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Abstract:

Typhoon-induced flood events result in enormous property losses and lives, thereby jeopardizing the prospects of sustainable societal growth.
Scientific, objective, and accurate information regarding the spatial pattern of their direct economic impacts is of great importance to flood emergency
response planning, disaster-related insurance settlements, and reconstruction after such events. Systematic reviews on the direct economic estimation
of typhoon flood events do not currently exist. This paper describes basic framework for estimating typhoon flood economic losses, explains data
utilized in remote sensing on such economic losses, summarizes remote sensing simulation technologies on direct economic losses due to typhoon
flood, and includes the most recent advances and demands for building digital twin watersheds to recommend core research technologies focusing
on direct economic losses of Typhoon flood: (1) High-precision remote sensing recognition of principal factors leading to Typhoon flood and
subsequent damage; (2) Property value and loss reconstruction and measurement with digital twin techniques; (3) Intelligent assessment and
precision service technologies for direct economic loss estimation of typhoon flood.

1. Introduction

Flood disasters are one of the most pervasive and destructive natural
disasters in the world, causing huge economic losses and loss of life
every year(Tang et al., 2025). Floods are increasingly frequent and
intense because of climate change and urbanization, causing
progressively more devastating impacts(Wang et al., 2025). It is
crucial to estimate direct economic loss from typhoon-triggered
flooding accurately for efficient emergency response, insurance
payout, reconstruction, and policy making(Kawasaki and
Shimomura, 2024).

Conventional techniques of economic loss estimation due to
typhoon floods are usually based on statistical analysis and field
surveys after the events. However, these techniques possess some
notable limitations: they are time-consuming and labor-intensive,
thus hindering prompt emergency response; results may be affected
by subjective bias and inconsistency; there may be weak spatial
coverage, particularly in areas that are difficult to access; and the
accuracy of results depends on the representativeness of samples and
data quality(Merz et al., 2010). These limitations significantly
undermine the application of traditional techniques for large-scale
and rapid assessments of typhoon flood disasters(Wang et al., 2025).

Satellite remote sensing has become an essential tool for gathering
large-scale information on typhoon flood disasters and estimating
economic losses. Despite advancements in this field, there is still a
lack of comprehensive reviews on remote sensing-based
assessments of typhoon flood losses, along with limited comparative
analyses of the effectiveness of various methodologies. Additionally,
emerging technologies like digital twins highlight the need for a
consolidation of current research and the identification of future
directions(Li, 2024).
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This study reviews the fundamental principles of estimating
economic losses from typhoon floods, with a focus on the application
of satellite remote sensing in disaster hazard analysis, exposure
valuation, and estimation model development. We compare the
advantages and limitations of different methods, and considering the
development of digital twin watersheds, we propose future research
directions. This work aims to provide technical guidance for
enhancing emergency response, disaster mitigation, and integrated
risk governance.

2. The fundamental and framework of Typhoon Flood
Economic Loss Assessment

Estimating direct economic losses from typhoon floods involves
assessing the immediate impacts on socio-economic systems,
integrating insights from disaster science, sociology, economics,
and geography. However, accurately assessing these losses is
challenging due to the complex variability of typhoons and the
diversity of affected assets, with no universally accepted method
available.

Since the 1970s, researchers have proposed various approaches to
loss estimation, including empirical equations, damage curves,
regression models, and neural networks. A "three-factor" framework
has emerged, which relies on damage rates that incorporate hazard
indicators, exposure data, and vulnerability parameters (Figure 1).

Hazard indicators refer to meteorological conditions, inundation
depth, duration, and extent of flooding. Exposure relates to the
distribution and value of assets, including property types,
development levels, construction costs, and agricultural patterns.
Vulnerability indicates the likelihood of damage, which is
influenced by structural resilience and adaptive capacity.
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Recent advancements in remote sensing technology and high-
resolution satellite data have greatly enhanced the ability to identify
hazards, simulate exposure, and assess vulnerability. This progress
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Figure 1. Basic framework for estimating typﬁbbﬁ{‘iood economic losses

3. Hazard information extraction based on remote sensing

Extracting standardized hazard indicators is crucial for accurate loss
estimation. Despite significant research efforts (Carisi et al., 2018;
LI et al., 2014), no universal indicators for typhoon flood risks
currently exist. Most studies concentrate on factors such as
inundation depth, extent, and duration(Li et al., 2020; Wang et al.,
2019). Although flow velocity is vital for assessing structural
damage, it is often excluded due to a lack of field data.

Recent advances in machine learning methods have begun to
integrate meteorological variables and complex interrelated factors.
Remote sensing technologies have unique capabilities for extracting
hazard information (Table 1), but varying spatial resolutions create
challenges for multi-scale integration.

Satellite remote sensing is particularly effective in capturing the
features of typhoon floods (Huang et al., 2018; Tang et al., 2015;
Wan et al., 2019). The use of satellite constellations along with
multi-source integration allows for multi-temporal flood mapping
through both optical and radar imagery (Bioresita et al., 2019;
Huang et al., 2014; Shen et al., 2019). When combined with
elevation models, these technologies support the estimation of
inundation depths (Kang et al., 2006; LI et al., 2014). However,
remote sensing typically offers only static snapshots instead of
continuous spatiotemporal representations(DeVries et al., 2020).
While multi-source fusion enhances the feature of flood hazards, it
also increases processing costs.

No Feature Description Advantages Limitations References
This method utilizes optical or radar remote | Provides rapid, accurate
. . - . - Affected by . .
Inundation | sensing data to extract flood inundation areas by | mapping of large-scale : (Grimaldi et al.,
1 SRR . - - - occlusion and cloud
extent distinguishing water spectral and backscattering | flooding  with  high cover 2016)
signatures from other surface features. temporal resolution. '
This approach combines remote sensing imagery | Provides spatially
Inundation with hydrological models and high-resolution | detailed flood depth | Requires accurate | (Kang et al.,
2 denth elevation data to estimate flood depth. Methods | distribution, supporting | elevation data and | 2006; Yi et al.,
P include multi-temporal image comparison and | refined economic loss | hydrological models | 2005)
shadow-based analysis. assessment.
. . . . Time-series imagery -
- This method analyzes flood duration using high- - - . (Ding et al,
3 Lﬁgtdiztr:on frequency satellite imagery compared with g?able(sj n;?r(w:ic:: nstru;ggg Ir_el\:ri]slgfdab)s/ satellite 2013; Huang et
reference imagery. s gap al., 2018)
duration.
Other This approach uses meteorological satellite data | High-resolution The resolution
features to extract hazard features and overlays them | meteorological data | mismatch between
. AR . . . (Wan et al,
4 (e.q., spatially with inundation data to analyze | enables spatiotemporal | meteorological 2019)
Rainfall spatiotemporal correlations between | analysis of disaster | hazard and flood
intensity) meteorological conditions and flood disasters. mechanisms. hazard.
Table 1. Comparison of remote sensing extraction methods for hazard information
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3. Exposure information extraction based on remote sensing

Typhoon floods can lead to significant property damage, resulting
in direct economic losses. The spatial resolution of property value
data plays a crucial role in the reliability of loss estimation
(Kienberger, 2012; Li et al., 2003). Early studies relied on spatial
interpolation of administrative data from statistical yearbooks.
While this approach captured variations between different
administrative units, it overlooked the heterogeneity of property
values within those units, leading to considerable estimation errors

(He et al., 2012; Sorichetta et al., 2015; Wang et al., 2011; Wu et al.,
2018). Furthermore, flood boundaries rarely align with
administrative boundaries, making accurate loss assessments
challenging without detailed distributions of property values.
Although integrating land use data, socio-economic data and
nighttime light data has improved spatial resolution, the use of
coarse land use classifications still limits accuracy(Leng et al., 2019;
Ren et al., 2015; Zhao et al., 2017). The advantages and limitations
of property value estimation based on different data are summarized
in Table 2.

No Data Description Advantages Limitations References
L Provi highl horitative | H limi mporal an
Statistical Extracts asset data from ovides _mgnly autho tat_ € as ted _te pora E.ld .
o data  with  comprehensive | spatial resolution, reflecting | (Sorichetta et
1 | yearbook statistical yearbooks and | . L -
industry  and land  use | only aggregated administrative | al., 2015)
data government reports. e
classifications. values.
. Offers high spatial resolution | Shows regional variation in
Uses remote sensing to map land - . . L
Land use . enabling dynamic updates based | valuation coefficients and | (Zhao et al.,
2 use and calculate spatial asset - e
data S on pre- and post-disaster land | depends on classification | 2017)
distribution.
use changes. accuracy.
Remote Employs nighttime lights or Cgptures_ economic ft_aatures, _Suffers from _brlghtness (Elvidge et al.,
- L . aligns with statistical units, and | interference by various factors, o
3 | sensing building data to estimate asset - . . - . 1997; Jiang et
enables analysis of economic | low spatial resolution, and high
data values. . . al., 2018)
changes. valuation uncertainty.
. Integrates remote sensing data, Delivers high precision and | Involves high data complexity
Multi- macroeconomic statistics, and | .. . X . .
. timeliness, supporting multi- | and acquisition costs, with | (Yu et al,
4 | source data | POI data. Through data fusion, . . .
: . . . scale analysis across complex | modeling prone to overfitting | 2019)
integration | produces high-resolution maps - -
h scenarios. and uncertainty.
of asset valuation.

Table 2. Comparison of statistical methods of property value based on different data

4. Research progress on the estimation method of direct
economic losses caused by typhoon floods

Methods for estimating damage rates can be categorized into
statistical and comprehensive approaches (Kourgialas and Karatzas,
2013; Rosser et al., 2017). Statistical models utilize inundation
parameters as independent variables to create loss rate functions,
resulting in depth-loss curves tailored to specific land uses(de
MOEL and Aerts, 2011). In contrast, comprehensive methods take
multiple factors into account, employing techniques such as fuzzy
logic, Analytic Hierarchy Process (AHP), and grey relational
analysis to assign weights(Zhu et al., 2007). However, the presence
of strong autocorrelations among flood variables complicates the
accurate assignment of these weights(Hoque et al., 2017). Grid-

based techniques are used to address spatial variability, with
Geographic Information System (GIS) frameworks determining
suitable grid sizes for visualizing spatial risks(Zhu and Zhang, 2022).

Machine learning provides promising solutions through pattern
recognition and spatial adaptability for complex multi-factor
estimations (Wang et al., 2020). For instance, random forests
incorporate features such as rainfall, runoff, and elevation (Wang et
al., 2015), while support vector machines leverage multi-source
remote sensing indicators (Mojaddadi et al., 2017). Additionally,
deep neural networks can extract high-level features and generalize
complex patterns, achieving an accuracy of 92.05% in flood
prediction (Bui et al., 2020). A comparison of the strengths and
weaknesses of these models is provided in Table 3.
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No Method Description Advantages Limitations References
Flood damage | This approach uses water depth as ;:ihr:r?iiteilc 1S smple;&ﬂ The model shows weak
model based | a single varlal?le to constryct adjustable parameters that adaptablllt)_/ to §pa}t|al (de MOEL and
1 on depth- | damage functions evaluating - heterogeneity and limited
: ; - provide good . Aerts, 2011)
damage inundation impact on loss - representation of real-world
: - generalizability and o
function estimates. - . conditions.
theoretical foundation.
The approach captures - . .
. Extends single-factor models by | multiple flood features, This approach_l_nvolves high
Multi-factor - . durati . . d data acquisition costs, | (Hoque et al.,
2 damage rate Incorporating _duration, creating | improves _ damage | G oreased model complexity, | 2017; Zhu etal.
function two-dimensional damage | estimation precision, and and difficulties in determinin’ 20075 !
functions. is suitable for dynamic A g
factor weighting.
flood processes.
3 Grid-based Employs grid-based modeling | The model introduces | The method relies on high- | (Zhu and
flood loss | with spatial cells as calculation | gridded modeling to | resolution spatial data, making | Zhang, 2022)
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This approach utilizes annotated

5 Deep learning

corresponding damage rates.

No Method Description Advantages Limitations References
estimation units, mapping inundation extent | enhance spatial | data acquisition costly for
model to individual grids. heterogeneity analysis of | small and medium-scale
flood losses. watersheds.
This methodology extracts -
. Uses supervised learning with | intrinsic patterns, The mpd_el |sh|ghlydepe_>nde_nt (Mojaddadi et
Machine A . . . on training data, resulting in i
4 learning historical disaster data to establish | improves model limited transferability across al., 2017; Wang
hazard-damage relationships. generalization, and et al., 2020)

supports model updates.

method
patterns and | volumes of labeled data and | (Bui et al,
complex nonlinear relationships | processes large datasets | involves high computational | 2020)

between hazard variables and | efficiently.

training samples to develop | The
predictive models that capture | complex

different regions.

captures | The approach requires large

Ccosts.

Table 3. Comparison of economic loss estimation models of typhoon flood disasters

5. Future research directions

Digital twin technology has been applied extensively in the areas of
urban and watershed management in recent years, and digital twin
technology offers a new technical vision for typhoon-induced flood
loss estimation(Chu et al., 2024). Digital twin systems, through
creating a digital representation of the physical world, can realize
real-time interaction between virtual models and physical entities and
thus can facilitate dynamic simulation of disaster and loss estimation.
In the aspect of direct economic loss estimation of typhoon flood,
remote sensing and digital twin technology is advancing in the
following directions:

(1) Remote sensing and digital twin technology for typhoon flood
hazard identification and property damage. Through the integration
of multi-source data—e.qg., optical imagery, SAR, and hyperspectral
data—intelligent classification models can be established to detect
different categories of assets like residential homes, commercial
buildings, industrial complexes, transportation infrastructure, and
agricultural land(Guojin et al., 2018). Computerized change
detection from pre- and post-disaster high-resolution images
combined with deep learning methods enables automatic damage
assessment of buildings, permitting fine-grained classification from
undamaged to heavily damaged conditions. Quantitative remote
sensing inversion models of inundation range, inundation depth, and
inundation duration are also set up to retrieve key disaster intensity
hazards for direct economic loss estimation. Spatiotemporal damage
patterns of properties during typhoon occurrences are modeled, and
quantitative correlations between damage intensity and hazards of
disasters are quantitatively modeled to enable scientifically informed
loss estimates.

(2) Digital twin-guided reconstruction of asset value and loss
estimation. A remote sensing, GIS, and economic statistical data-
based digital twin asset model is built to virtually replicate the value
of physical assets (Ye et al., 2022). Model frameworks are described
to demonstrate how typhoon flood intensity is transformed into
economic losses by considering the types of assets, damage levels,
repair costs, and depreciation rates. By integrating real-time remote
sensing information with the digital twin system, economic losses
can be directly computed and cumulatively estimated dynamically in
flood inundation processes. Besides, an uncertainty quantification
framework is also introduced to provide confidence intervals for loss
estimation to improve damage estimation robustness.

(3) Typhoon flood intelligent loss assessment and precision service
systems. By integrating large language models (LLMs), intelligent
loss estimation techniques are built across various spatial scales,

forming a multi-level estimation framework that covers from high-
resolution asset-level estimates up to macroeconomic loss
amounts(Wang et al., 2025). Companion digital twin platforms are
tuned for insurance claims, disaster relief, and post-disaster
reconstruction purposes and provide tailored outputs like loss reports,
risk visualizations, and decision-making. A validation and calibration
process is established, employing field investigations, insurance
claim data, and government statistics to cross-validate the assessment
outcomes and thereby increasing the accuracy and reliability of
typhoon flood damage estimation.

6. Conclusion

This study addresses the existing gap in comprehensive reviews of
direct economic loss assessment for typhoon floods. The research
synthesizes current literature and establishes a foundational
framework encompassing hazard factors, exposure elements, and
vulnerabilities. Remote sensing methods for extracting hazard data
and exposed assets are reviewed. Current modeling approaches for
typhoon flood economic loss estimation are summarized, and key
technical challenges for future research are identified. The objective
is to advance intelligent, rapid, and accurate direct economic loss
estimation methodologies and to support emergency response,
disaster mitigation, and climate adaptation planning.
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