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Abstract

With the rapid growth of the low-altitude economy, path planning for Unmanned Aerial Vehicles (UAVS) in complex urban low-
altitude environments has become increasingly critical. However, urban low-altitude scenarios are influenced by buildings,
meteorological conditions, regulatory restrictions and numerous factors. Traditional path planning methods struggle to effectively
consider the impact of multiple constraints, making it challenging to provide effective and interpretable decision support for flight
operations. This study proposes an optimized UAV flight path planning method based on an Urban Low-Altitude Navigation
Knowledge Graph (ULAN-KG). Utilizing the knowledge graph, it structures the association between low-altitude flight route
elements and low-altitude flight constraint factors in the urban space. The experiment selects a densely built area of Beijing for
validation, where the proposed method is compared with traditional algorithms. The experimental results show that the A* algorithm
improved by ULAN-KG can effectively avoid flight segments affected by strong wind conditions. When conflicting with controlled
airspace events, the path planning results prioritize avoiding no-fly zones. This approach offers efficient and reliable technical

support for UAV applications in complex urban low-altitude scenarios, such as logistics and emergency response.

1. Introduction

The rapid development of unmanned aerial vehicle (UAV)
technology has significantly expanded its applications in urban
scenarios, including logistics delivery, emergency response, and
infrastructure inspection. Compared to traditional ground
transport, UAV operations at low altitudes offer distinct
advantages in resource efficiency and transportation flexibility,
enabling UAVs to bypass ground-level constraints and reduce
travel time and costs.

Aiming to identify optimal paths between origin and destination
that fulfil mission objectives such as minimal distance,
maximum safety, or shortest flight time, path planning is
essential for UAV autonomous flight(Meister et al., 2008; Sun
et al., 2016). However, precise navigation in low-altitude urban
environments requires efficient computational methods. The
complexity of urban spaces (e.g., terrain, buildings, irregularly
distributed obstacles, varying meteorological conditions, and
stringent airspace regulations) creates substantial challenges(Du
et al., 2024). Additionally, low-altitude flights demand rapid
responsiveness and high safety standards, necessitating real-
time environmental awareness and precise computational
methods for path planning(Liao et al., 2023; Zhang, 2021).

Traditional path planning algorithms face limitations in
addressing these urban complexities. Conventional heuristic
methods, such as A*(Kong et al., 2020), primarily rely on
geometric distances, limiting their ability to integrate dynamic
environmental factors like building structures, weather
conditions, and airspace rules effectively (Khoufi et al., 2019;
Yu et al, 2021). In addition, these algorithms experience
scalability issues within dense urban areas, where an increasing
number of obstacles and varying constraints significantly
impact computational efficiency and real-time
responsiveness(Du et al., 2024).

Knowledge Graphs(Chen et al., 2024) have emerged as a viable
solution by integrating heterogeneous data through semantic
networks. This unified representation supports effective
querying and fusion of diverse information. Hence, this study
introduces the Urban Low-Altitude Navigation Knowledge
Graph (ULAN-KG), designed to comprehensively represent the
spatiotemporal and semantic relationships among various urban
elements influencing low-altitude UAV flight. By providing
flexible, adaptive, and rapid data processing, the proposed
ULAN-KG can potentially enable precise modeling of UAV
navigation scenarios under multiple constraints.

By integrating environmental risk indicators from ULAN-KG
into the classic A* algorithm’s cost function, path planning now
extends beyond geometric distances, explicitly considering
environmental constraints such as urban structures, weather
conditions (e.g., wind strength, visibility), and dynamic events
(e.g., temporary no-fly zones). The proposed method quantifies
environmental impacts and adjusts weight coefficients within
the cost function, enabling optimization toward specific goals
such as the shortest or safest path. This method’s effectiveness
is demonstrated through a case study conducted in a densely
built area of Beijing, where obstacle avoidance, weather
adaptation functions, and regulatory restrictions are integrated.
A comparison with traditional methods verifies its practical
significance and effectiveness under real-world constraints.
Consequently, this optimization enhances computational
efficiency, reduces algorithm complexity, and improves
interpretability, providing robust technical support for UAV
operations in complex urban low-altitude environments.
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2. Methodology

2.1 Ontology Modeling for Urban Low-Altitude Navigation
Scenarios

Urban low-altitude scenarios involve various spatial locations
and dynamic and static influencing factors. The complexity of
the environment presents challenges for UAV low-altitude
navigation. Therefore, a spatiotemporal model is needed to
integrate these elements, providing support for accurate and
efficient path planning. This study constructs a data model for
low-altitude navigation, unifying the modeling and storage of
spatial topological relationships, as well as the physical
constraints and rules in low-altitude scenarios. Referring to
relevant literature(Garrow et al., 2021), The urban low-altitude
public airways can effectively reduce flight conflicts under high
traffic systems, improving the safety and efficiency of UAV
flights. Therefore, the model is built around flight route
elements, using a top-down approach to define low-altitude
flight elements and influencing factors. These elements, their
relationships, and rules are abstracted, and an ontology model
for urban low-altitude navigation scenarios is developed. To
enable unified data management and efficient utilization, Neo4j
graph database is used for data storage and management,
providing support for flexible and efficient queries in
subsequent stages.

2.1.1 Semantic Element Classification and Definition: Based
on relevant standards and specifications, the concepts,
classification, attributes, and relationships of elements are
defined. As shown in Figure 1, the model consists of three types
of node elements (environmental elements, functional elements,
and flight path elements) and the relationships between these
elements  (spatiotemporal  relationships and  semantic

relationships).
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Figure 1. Urban Low-Altitude Navigation Scenarios Conceptual
Model.

-Low-altitude environmental elements are the facilities and
environments in the low-altitude airspace and on the ground that
influence flight, where facility environment mainly includes
buildings, roads, and associated infrastructure. The scene
environment primarily includes points of interest, land cover
and land wuse, named regions, terrain and landforms,
meteorological conditions, electromagnetic  environment,
population density, etc.

-Low-altitude functional elements are elements related to low-
altitude flight management and services, including take-off &
landing points, flight control airspace, and connecting facilities.
Functional elements are physically attached to environmental
elements.

-Lowe-altitude flight path elements are the elements that define
the linear airspace in which low-altitude aircraft can fly in three-
dimensional space, including route centerlines, turning points,
connection points, and velocity layers. The flight path connects
with facility elements, scene elements, functional elements, and
ground traffic elements through connection points.

2.1.2 Property Constraints and Semantic Relationships:In
the proposed model, relationships serve as critical connectors
that bind discrete entities and their properties into an integrated
framework, enabling coherent representation and efficient
querying of complex urban low-altitude scenarios. Unlike
conventional models that prioritize static geometric
relationships, this geographic model emphasizes dynamic
spatiotemporal interactions while accommodating semantic
associations. Given the inherent volatility of low-altitude
environments — where entities undergo frequent spatial
transformations, temporal state changes, and contextual
meaning shifts—the relationship taxonomy is systematically
divided into three categories: spatial, temporal, and semantic
relationships.

Spatial relationships form the geometric foundation of the
model, capturing three fundamental dimensions of entity
interaction: topological connections
(intersecting/adjacent/disjoint relationships), distance metrics
(Euclidean/network-based ~ proximity), and  directional
orientations (azimuthal bearings/altitude differentials). These
relationships enable precise modeling of physical interactions,
such as the topological adjacency between connection points
and points of interest (POIls), or the directional alignment of
turning points along flight route centerlines. The model employs
RCC-8 calculus for continuous spatial reasoning, enhanced with
UAV-specific constraints like minimum vertical clearance
thresholds.

Temporal relationships introduce the dynamic dimension,
distinguishing between absolute and relative time references.
Absolute time relationships anchor events to specific calendar
instances (e.g., "NO_FLY_ZONE_ACTIVE from 2025-06-
18T09:00 to 2025-06-18T18:00"), providing unambiguous
temporal boundaries for regulatory constraints. Relative time
relationships  express duration-based associations (e.g.,
"WIND_SHEAR_EVENT persists for 15 minutes after
detection™) or periodic patterns (e.g.,
"WEEKLY_AIRSPACE_RESTRICTION every Monday
08:00-10:00"). These temporal constructs are formalized using
Allen's interval algebra extended with metric temporal logic
operators.

Semantic relationships bridge the gap between raw data and
contextual meaning, encompassing attribute associations (e.g.,
"Building_47 hasHeight 52m"), causal dependencies (e.g.,
"HEAVY_RAIN causes REDUCED_VISIBILITY"), and
cognitive relationships (e.g., "HOSPITAL_HElipad
isPreferredLandingZone™). The model leverages OWL 2 DL
ontologies to formalize these semantic associations, enabling
rule-based reasoning such as inferring flight path validity based
on building height thresholds or prioritizing medical delivery
routes during emergencies.

Under the three core relationship frameworks of space, time,
and semantics mentioned above, the model further defines the
secondary relationship system of low altitude scene elements (as
shown in Figure 2), and introduces constraint attribute
parameters to achieve dynamic environment perception. These
secondary relationships include but are not limited to: facility
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attachment relationships (such as physical binding between
functional elements and buildings), path connection
relationships (topological associations between flight routes and
turning points), event triggering relationships (causal linkage
between meteorological changes and control areas), etc., which
achieve fine-grained modeling of complex scenes through a
multi-level relationship network. At the same time, the model
integrates real-time constraint attribute data collected by sensors,
including key parameters such as three-dimensional coordinates
(XIY/Z), path length (m), wind speed level, electromagnetic
strength, etc. These data are continuously updated through a
dynamic threshold detection mechanism to provide real-time
environmental status feedback for path planning algorithms. For
example, when the wind sensor detects that the instantaneous
wind speed of a certain segment exceeds the preset threshold,
the system will automatically trigger the path replanning
mechanism and quickly query alternative routes through the
knowledge graph. This collaborative design of relationship
modeling and attribute constraints enables the model to both
perform long-term planning through semantic relationship
inference and achieve short-term obstacle avoidance based on
real-time data, thus constructing a full cycle navigation support
system from the strategic layer to the tactical layer (see Figure 2

for specific classification).
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2.1.3 Knowledge Graph Construction : Based on the
ontology model, the knowledge graph is constructed in a top-
down manner. Terrain data, building data, and meteorological
data obtained from sensors are processed into triplet data
containing environmental information, which serves as the basic
unit for knowledge graph modeling. These data are imported
into the Neo4j database. The constructed "Urban Low-Altitude
Navigation Knowledge Graph" (ULAN-KG) provides support
for visualization and parameter queries during path computation.

The relationships between nodes and edges in the knowledge
graph are shown in Figure.3:
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Figure3. Node and Relationship Diagram.
The knowledge contained in each slice includes:

Nodes:The ULAN-KG node contains five different elements:
Environmental elements, Functional elements, and Flight path
elements. Each type of node carries attributes.Environmental
elements include wind, visibility, and electromagnetic
environments.Functional elements include take-off & landing
points, Points of Interest (POI), etc.Flight path elements are the
core elements for path planning, including nodes (Turning Point
and Connection Point) and the Route Centerline connecting two
nodes. The Flight path elements can be represented by Eq.1:

Route ={ Route, zme, ROUtE 555, ROUtEttributest (1)

Route,,me is the unique identifier for the route, Routey,es iS
the category of the route, and Routeyyipues 1S the set of

attributes related to the route, which can include length, wind
impact, control impact, etc. Specific attributes can be expanded
as Eq.2:

Route,rinutes ={ length, hasWeatherlmpact, hasControlimpact}

@

Length represents the length of the route,haswWindImpact
indicates  whether  the route is affected by
wind,hasControllmpact indicates whether the route is subject to
airspace control.These attribute details describe the state of the
route, serving as important parameters in the cost function for
path planning.

Edges:Edges in the knowledge graph are designed to reflect
temporal  relations, spatial relations, and semantic
relations.Temporal relations are represented by long dashed
lines, such as windy_1 to windy_2, indicating the change in
wind between two time points.Spatial relations are represented
by solid arrows between routes and nodes, showing the spatial
connection between routes and nodes, which can form the road
network structure for path planning.Semantic relations are
represented by short dashed lines, such as control_1 connected
to routel, indicating that the route is subject to control impact;
node2 connected to attribute XYZ represents the coordinates of
the point, used in path planning for heuristic function
calculations.

2.2 Optimized A* Path Planning Algorithm

UAV path planning is essentially the process of finding the
optimal or relatively optimal solution for the objective function
while meeting the mission flight requirements, and solving the
objective function is the path planning process. The A*
algorithm is a heuristic graph search path planning algorithm
that combines the advantages of breadth-first search and best-
first search. (Liu et al., 2020), It adds a heuristic function on the
basis of Dijkstra's algorithm to estimate the cost to the target
point.

The A* algorithm improves search efficiency by avoiding
exhaustive traversal of all nodes and is well-suited for complex
or dynamic environments.Its core mechanism lies in the cost
function, defined as Eq. 3:

f(n)=ea,g(n)+a,h(n) 3)
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Where n represents a navigational node within the airspace

visited during the search process; the coefficients oy and “h are
weight balancing the contributions of actual and estimated costs;
f(n) represents the total cost estimate for reaching the goal
through node n, used to determine which nearby node is more
suitable for the next step of expansion, combining: g(n) is the
actual accumulated cost from the start node to n;h(n)is the

heuristic estimate of the remaining cost from n to the goal node,
typically computed using Euclidean or Manhattan distance
based on the graph structure.

This study proposes incorporating the node attributes from
ULAN-KG into the low-altitude navigation constraint factors to
improve the traditional A* algorithm.*

2.2.1 Heuristic Function h(n): h(n) is the heuristic function,

representing the estimated cost from the current point to the
target point. Calculate using the coordinates from the current
node to the target point obtained from the knowledge graph. It is
calculated using Eq. 4:

h(n)=|x1—x2|+|yl—y2|+|zl—zz|_ 4)

In this study, the calculation method for h(n) uses Manhattan
distance, which is the shortest straight-line distance between

two points; 04 Y120 g (R20¥2:22) epresent the coordinates
of the current point and the target point, respectively.

2.2.2 Cost Function g(n): g(n) is obtained by accumulating

the replacement values of the initial path segments, and its
calculation method is shown in Eq. 5:

g(n)=gg(n)- )

g(ri) represents the cost value from the neighboring node of

node i to the current node, while r; represents the segment of
the UAV’s path in the i-th step of the path planning.
g(r) consists of three parts: directional  cost
Ogir environmental cost gg,, and control cost gy, .As shown
in Eq. 6:

g (r| ) = algdir + azgenv + gcon

4
o +a,=1 “

Ogir 1S the cost represents the consideration of the UAV’s

ascent/descent and travel distance in this cost function, while
the turning cost is calculated based on the turning points (node
type) that connect the centerlines of adjacent flight paths. gepy

is the environmental impact cost, which represents the cost
calculated based on surrounding information of flight path
elements, including meteorological conditions, electromagnetic
interference, and the type and danger level of nearby obstacles.

The weight is adjusted according to the actual situation. 9eon
represents the control event cost. When no control event occurs

on this segment, the value of Yeon jg 0; when a control event

occurs on this segment, the value of Yeon is oo,

Ydir considers two influencing factors: ascent/descent cost and
turning cost, and is calculated as shown in Eq.7:

gdir = ﬁLAB + Ad ; (7)

B is the directional coefficient, representing the different
consumption per unit distance during UAV’s horizontal flight

and ascent/descent. Las represents the actual distance of the
flight path between points A and B.

The calculation of g, is shown in Eq. 8:

n
genv = 71pwea + 72pobstacle + 7/3pdisturb +.. Zylp

i=1
i=1
(8)

Using the above method, the UAV flight cost function model
h(n) is constructed, and by establishing a path planning

algorithm, the path with the minimum cost function can be

computed. 7 the weight coefficient, which can be obtained by
referring to relevant civil aviation standards and through the
level coefficients of different obstacles stored in the knowledge
graph. For example, when the obstacle is a high-voltage power
tower, its weight is set higher at 0.7, and when the obstacle is a
residential building, the weight coefficient is 0.4.

Puwea TEPresents the impact of meteorological factors on the

flight path. Low-altitude meteorological factors include
temperature, pressure, humidity, wind, precipitation, cloud
cover, visibility, etc., as well as the distribution patterns of these
factors over time and space. Taking strong wind as an example,
the maximum wind strength W that the UAV can withstand is
first determined. When the wind strength exceeds W, the p_win
value for that segment is set to co. When the wind strength is
between level 0 and W, p,i, represents the value of its impact

indicator. The calculation is shown in Eq. 9:

pwin: 0<VVISW

<|s

©)
pwin =0 Vvl >W

w; represents the actual wind strength at node i. When
w; >W | pyin IS infinite, indicating that the segment of the
flight path is prohibited.

Pobstacle Fepresents the impact of obstacles near the flight path
on the path's danger level, including buildings, roads, and
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associated infrastructure. The calculation of pypeiacre iS Shown
in Eq. 10:

D

safe Di
Pobstacle = D— (D| < Dsafe) (10)

safe

When an obstacle exists within the absolute safe distance Dggge

from the flight path centerline, the actual distance Di from the
obstacle boundary to the flight path centerline is used.

Pdisturb  Tepresents the impact of the electromagnetic

environment on the flight path. The electromagnetic
environment refers to the overall distribution of electric fields,
magnetic fields, and electromagnetic wave power spectral
density generated by various natural and man-made
electromagnetic sources in different frequency bands within a
specific spatiotemporal range, and their variations over time.

2.3 A* Path Planning Process with Knowledge Graph-
Based Spatial Modeling

To enhance spatial awareness and adaptability in complex low-
altitude environments, we integrate knowledge graphs into the
A* algorithm for flight path planning. The core principle of A*
lies in iteratively exploring neighboring nodes and selecting the
one with the lowest cost function to construct an optimal path.

Prior to planning, a structured route network is built by
querying the knowledge graph for the coordinates of nodes, the
lengths of connecting segments, and their topological
relationships. These serve as the foundational nodes and edges
for the search graph.

During the pathfinding process, the algorithm evaluates
neighboring nodes of the current position and calculates their
composite cost functions to determine the most promising
direction. The improved cost function, denoted as g, ,

incorporates various environmental and regulatory constraints,
including obstacle risk, meteorological influence, and airspace
control restrictions. By continuously querying the knowledge
graph, the algorithm dynamically retrieves node-level attributes
in real-time, enabling context-aware path computation.

The overall planning procedure is illustrated in Figure 4.
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Figure 4. Flight path planning algorithm process considering
low-altitude environmental influencing factors.

The revised flowchart enhances A-based path planning through
five key improvements. System initialization establishes dual
data streams for static geographic data (building heights/road
networks) and real-time sensor inputs (weather/ADS-B signals).
Knowledge graph queries are refined into spatial data retrieval,
attribute extraction, and dynamic API integration. The cost
function Eq. 11

f (n) = h(n) + & - Ysafety (n) +p- Gregulation (n) +7 - Oweather (n)
(11)

is visually encoded with color-coded parameters. Path selection
incorporates neighbor exhaustion checks and iteration limits to
prevent infinite loops, with reliability indicated through color
gradients. Exception handling triggers automatic replanning,
obstacle recording, and risk model updates when no feasible
path exists. These modifications explicitly demonstrate
knowledge graph integration with A algorithms, showing how
real-time environmental data and regulatory constraints
dynamically adjust path calculations. The diagram now provides
traceable connections between visual elements and code
implementations, supporting reproducible research.

3. Experimental Validation and Results
3.1 Study Area Overview

This section demonstrates the proposed method through a case
study conducted in an urban area. The study area is a hospital
complex located within Beijing’s Second Ring Road, covering
approximately 33,664 square meters, as shown in Figure 5.
Following Chen et al's (2020) theoretical framework for
iterative path network construction, we implemented a three-tier
altitude stratification:

1. Lower Layer (12m): Avoids streetlights (12m), utility

poles (10m), and trees (<12m)

2. Middle Layer (30m): Clears 80% of buildings (field

survey data)

3. Upper Layer (70m): Ensures full building clearance

while maintaining communication signal coverage

Figure 5. Schematic Diagram of Local Urban Bquins and
Road Network.

Based on the theoretical system of iterative construction of
UAV low-altitude flight path networks in urbanized
areas(Chenchen et al., 2020), this study divides the flight path
network into three main altitude layers. According to field
survey statistics, streetlights in the area are 12 meters high,
utility poles are 10 meters, trees are below 12 meters, and 80%
of the buildings are under 30 meters in height. Therefore, the
first altitude layer is set at 12 meters, allowing UAVs to avoid
most streetlights, utility poles, and trees. The third layer is set at
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70 meters, which allows UAVs to avoid all buildings while
remaining within the communication signal coverage range.

Obtain the building footprint data for the Beijing area in 2025

from OpenStreetMap, with the coordinate system set to WGS84.

Obtain the coordinates of the building vertices by processing the
shp file in ArcGIS. Meanwhile, the coordinates of the defined
take-off & landing points and turning points in the flight
network are also obtained.

3.2 Construction of the Scene Knowledge Graph
Based on the ontology model, the ULAN-KG for the area is

constructed, and the local query visualization results are shown
in Figure 6.
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Figure 6. The knowledge graph of the Low-Altitude Navigation
Scenario.

In the ULAN-KG architecture, the term "node" carries dual
meanings that require precise contextual differentiation. Within
the knowledge graph framework, a "node" represents a semantic
entity with defined attributes and relationships, while in the path
planning algorithm context, "node" refers to a vertex in a graph-
based route network. The knowledge graph contains 71
semantic nodes categorized into three types:

Route Nodes (32): Represent flight path centerlines as graph
edges, characterized by attributes including length (geometric
distance), hasWindimpact  (aerodynamic interference
coefficient), and hasControllmpact (airspace restriction
severity). These nodes form the connectivity backbone of the
urban airspace model.

Waypoint Nodes (28): Comprise 2 Connection Points, 2 POIs
(Points of Interest), and 24 Turning Points. POIs specifically
denote UAV take-off & landing zones at the hospital's main
gate and inpatient department entrance, linked to Connection
Points through connected relationships.

Environmental Nodes: Include buildings with isAdjacentTo
relationships to flight paths, capturing spatial proximity
constraints.

At the algorithm execution level, A-path search maps Waypoint
Nodes of the knowledge graph to vertices of the graph structure,
each vertex carrying spatial attributes such as coordinates and
obstacle distances; The Route Nodes of the knowledge graph
are abstracted as edges of the graph structure, whose dynamic
properties directly determine the weights of the edges. This
design achieves decoupling of semantic constraints and spatial
optimization: the semantic layer ensures path legitimacy

through knowledge inference, while the algorithm layer
performs quantitative calculations based on real-time updated
edge weights. For example, when the meteorological API
detects that the wind speed of a certain Route Node exceeds the
threshold, the system will automatically set the weight of that
edge in Figure A to infinity, forcing the path to detour.

Figure 7 serves as a simplified view of the knowledge graph,
highlighting the algorithm level graph structure by removing
environmental nodes (such as buildings): green vertices
correspond to Waypoint Nodes of the knowledge graph, and
blue edges correspond to Route Nodes of the knowledge graph.
This hierarchical architecture ensures the rigor of knowledge
reasoning while maintaining the efficiency of algorithms.

route
Turning_point
Connection_point
= POI

2 + Relation
Figure 7. Relationships and Attributes of the Turning_point
Node Class.

The coordinate values of flight path elements are static and do
not change over time. However, as time progresses, various
environmental adaptive factors in the airspace may change,
leading to updates in the attribute values of the associated
relationships. The attribute "hasControllmpact” is a Boolean
value: 0 indicates no airspace control and the segment is
navigable, while 1 indicates that flight is restricted in that area.
Querying these attribute values can provide essential support for
the A* algorithm in flight path planning.

3.3 Path Planning Results Using the Optimized A *
Algorithm

A one-way path planning is performed between the logistics
delivery lockers on the rooftop of the hospital building
"inpatient_department" near the POI "Gate" and the hub airport.

3.3.1 Traditional Path Planning Algorithms: For the same
time period, with the same starting and ending points, three
traditional methods were selected for path calculation. The
concept of the Genetic Algorithm (GA) is to simulate the
process of natural selection and biological genetic evolution for
search optimization. Ant Colony Optimization (ACO) utilizes
the principle of pheromone usage by ants when searching for
food(Ma and Xiong, 2019), which gives ACO good parallelism
and collaboration.

3.3.2 Optimized A* Algorithm: A* uses a traditional relational
database to store data and applies the classic A* algorithm for
path planning. KG-A* stores data in a knowledge graph and
uses the classic A* algorithm for path planning. ULAN-A* uses
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a traditional relational database to store data and applies an A*
algorithm that considers low-altitude environmental information
during path planning. According to the principle of the classic
A* algorithm, its path planning result is the shortest path
between two points.

When there is no explicit destination oy =y = 3 =7, =0.5.At

the same time, 20% of the route nodes are randomly set as no-
fly zones, and 25% of the nodes are randomly set as windy
segments, with wind levels ranging from 1 to 6. The maximum
acceptable wind level for the route is set to level 7. The path
planning results are Path (a) and (b).

3.3.3 Safety-Oriented Path Planning: When the safest path
needs to be selected, the setting for « is changed to

a1 =0,a, =1 . Other conditions remain unchanged. The path
planning result is Path (c).

To evaluate the effectiveness of various algorithms under
different constraints, the path planning results are evaluated
using five indicators: path length, meteorological risk zones,
number of path turns, computation time, and crossing restricted
airspace. The results are shown in the table below.

Path Path Weathe  Turing Comp  Traverse
planning length r Risk _point utatio  Controll
algorith ~ (m) Zone Numb n time ed Zone
m (m) er (s)
A* 271.8 65.5138 5 0.009 1

2 010
GA 271.8 65.5138 5 0.007 1

2 004
ACO 326.0 423849 2 0018 0

4 998
KG-A* 2718 655138 5 0.006 1

2 721
ULAN - 2894 102.388 4 0010 O
A* 4 047
ULAN- 2894 102.388 4 0.007 0
KG-A* 4 516
ULAN- 4004 O 3 0.008 0
KG-A* 2 194

Table 1. Comparative Statistics of UAV Path Planning
Algorithms in Urban Low-Altitude Environments

From the path planning results in Table 1, it can be seen that the
traditional A* and GA methods are unable to effectively
integrate environmental factors, resulting in paths that pass
through restricted areas. Although ACO can avoid restricted
zones through heuristic influence factors, its pre-search time
and path length are longer. The path planning result is Path (C).
None of these three traditional methods are able to effectively
integrate dynamic environmental factors.

The nodes of the road network are encoded as 0-22, and the
nodes passed through can represent the planned path.When
environmental factors are not considered, the optimal path is (0,
23, 6,7, 8, 22, 21). It is the shortest path. When environmental
factors are included, the resulting path is (0, 23, 14, 16, 17, 18,
21). It can be seen that after incorporating environmental
constraints, the route avoids controlled zones, but the total flight
distance increases from 271.82, and the length of routes affected
by wind also increases. Since the flight path mainly lies in the
mid-altitude corridor, avoiding most buildings, the number of
path turning points is reduced. This indicates that the algorithm
prioritizes the calculation of no-fly zones over meteorological

impacts. When flight safety is prioritized, the result is (0, 23, 6,
11, 12, 21). It does not pass through the Weather Risk Zone or
Traverse Controlled Zone, meeting the safety requirements.
However, the total length of this path is significantly increased,
reaching 1.47 times that of the shortest path.

(b) A*&GA and KG-A*

)
—— Starting

(a) ULAN -A* and ULAN-KG-A*

\ s
L Strting
point

(c) ULAN-KG-A*( Safest Path)

(d) ACO
Figure 8. Schematic of the optimal path in path planning
algorithm. The orange points represent the starting point and
endpoint, the line segments represent the flight routes, and the
arrows indicate the planned path. (a) ULAN -A* and ULAN-
KG-A* (b) A*&GA and KG-A* (c) ULAN-KG-A*( Safest Path)
(d) ACO

Regarding computation time, the computation time of ULAN-
KG-A*and ULAN-A* is slightly higher than that of KG-A* and
A*, but the query time using the knowledge graph is
significantly lower than that of traditional methods.

In conclusion, the ULAN-KG-A* algorithm demonstrates good
adaptability, scalability, and high computational efficiency in
path calculation within complex low-altitude environments.

4. Conclusions and Future Work

This study constructs an Urban Low-Altitude Navigation
Knowledge Graph based on low-altitude flight routes and
environmental characteristics and proposes a knowledge graph-
optimized path planning algorithm. The algorithm reconstructs
the cost function to quantify low-altitude risk factors,
effectively eliminating impassable paths, thereby addressing the
dynamic response and multi-objective optimization issues of
UAVs flying in urban environments. The experiments show that
the ULAN-KG-A* algorithm better adapts to multi-objective
path planning tasks in complex urban scenarios.

In the future, integrating historical data and probabilistic
information (such as congestion probability) from the
knowledge graph into the cost function is expected to further
improve the accuracy of path selection. When expanding nodes
in the A* algorithm, the knowledge graph can be used to predict
the reachability of neighboring nodes, dynamically excluding
failed nodes (such as no-fly zones) and avoiding high-risk areas
(such as strong wind zones), which is expected to reduce the
number of search nodes and improve computational efficiency.
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