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Abstract 

 

With the rapid growth of the low-altitude economy, path planning for Unmanned Aerial Vehicles (UAVs) in complex urban low-

altitude environments has become increasingly critical. However, urban low-altitude scenarios are influenced by buildings, 

meteorological conditions, regulatory restrictions and numerous factors. Traditional path planning methods struggle to effectively 

consider the impact of multiple constraints, making it challenging to provide effective and interpretable decision support for flight 

operations. This study proposes an optimized UAV flight path planning method based on an Urban Low-Altitude Navigation 

Knowledge Graph (ULAN-KG). Utilizing the knowledge graph, it structures the association between low-altitude flight route 

elements and low-altitude flight constraint factors in the urban space. The experiment selects a densely built area of Beijing for 

validation, where the proposed method is compared with traditional algorithms. The experimental results show that the A* algorithm 

improved by ULAN-KG can effectively avoid flight segments affected by strong wind conditions. When conflicting with controlled 

airspace events, the path planning results prioritize avoiding no-fly zones. This approach offers efficient and reliable technical 

support for UAV applications in complex urban low-altitude scenarios, such as logistics and emergency response. 

 

 

1. Introduction 

The rapid development of unmanned aerial vehicle (UAV) 

technology has significantly expanded its applications in urban 

scenarios, including logistics delivery, emergency response, and 

infrastructure inspection. Compared to traditional ground 

transport, UAV operations at low altitudes offer distinct 

advantages in resource efficiency and transportation flexibility, 

enabling UAVs to bypass ground-level constraints and reduce 

travel time and costs. 

 

Aiming to identify optimal paths between origin and destination 

that fulfil mission objectives such as minimal distance, 

maximum safety, or shortest flight time, path planning is 

essential for UAV autonomous flight(Meister et al., 2008; Sun 

et al., 2016). However, precise navigation in low-altitude urban 

environments requires efficient computational methods. The 

complexity of urban spaces (e.g., terrain, buildings, irregularly 

distributed obstacles, varying meteorological conditions, and 

stringent airspace regulations) creates substantial challenges(Du 

et al., 2024). Additionally, low-altitude flights demand rapid 

responsiveness and high safety standards, necessitating real-

time environmental awareness and precise computational 

methods for path planning(Liao et al., 2023; Zhang, 2021).  

 

Traditional path planning algorithms face limitations in 

addressing these urban complexities. Conventional heuristic 

methods, such as A*(Kong et al., 2020), primarily rely on 

geometric distances, limiting their ability to integrate dynamic 

environmental factors like building structures, weather 

conditions, and airspace rules effectively (Khoufi et al., 2019; 

Yu et al., 2021). In addition, these algorithms experience 

scalability issues within dense urban areas, where an increasing 

number of obstacles and varying constraints significantly 

impact computational efficiency and real-time 

responsiveness(Du et al., 2024). 

 

Knowledge Graphs(Chen et al., 2024) have emerged as a viable 

solution by integrating heterogeneous data through semantic 

networks. This unified representation supports effective 

querying and fusion of diverse information. Hence, this study 

introduces the Urban Low-Altitude Navigation Knowledge 

Graph (ULAN-KG), designed to comprehensively represent the 

spatiotemporal and semantic relationships among various urban 

elements influencing low-altitude UAV flight. By providing 

flexible, adaptive, and rapid data processing, the proposed 

ULAN-KG can potentially enable precise modeling of UAV 

navigation scenarios under multiple constraints. 

 

By integrating environmental risk indicators from ULAN-KG 

into the classic A* algorithm’s cost function, path planning now 

extends beyond geometric distances, explicitly considering 

environmental constraints such as urban structures, weather 

conditions (e.g., wind strength, visibility), and dynamic events 

(e.g., temporary no-fly zones). The proposed method quantifies 

environmental impacts and adjusts weight coefficients within 

the cost function, enabling optimization toward specific goals 

such as the shortest or safest path. This method’s effectiveness 

is demonstrated through a case study conducted in a densely 

built area of Beijing, where obstacle avoidance, weather 

adaptation functions, and regulatory restrictions are integrated. 

A comparison with traditional methods verifies its practical 

significance and effectiveness under real-world constraints. 

Consequently, this optimization enhances computational 

efficiency, reduces algorithm complexity, and improves 

interpretability, providing robust technical support for UAV 

operations in complex urban low-altitude environments. 
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2. Methodology 

2.1 Ontology Modeling for Urban Low-Altitude Navigation 

Scenarios 

Urban low-altitude scenarios involve various spatial locations 

and dynamic and static influencing factors. The complexity of 

the environment presents challenges for UAV low-altitude 

navigation. Therefore, a spatiotemporal model is needed to 

integrate these elements, providing support for accurate and 

efficient path planning. This study constructs a data model for 

low-altitude navigation, unifying the modeling and storage of 

spatial topological relationships, as well as the physical 

constraints and rules in low-altitude scenarios. Referring to 

relevant literature(Garrow et al., 2021), The urban low-altitude 

public airways can effectively reduce flight conflicts under high 

traffic systems, improving the safety and efficiency of UAV 

flights. Therefore, the model is built around flight route 

elements, using a top-down approach to define low-altitude 

flight elements and influencing factors. These elements, their 

relationships, and rules are abstracted, and an ontology model 

for urban low-altitude navigation scenarios is developed. To 

enable unified data management and efficient utilization, Neo4j 

graph database is used for data storage and management, 

providing support for flexible and efficient queries in 

subsequent stages. 

 

2.1.1 Semantic Element Classification and Definition: Based 

on relevant standards and specifications, the concepts, 

classification, attributes, and relationships of elements are 

defined. As shown in Figure 1, the model consists of three types 

of node elements (environmental elements, functional elements, 

and flight path elements) and the relationships between these 

elements (spatiotemporal relationships and semantic 

relationships). 

 
Figure 1. Urban Low-Altitude Navigation Scenarios Conceptual 

Model. 

 

-Low-altitude environmental elements are the facilities and 

environments in the low-altitude airspace and on the ground that 

influence flight, where facility environment mainly includes 

buildings, roads, and associated infrastructure. The scene 

environment primarily includes points of interest, land cover 

and land use, named regions, terrain and landforms, 

meteorological conditions, electromagnetic environment, 

population density, etc.  

 

-Low-altitude functional elements are elements related to low-

altitude flight management and services, including take-off & 

landing points, flight control airspace, and connecting facilities. 

Functional elements are physically attached to environmental 

elements. 

 

-Low-altitude flight path elements are the elements that define 

the linear airspace in which low-altitude aircraft can fly in three-

dimensional space, including route centerlines, turning points, 

connection points, and velocity layers. The flight path connects 

with facility elements, scene elements, functional elements, and 

ground traffic elements through connection points. 

 

2.1.2 Property Constraints and Semantic Relationships:In 

the proposed model, relationships serve as critical connectors 

that bind discrete entities and their properties into an integrated 

framework, enabling coherent representation and efficient 

querying of complex urban low-altitude scenarios. Unlike 

conventional models that prioritize static geometric 

relationships, this geographic model emphasizes dynamic 

spatiotemporal interactions while accommodating semantic 

associations. Given the inherent volatility of low-altitude 

environments — where entities undergo frequent spatial 

transformations, temporal state changes, and contextual 

meaning shifts— the relationship taxonomy is systematically 

divided into three categories: spatial, temporal, and semantic 

relationships. 

 

Spatial relationships form the geometric foundation of the 

model, capturing three fundamental dimensions of entity 

interaction: topological connections 

(intersecting/adjacent/disjoint relationships), distance metrics 

(Euclidean/network-based proximity), and directional 

orientations (azimuthal bearings/altitude differentials). These 

relationships enable precise modeling of physical interactions, 

such as the topological adjacency between connection points 

and points of interest (POIs), or the directional alignment of 

turning points along flight route centerlines. The model employs 

RCC-8 calculus for continuous spatial reasoning, enhanced with 

UAV-specific constraints like minimum vertical clearance 

thresholds. 

 

Temporal relationships introduce the dynamic dimension, 

distinguishing between absolute and relative time references. 

Absolute time relationships anchor events to specific calendar 

instances (e.g., "NO_FLY_ZONE_ACTIVE from 2025-06-

18T09:00 to 2025-06-18T18:00"), providing unambiguous 

temporal boundaries for regulatory constraints. Relative time 

relationships express duration-based associations (e.g., 

"WIND_SHEAR_EVENT persists for 15 minutes after 

detection") or periodic patterns (e.g., 

"WEEKLY_AIRSPACE_RESTRICTION every Monday 

08:00-10:00"). These temporal constructs are formalized using 

Allen's interval algebra extended with metric temporal logic 

operators. 

 

Semantic relationships bridge the gap between raw data and 

contextual meaning, encompassing attribute associations (e.g., 

"Building_47 hasHeight 52m"), causal dependencies (e.g., 

"HEAVY_RAIN causes REDUCED_VISIBILITY"), and 

cognitive relationships (e.g., "HOSPITAL_HElipad 

isPreferredLandingZone"). The model leverages OWL 2 DL 

ontologies to formalize these semantic associations, enabling 

rule-based reasoning such as inferring flight path validity based 

on building height thresholds or prioritizing medical delivery 

routes during emergencies. 

 

Under the three core relationship frameworks of space, time, 

and semantics mentioned above, the model further defines the 

secondary relationship system of low altitude scene elements (as 

shown in Figure 2), and introduces constraint attribute 

parameters to achieve dynamic environment perception. These 

secondary relationships include but are not limited to: facility 
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attachment relationships (such as physical binding between 

functional elements and buildings), path connection 

relationships (topological associations between flight routes and 

turning points), event triggering relationships (causal linkage 

between meteorological changes and control areas), etc., which 

achieve fine-grained modeling of complex scenes through a 

multi-level relationship network. At the same time, the model 

integrates real-time constraint attribute data collected by sensors, 

including key parameters such as three-dimensional coordinates 

(X/Y/Z), path length (m), wind speed level, electromagnetic 

strength, etc. These data are continuously updated through a 

dynamic threshold detection mechanism to provide real-time 

environmental status feedback for path planning algorithms. For 

example, when the wind sensor detects that the instantaneous 

wind speed of a certain segment exceeds the preset threshold, 

the system will automatically trigger the path replanning 

mechanism and quickly query alternative routes through the 

knowledge graph. This collaborative design of relationship 

modeling and attribute constraints enables the model to both 

perform long-term planning through semantic relationship 

inference and achieve short-term obstacle avoidance based on 

real-time data, thus constructing a full cycle navigation support 

system from the strategic layer to the tactical layer (see Figure 2 

for specific classification). 

 
Figure 2. Object Properties and Dara Properties. 

 

2.1.3 Knowledge Graph Construction ： Based on the 

ontology model, the knowledge graph is constructed in a top-

down manner. Terrain data, building data, and meteorological 

data obtained from sensors are processed into triplet data 

containing environmental information, which serves as the basic 

unit for knowledge graph modeling. These data are imported 

into the Neo4j database. The constructed "Urban Low-Altitude 

Navigation Knowledge Graph" (ULAN-KG) provides support 

for visualization and parameter queries during path computation. 

 

The relationships between nodes and edges in the knowledge 

graph are shown in Figure.3: 

 

Figure3. Node and Relationship Diagram. 

 

The knowledge contained in each slice includes: 

 

Nodes:The ULAN-KG node contains five different elements: 

Environmental elements, Functional elements, and Flight path 

elements. Each type of node carries attributes.Environmental 

elements include wind, visibility, and electromagnetic 

environments.Functional elements include take-off & landing 

points, Points of Interest (POI), etc.Flight path elements are the 

core elements for path planning, including nodes (Turning Point 

and Connection Point) and the Route Centerline connecting two 

nodes. The Flight path elements can be represented by Eq.1: 

 

 , , }{ name class attributesRoute Route Route Route=   (1) 

 

nameRoute  is the unique identifier for the route, classRoute  is 

the category of the route, and attributesRoute  is the set of 

attributes related to the route, which can include length, wind 

impact, control impact, etc. Specific attributes can be expanded 

as Eq.2: 

 

{ ,  , }attributesRoute length hasWeatherImpact hasControlImpact=

                                 (2) 

 

Length represents the length of the route,hasWindImpact 

indicates whether the route is affected by 

wind,hasControlImpact indicates whether the route is subject to 

airspace control.These attribute details describe the state of the 

route, serving as important parameters in the cost function for 

path planning. 

 

Edges:Edges in the knowledge graph are designed to reflect 

temporal relations, spatial relations, and semantic 

relations.Temporal relations are represented by long dashed 

lines, such as windy_1 to windy_2, indicating the change in 

wind between two time points.Spatial relations are represented 

by solid arrows between routes and nodes, showing the spatial 

connection between routes and nodes, which can form the road 

network structure for path planning.Semantic relations are 

represented by short dashed lines, such as control_1 connected 

to route1, indicating that the route is subject to control impact; 

node2 connected to attribute XYZ represents the coordinates of 

the point, used in path planning for heuristic function 

calculations. 

 

2.2 Optimized A* Path Planning Algorithm 

UAV path planning is essentially the process of finding the 

optimal or relatively optimal solution for the objective function 

while meeting the mission flight requirements, and solving the 

objective function is the path planning process. The A* 

algorithm is a heuristic graph search path planning algorithm 

that combines the advantages of breadth-first search and best-

first search. (Liu et al., 2020), It adds a heuristic function on the 

basis of Dijkstra's algorithm to estimate the cost to the target 

point.   

 

The A* algorithm improves search efficiency by avoiding 

exhaustive traversal of all nodes and is well-suited for complex 

or dynamic environments.Its core mechanism lies in the cost 

function, defined as Eq. 3: 

 

 ( ) ( ) ( )g hf n g n h n = +  (3) 
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Where n  represents a navigational node within the airspace  

visited during the search process; the coefficients g and h are 

weight balancing the contributions of actual and estimated costs; 

( )f n  represents the total cost estimate for reaching the goal 

through node 𝑛, used to determine which nearby node is more 

suitable for the next step of expansion, combining: ( )g n is the 

actual accumulated cost from the start node to 𝑛; ( )h n is the 

heuristic estimate of the remaining cost from 𝑛 to the goal node, 

typically computed using Euclidean or Manhattan distance 

based on the graph structure. 

 

This study proposes incorporating the node attributes from 

ULAN-KG into the low-altitude navigation constraint factors to 

improve the traditional A* algorithm.*  

 

2.2.1 Heuristic Function h(n): ( )h n  is the heuristic function, 

representing the estimated cost from the current point to the 

target point. Calculate using the coordinates from the current 

node to the target point obtained from the knowledge graph. It is 

calculated using Eq. 4: 

  

( ) 1 2 1 2 1 2h n x x y y z z= − + − + − .           (4) 

 

In this study, the calculation method for h(n) uses Manhattan 

distance, which is the shortest straight-line distance between 

two points; 1 1 1, ,x y z）（
and 2 2 2, , )(x y z

epresent the coordinates 

of the current point and the target point, respectively. 

 

2.2.2 Cost Function g(n): ( )g n  is obtained by accumulating 

the replacement values of the initial path segments, and its 

calculation method is shown in Eq. 5: 

 

( ) ( )
1

n

i

i

g n g r
=

= .                          (5) 

 

( )ig r represents the cost value from the neighboring node of 

node i to the current node, while ir represents the segment of 

the UAV’s path in the i-th step of the path planning. 

( )ig r consists of three parts: directional cost 

dirg environmental cost envg  and control cost cong .As shown 

in Eq. 6: 

  

( ) 1 2

1 2 1

i dir env cong r g g g 

 

 = + +


+ =
             (4) 

 

dirg  is the cost represents the consideration of the UAV’s 

ascent/descent and travel distance in this cost function, while 

the turning cost is calculated based on the turning points (node 

type) that connect the centerlines of adjacent flight paths. envg  

is the environmental impact cost, which represents the cost 

calculated based on surrounding information of flight path 

elements, including meteorological conditions, electromagnetic 

interference, and the type and danger level of nearby obstacles. 

The weight is adjusted according to the actual situation. cong
 

represents the control event cost. When no control event occurs 

on this segment, the value of cong
 is 0; when a control event 

occurs on this segment, the value of cong
 is ∞. 

 

dirg
considers two influencing factors: ascent/descent cost and 

turning cost, and is calculated as shown in Eq.7: 

  

 dir ABg L d= +
.                            (7) 

 

β is the directional coefficient, representing the different 

consumption per unit distance during UAV’s horizontal flight 

and ascent/descent. ABL
 represents the actual distance of the 

flight path between points A and B. 

 

The calculation of envg  is shown in Eq. 8: 

  

1 2 3

1

1

1

n

env wea obstacle disturb i

i

n

i

i

g        



=

=


= + + +



 =





 

                                                                                              (8) 

 

Using the above method, the UAV flight cost function model 

( )h n  is constructed, and by establishing a path planning 

algorithm, the path with the minimum cost function can be 

computed.   the weight coefficient, which can be obtained by 

referring to relevant civil aviation standards and through the 

level coefficients of different obstacles stored in the knowledge 

graph. For example, when the obstacle is a high-voltage power 

tower, its weight is set higher at 0.7, and when the obstacle is a 

residential building, the weight coefficient is 0.4. 

 

wea represents the impact of meteorological factors on the 

flight path. Low-altitude meteorological factors include 

temperature, pressure, humidity, wind, precipitation, cloud 

cover, visibility, etc., as well as the distribution patterns of these 

factors over time and space. Taking strong wind as an example, 

the maximum wind strength W that the UAV can withstand is 

first determined. When the wind strength exceeds W, the ρ_win 

value for that segment is set to ∞. When the wind strength is 

between level 0 and W, win represents the value of its impact 

indicator. The calculation is shown in Eq. 9: 

  

    0

    

i
win i

win i

w
w W

W

w W






=  


 =  

.                     (9) 

 

iw represents the actual wind strength at node i. When 

iw W , win  is infinite, indicating that the segment of the 

flight path is prohibited.  

 

obstacle  represents the impact of obstacles near the flight path 

on the path's danger level, including buildings, roads, and 
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associated infrastructure. The calculation of obstacle  is shown 

in Eq. 10: 

  

     ( )
safe i

obstacle i safe

safe

D D
D D

D


−
=               (10) 

 

When an obstacle exists within the absolute safe distance safeD  

from the flight path centerline, the actual distance 𝐷𝑖 from the 

obstacle boundary to the flight path centerline is used.  
 

disturb  represents the impact of the electromagnetic 

environment on the flight path. The electromagnetic 

environment refers to the overall distribution of electric fields, 

magnetic fields, and electromagnetic wave power spectral 

density generated by various natural and man-made 

electromagnetic sources in different frequency bands within a 

specific spatiotemporal range, and their variations over time. 

 

2.3 A* Path Planning Process with Knowledge Graph-

Based Spatial Modeling 

To enhance spatial awareness and adaptability in complex low-

altitude environments, we integrate knowledge graphs into the 

A* algorithm for flight path planning. The core principle of A* 

lies in iteratively exploring neighboring nodes and selecting the 

one with the lowest cost function to construct an optimal path. 

 

Prior to planning, a structured route network is built by 

querying the knowledge graph for the coordinates of nodes, the 

lengths of connecting segments, and their topological 

relationships. These serve as the foundational nodes and edges 

for the search graph. 

 

During the pathfinding process, the algorithm evaluates 

neighboring nodes of the current position and calculates their 

composite cost functions to determine the most promising 

direction. The improved cost function, denoted as envg , 

incorporates various environmental and regulatory constraints, 

including obstacle risk, meteorological influence, and airspace 

control restrictions. By continuously querying the knowledge 

graph, the algorithm dynamically retrieves node-level attributes 

in real-time, enabling context-aware path computation. 

 

The overall planning procedure is illustrated in Figure 4. 

 

Figure 4.  Flight path planning algorithm process considering 

low-altitude environmental influencing factors. 

 

The revised flowchart enhances A-based path planning through 

five key improvements. System initialization establishes dual 

data streams for static geographic data (building heights/road 

networks) and real-time sensor inputs (weather/ADS-B signals). 

Knowledge graph queries are refined into spatial data retrieval, 

attribute extraction, and dynamic API integration. The cost 

function Eq. 11 

 

( ) ( ) ( ) ( ) ( )safety regulation weatherf n h n g n g n g n  = +  +  +   

            (11) 

 

 is visually encoded with color-coded parameters. Path selection 

incorporates neighbor exhaustion checks and iteration limits to 

prevent infinite loops, with reliability indicated through color 

gradients. Exception handling triggers automatic replanning, 

obstacle recording, and risk model updates when no feasible 

path exists. These modifications explicitly demonstrate 

knowledge graph integration with A algorithms, showing how 

real-time environmental data and regulatory constraints 

dynamically adjust path calculations. The diagram now provides 

traceable connections between visual elements and code 

implementations, supporting reproducible research. 

 

3. Experimental Validation and Results 

3.1 Study Area Overview 

This section demonstrates the proposed method through a case 

study conducted in an urban area. The study area is a hospital 

complex located within Beijing’s Second Ring Road, covering 

approximately 33,664 square meters, as shown in Figure 5. 

Following Chen et al.'s (2020) theoretical framework for 

iterative path network construction, we implemented a three-tier 

altitude stratification: 

1. Lower Layer (12m): Avoids streetlights (12m), utility 

poles (10m), and trees (<12m) 

2. Middle Layer (30m): Clears 80% of buildings (field 

survey data) 

3. Upper Layer (70m): Ensures full building clearance 

while maintaining communication signal coverage 

 

 
Figure 5. Schematic Diagram of Local Urban Buildings and 

Road Network. 

 

Based on the theoretical system of iterative construction of 

UAV low-altitude flight path networks in urbanized 

areas(Chenchen et al., 2020), this study divides the flight path 

network into three main altitude layers. According to field 

survey statistics, streetlights in the area are 12 meters high, 

utility poles are 10 meters, trees are below 12 meters, and 80% 

of the buildings are under 30 meters in height. Therefore, the 

first altitude layer is set at 12 meters, allowing UAVs to avoid 

most streetlights, utility poles, and trees. The third layer is set at 
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70 meters, which allows UAVs to avoid all buildings while 

remaining within the communication signal coverage range. 

 

Obtain the building footprint data for the Beijing area in 2025 

from OpenStreetMap, with the coordinate system set to WGS84. 

Obtain the coordinates of the building vertices by processing the 

shp file in ArcGIS. Meanwhile, the coordinates of the defined 

take-off & landing points and turning points in the flight 

network are also obtained.  

 

3.2 Construction of the Scene Knowledge Graph 

Based on the ontology model, the ULAN-KG for the area is 

constructed, and the local query visualization results are shown 

in Figure 6. 

 
Figure 6. The knowledge graph of the Low-Altitude Navigation 

Scenario. 

 

In the ULAN-KG architecture, the term "node" carries dual 

meanings that require precise contextual differentiation. Within 

the knowledge graph framework, a "node" represents a semantic 

entity with defined attributes and relationships, while in the path 

planning algorithm context, "node" refers to a vertex in a graph-

based route network. The knowledge graph contains 71 

semantic nodes categorized into three types: 

 

Route Nodes (32): Represent flight path centerlines as graph 

edges, characterized by attributes including length (geometric 

distance), hasWindImpact (aerodynamic interference 

coefficient), and hasControlImpact (airspace restriction 

severity). These nodes form the connectivity backbone of the 

urban airspace model. 

 

Waypoint Nodes (28): Comprise 2 Connection Points, 2 POIs 

(Points of Interest), and 24 Turning Points. POIs specifically 

denote UAV take-off & landing zones at the hospital's main 

gate and inpatient department entrance, linked to Connection 

Points through connected relationships. 

 

Environmental Nodes: Include buildings with isAdjacentTo 

relationships to flight paths, capturing spatial proximity 

constraints. 

 

At the algorithm execution level, A-path search maps Waypoint 

Nodes of the knowledge graph to vertices of the graph structure, 

each vertex carrying spatial attributes such as coordinates and 

obstacle distances; The Route Nodes of the knowledge graph 

are abstracted as edges of the graph structure, whose dynamic 

properties directly determine the weights of the edges. This 

design achieves decoupling of semantic constraints and spatial 

optimization: the semantic layer ensures path legitimacy 

through knowledge inference, while the algorithm layer 

performs quantitative calculations based on real-time updated 

edge weights. For example, when the meteorological API 

detects that the wind speed of a certain Route Node exceeds the 

threshold, the system will automatically set the weight of that 

edge in Figure A to infinity, forcing the path to detour. 

 

Figure 7 serves as a simplified view of the knowledge graph, 

highlighting the algorithm level graph structure by removing 

environmental nodes (such as buildings): green vertices 

correspond to Waypoint Nodes of the knowledge graph, and 

blue edges correspond to Route Nodes of the knowledge graph. 

This hierarchical architecture ensures the rigor of knowledge 

reasoning while maintaining the efficiency of algorithms.  

 
Figure 7. Relationships and Attributes of the Turning_point 

Node Class. 

 

The coordinate values of flight path elements are static and do 

not change over time. However, as time progresses, various 

environmental adaptive factors in the airspace may change, 

leading to updates in the attribute values of the associated 

relationships. The attribute "hasControlImpact" is a Boolean 

value: 0 indicates no airspace control and the segment is 

navigable, while 1 indicates that flight is restricted in that area. 

Querying these attribute values can provide essential support for 

the A* algorithm in flight path planning. 

 

3.3 Path Planning Results Using the Optimized A * 

Algorithm 

A one-way path planning is performed between the logistics 

delivery lockers on the rooftop of the hospital building 

"inpatient_department" near the POI "Gate" and the hub airport. 

 

3.3.1 Traditional Path Planning Algorithms: For the same 

time period, with the same starting and ending points, three 

traditional methods were selected for path calculation. The 

concept of the Genetic Algorithm (GA) is to simulate the 

process of natural selection and biological genetic evolution for 

search optimization. Ant Colony Optimization (ACO) utilizes 

the principle of pheromone usage by ants when searching for 

food(Ma and Xiong, 2019), which gives ACO good parallelism 

and collaboration.  

 

3.3.2 Optimized A* Algorithm: A* uses a traditional relational 

database to store data and applies the classic A* algorithm for 

path planning. KG-A* stores data in a knowledge graph and 

uses the classic A* algorithm for path planning. ULAN-A* uses 
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a traditional relational database to store data and applies an A* 

algorithm that considers low-altitude environmental information 

during path planning. According to the principle of the classic 

A* algorithm, its path planning result is the shortest path 

between two points. 

 

When there is no explicit destination 1 2 1 2 0.5   = = == .At 

the same time, 20% of the route nodes are randomly set as no-

fly zones, and 25% of the nodes are randomly set as windy 

segments, with wind levels ranging from 1 to 6. The maximum 

acceptable wind level for the route is set to level 7. The path 

planning results are Path (a) and (b). 

 

3.3.3 Safety-Oriented Path Planning: When the safest path 

needs to be selected, the setting for  is changed to 

1 2 10, = =  . Other conditions remain unchanged. The path 

planning result is Path (c). 

 

To evaluate the effectiveness of various algorithms under 

different constraints, the path planning results are evaluated 

using five indicators: path length, meteorological risk zones, 

number of path turns, computation time, and crossing restricted 

airspace. The results are shown in the table below. 

 

Path 

planning 

algorith

m 

Path 

length 

(m) 

Weathe

r Risk 

Zone 

(m) 

Turing

_point 

Numb

er 

Comp

utatio

n time 

(s) 

Traverse 

Controll

ed Zone 

A* 271.8

2 

65.5138 5 0.009

010 

1 

GA 271.8

2 

65.5138 5 0.007

004 

1 

ACO 326.0

4 

42.3849 2 0.018

998 

0 

KG-A* 271.8

2 

65.5138 5 0.006

721 

1 

ULAN -

A* 

289.4

4 

102.388 4 0.010

047 

0 

ULAN-

KG-A* 

289.4

4 

102.388 4 0.007

516 

0 

ULAN-

KG-A* 

400.4

2 

0 3 0.008

194 

0 

Table 1. Comparative Statistics of UAV Path Planning 

Algorithms in Urban Low-Altitude Environments 

 

From the path planning results in Table 1, it can be seen that the 

traditional A* and GA methods are unable to effectively 

integrate environmental factors, resulting in paths that pass 

through restricted areas. Although ACO can avoid restricted 

zones through heuristic influence factors, its pre-search time 

and path length are longer. The path planning result is Path (C). 

None of these three traditional methods are able to effectively 

integrate dynamic environmental factors. 

 

The nodes of the road network are encoded as 0-22, and the 

nodes passed through can represent the planned path.When 

environmental factors are not considered, the optimal path is (0, 

23, 6, 7, 8, 22, 21). It is the shortest path. When environmental 

factors are included, the resulting path is (0, 23, 14, 16, 17, 18, 

21). It can be seen that after incorporating environmental 

constraints, the route avoids controlled zones, but the total flight 

distance increases from 271.82, and the length of routes affected 

by wind also increases. Since the flight path mainly lies in the 

mid-altitude corridor, avoiding most buildings, the number of 

path turning points is reduced. This indicates that the algorithm 

prioritizes the calculation of no-fly zones over meteorological 

impacts. When flight safety is prioritized, the result is (0, 23, 6, 

11, 12, 21). It does not pass through the Weather Risk Zone or 

Traverse Controlled Zone, meeting the safety requirements. 

However, the total length of this path is significantly increased, 

reaching 1.47 times that of the shortest path. 

 
(a) ULAN -A* and ULAN-KG-A*      (b)  A*&GA and KG-A* 

 
(c) ULAN-KG-A*( Safest Path)                (d) ACO 

Figure 8. Schematic of the optimal path in path planning 

algorithm. The orange points represent the starting point and 

endpoint, the line segments represent the flight routes, and the 

arrows indicate the planned path. (a) ULAN -A* and ULAN-

KG-A* (b) A*&GA and KG-A* (c) ULAN-KG-A*( Safest Path) 

(d) ACO 

 

Regarding computation time, the computation time of ULAN-

KG-A*and ULAN-A* is slightly higher than that of KG-A* and 

A*, but the query time using the knowledge graph is 

significantly lower than that of traditional methods.  

 

In conclusion, the ULAN-KG-A* algorithm demonstrates good 

adaptability, scalability, and high computational efficiency in 

path calculation within complex low-altitude environments. 

 

4. Conclusions and Future Work 

 

This study constructs an Urban Low-Altitude Navigation 

Knowledge Graph based on low-altitude flight routes and 

environmental characteristics and proposes a knowledge graph-

optimized path planning algorithm. The algorithm reconstructs 

the cost function to quantify low-altitude risk factors, 

effectively eliminating impassable paths, thereby addressing the 

dynamic response and multi-objective optimization issues of 

UAVs flying in urban environments. The experiments show that 

the ULAN-KG-A* algorithm better adapts to multi-objective 

path planning tasks in complex urban scenarios. 

 

In the future, integrating historical data and probabilistic 

information (such as congestion probability) from the 

knowledge graph into the cost function is expected to further 

improve the accuracy of path selection. When expanding nodes 

in the A* algorithm, the knowledge graph can be used to predict 

the reachability of neighboring nodes, dynamically excluding 

failed nodes (such as no-fly zones) and avoiding high-risk areas 

(such as strong wind zones), which is expected to reduce the 

number of search nodes and improve computational efficiency. 
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