
FreeNeRF 19.63 0.612 0.308
SparseNeRF 19.86 0.624 0.328

3DGS 14.27 0.398 0.420
FSGS 20.31 0.652 0.288
Ours 21.27 0.750 0.166

Table 2. Quantitative comparison on LLFF datasets.

DTU Datasets. The quantitative result for the DTU dataset are
also presented in Table.3, affected by our geometric
regularization, our method outperforms the baselines across all
evaluation metrics. Specifically, when compared to the 3DGS
method, we observe a substantial enhancement in our PSNR

score by 7.71 dB, and our SSIM score shows an improvement
of 0.162.

Method
DTU

PSNR ↑ SSIM ↑ LPIPS ↓
RegNeRF 18.89 0.745 0.190
FreeNeRF 19.92 0.787 0.182
SparseNeRF 19.55 0.769 0.201

3DGS 15.13 0.734 0.214
Ours 22.84 0.896 0.083
Table 3. Quantitative comparison on DTU datasets

Figure.2 shows a qualitative results. 3DGS struggles to
effectively reconstruct scenes with only sparse 3-view inputs.
For FSGS, despite it achieves better reconstruction quality, it
falls short in capturing fine details. In contrast, our method not
only provides enhanced rendering quality but also successfully
reconstruct more intricate textures and geometric details.

Furthermore, we show the results of novel view depth map
synthesis on the LLFF dataset. As depicted in Figure. 3, the
depth maps rendered by 3DGS are quite poor. the results of
FSGS are better, but compare with our method, its depth maps
have more noise, the depth map rendered by our method is
smoother.

GT 3DGS FSGS Ours

Fe
rn
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Figure 2. Qualitative comparison on LLFF dataset.
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Figure 3. Depth map comparisons for Novel Views on LLFF dataset.
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3.3 Ablation

We conducted our ablation experiments on both Mill19 and
LLFF datasets to evaluate the geometry regularization. The
results without geometric and with geometric regularization on
dataset Mill19 are presents in Table 4. The second row of Table
4 highlights the enhancements achieved through geometric
regularization. This component guide the positions and shapes
of Gaussians to be more closely approximate the real surface
structures. As depicted in Figure 4, the depth maps generated
under geometric regularization (4th column) are closer to the
ground truth provided by the depth estimator and are also
smoother and low noisy, compared to the baseline.

Geometric
regularization PSNR ↑ SSIM ↑ LPIPS↓

w/o 22.36 0.807 0.209
w 22.61 0.810 0.207

Table. 4 Ablation experiments for large-scale scene on Mill19.

To further validate the effectiveness of our geometric
regularization, we conduct an ablation experiments on LLFF

dataset at 1/8 resolution with 3-view input setting, each
component within the geometric regularization, as shown in
Table 5.
From Table.5, we can find that the depth regularization obtains
0.19 improvement in PSNR, 0.001 improvement in SSIM, but
obtains 0.003 degradation in LPIPS, which may be caused by
the error from depth estimation. After turning on the normal
regularization, a further improvements are achieved, 0.24 in
PSNR, 0.11 in SSIM and 0.01 LPIPS, which means the normal
regularization can improve the stablity of oprimization.

Depth Normal PSNR↑ SSIM↑ LPIPS↓
✗ ✗ 20.84 0.738 0.173
✓ ✗ 21.03 0.739 0.176
✓ ✓ 21.27 0.750 0.166

Table. 5 Ablation experiments about geometric regularization
on LLFF.

RGB GT w/o w

Figure 4. Depth map rendering comparisons for large-scale scene on Mill19 dataset.

4. Conclusions

We propose a depth and normal priors guided 3D Gaussian
Splatting for large-scale scene reconstruction. Through the
adaptive scene and data partitioning, we achieved the
generation of Gaussian radiance field for large-scale scenes. To
enhance the quality of view synthesis for each scene block, AI-
powered depth and normal priors are incorporated.
Additionally, to prevent overfitting in scenes with low image
overlap, Gaussian primitive constraints are also employed to
remove abnormal Gaussian primitives. Experiments
demonstrate that our method achieves superior performance
across multiple datasets.

Limitations and future work. As experiments demonstrate, our
geometric priors are prone to be impacted by the depth

estimator. In future work, we will focus on exploring a more
accurate depth estimation method for large-scale scene to
enhance the quality of novel view synthesis.
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