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Abstract

Accurate building height data is essential for constructing realistic and analytically useful 3D city models within digital twin
systems. However, such data are often incomplete, particularly in small to medium-sized cities. This study presents a machine
learning-based approach to predict building heights by integrating multi-source urban data, including building footprints, zoning
regulations, and roof-type classifications. To enhance prediction accuracy, we clustered zoning types by height profiles and trained
models separately for each group. We evaluated three regression algorithms—Random Forest (RFR), Support Vector Regression
(SVR), and XGBoost—using stratified sampling and cross-validation. Among them, RFR achieved the highest overall accuracy,
particularly in homogeneous zoning areas (R2 = 0.67), while SVR showed lower generalizability. The proposed model has been
implemented in an open-source “3D City Model Generation Simulator,” enabling automated LOD3-level urban model generation
using only remote sensing and street-view inputs. This work contributes a scalable and cost-effective solution for urban digital twin
applications in data-sparse environments.

1. Introduction

Knowing building height is essential for understanding urban
process regimes (Zhu et al., 2019), enabling improved urban
management and planning. Despite advancements in global
scale datasets, such as those developed by Kamath et al. (2024),
comprehensive building-height information for Japanese cities
remains notably absent. Most existing studies rely heavily on
imagery-based methods, including satellite imagery (Cao and
Huang, 2021), street view images (Yan and Huang, 2022) or
Synthetic Aperture Radar (SAR) data derived from Sentinel-1
and Sentinel-2 time series (Frantz et al., 2021). For instance,
Yang and Zhao (2022) employed spatially-informed Gaussian
Process Regression with Sentinel-1 data for major Chinese cit-
ies, while Cai et al. (2024) utilized building footprints com-
bined with a self-adaptive buffer for building photon selection
methods to improve height estimations. Additionally, how build-
ing height is determined in the absence of building height regu-
latory restrictions has been explored by Chau et al. (2007), em-
phasizing contextual factors influencing building morphology.
To address these gaps, we propose a novel building-height pre-
diction method specifically tailored to Japanese urban contexts.
In contrast to previous studies that primarily measure height for
existing buildings, our objective extends to provide building-
height estimations necessary for generating hypothetical urban
scenarios within urban digital twins. This functionality is essen-
tial for simulation urban development processes and evaluating
planning policies through digital twin applications.
For the first time, our approach integrates urban planning in-
formation, explicitly considering building footprints, local zon-
ing regulations, and detailed roof-type attributes derived dir-
ectly from building geometry. Incorporating roof-type features
predicted from footprints, alongside traditional urban morpho-
logical characteristics, our method significantly enhances pre-
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dictive accuracy. The main contributions of our research are: it
fills the critical data gap in global building-height datasets, par-
ticularly addressing the absence of detailed Japanese data; and
it provides a robust, high-resolution building-height generation
model directly applicable to digital twin frameworks, facilitat-
ing the generation of realistic 3D urban models.

1.1 Methods

1.2 Data

Building data
This study utilizes the PLATEAU dataset, a detailed 3D urban
model produced from aerial surveys and other geospatial
measurements, developed and maintained by the Ministry of
Land, Infrastructure, Transport and Tourism (MLIT) in Japan.
As of August 2024, when our dataset was acquired, PLATEAU
provides publicly accessible 3D urban model data covering
212 municipalities in Japan (Figure 1). We employed Plateau-
kit (Ozeki, 2024), an open-source tool designed specifically
for accessing and processing PLATEAU data are available in
GeoJSON, CityJSON, and Parquet formats; in this research, we
utilize the Parquet format. Both our target variable—measured
building height—and urban morphological features of build-
ings are sourced directly from this dataset.
Urban planning data
Urban planning information incorporated in our study primar-
ily refers to the ”Use Districts” (Japanese: youto chiiki),
a foundational zoning regulation in Japan. These districts
regulate building usage and parameters such as Floor Area
Ratio (FAR) and Building Coverage Ratio (BCR), and are
categorized into 12 distinct types covering residential, com-
mercial, and industrial purposes (Ma et al., 2024). Given that
zoning regulations significantly influence building height and
form in Japanese cities, we regard them as crucial inputs for
urban digital twin applications that simulate urban planning
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scenarios, and thus involve them in our model. We sourced
this zoning regulation data from the MLIT Urban Planning In-
formation Dataset (Toshi-keikaku Kettei Joho), which provides
nationwide coverage. We found that zoning information for
98 municipalities was already integrated into the PLATEAU
dataset, enabling direct usage for our analysis.
Road network data
In addition, the National Digital Road Map Database (DRM)
was involved to calculate two urban morphological character-
istics—level and width of the adjacent road—as features in our
model. These road network data were provided by the Japan
Digital Road Map Association.
Roof type data
Finally, we introduced a roof type dataset generated through
a roof classification algorithm (Section 1.4). This model
integrates satellite imagery with building footprint data to
classify roof structures into several typical roof categories,
achieving classification accuracy exceeding 95%. Roof type
information is uncommon in most building datasets; hence, its
inclusion provides valuable architectural insights that enhance
the accuracy of our predictive model.

Figure 1. Example of Building Height data used in this study
(Shibuya, Tokyo)

1.3 Roof Classification

1.4 Roof Type Classification

To incorporate semantic information on roof structures into the
building height prediction model, we defined five roof types:
Flat (FL), Stepped-flat (SFL), Folded (FD), Hipped (HP), and
Gable (GB). For each building, we extracted the footprint out-
line at level of detail (LOD) 0 from the CityGML files based on
its building ID and then cropped the corresponding aerial im-
age (0.3-meter resolution) provided by PLATEAU. To ensure
sufficient image quality for classification, the shorter side of the
cropped image was constrained to exceed 40 pixels.

Figure 2. Roof type classification dataset distribution in Japan

The training data for roof classification were collected from
various cities across Japan, including Sapporo, Kashiwa,
Tokyo, Numazu, Kaga, Toyokawa, and Kyoto. The geographic
distribution of training samples is illustrated in Figure 2. And
as shown in Table 1, a total of 56,955 buildings were used for
roof classification, with detailed breakdowns by both city and
roof type. The examples of those different roof type is shown
in Figure 3.

Table 1. Number of buildings used for roof classification by city
and by roof type

Category Type Number of buildings

City

Sapporo 2,753
Kashiwa 2,495

Tokyo 14,087
Numazu 8,022

Kaga 3,864
Toyokawa 5,109

Kyoto 20,625
Total (city) 56,955

Roof type

Flat (FL) 13,771
Stepped-flat (SFL) 6,027

Folded (FD) 18,514
Hipped (HP) 3,609
Gable (GB) 15,007
Total (roof) 56,955

Figure 3. Examples of different roof type

After completing the data annotation, we fine-tuned the EVA-
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02-base model (Fang et al. (2024)), which was pre-trained on
ImageNet, using our roof classification dataset. EVA-02 is a
lightweight yet powerful vision transformer model that achieves
state-of-the-art performance in both fine-tuned and zero-shot
settings with significantly fewer parameters and training data.
Specifically, we split the dataset into 80% training and 20% val-
idation sets, fine-tuned the model for 100 epochs, and achieved
an average validation F1 score of 95%. The The confusion mat-
rix is shown in Figure 4.

Figure 4. Confusion matrix of roof classification validation

Upon completion of the roof classification training, we per-
formed inference on a total of 2,080,508 buildings across 11 cit-
ies in Japan—Sapporo, Tatebayashi, Nerima, Yokosuka, Kaga,
Suwa, Toyohashi, Yokkaichi, Himeji, Kurume, and Mashiki.
The resulting roof type data were then incorporated into the fea-
ture engineering process for building height prediction.

1.5 Feature Engineering

Referring to existing building-height prediction models
(Milojevic-Dupont et al., 2020; Stipek et al., 2024), and incor-
porating knowledge from urban science, we selected a total of
13 predictive features (Table 2). These features cover five cat-
egories: building geometric characteristics, neighborhood con-
text, zoning regulations, roof type classification, and road in-
formation.
Among these, building geometric characteristics hold predict-
ive information about its height, particularly the footprint area
(Biljecki and Sindram, 2017). Neighborhood-level context is
captured through the number of adjacent buildings (within a 1-
meter buffer) and the number of nearby buildings (within a 25-
meter radius), offering additional insight into urban density and
configuration. Zoning regulations are encoded through a sim-
plified categorical variable that maps the original 12 Japanese
“Use District” types into three broader categories. Roof types,
rarely available in public datasets, are integrated via a classi-
fication model developed by our research group using remote
sensing imagery. Finally, road characteristics such as the clas-
sification and width of the nearest road segment are included as
proxies for urban accessibility and infrastructure intensity.
Unlike some prior studies that incorporate multi-scale or street-
block-level urban features, we deliberately excluded higher-
scale spatial attributes. This decision is motivated by our object-
ive: to develop a building-level prediction model that is com-
patible with fine-grained urban digital twin generation. In this

context, where predictions are needed for hypothetical or newly
planned structures, block-level or city-wide features may not be
computable or even available. Thus, we limited our model in-
put to features that are locally derivable and scalable within a
3D city model framework.

1.6 Data preprocessing

To construct predictive features from raw geospatial datasets,
we implemented a comprehensive preprocessing pipeline that
includes geometry parsing, feature computation, neighborhood
context extraction, roof-type integration, zoning recategoriza-
tion, and optional road information linkage. In total, 13 features
were constructed and used for training predictive models.

Data Cleaning. Building data was read from Parquet files
in the PLATEAU dataset. We retained key fields: build-
ing ID, geometry, height (measuredHeight), zoning category
(districtsAndZonesType), and roof type label. For data
cleaning, we selected cities that simultaneously included com-
plete datasets mentioned above. Buildings with measured
heights below 2.4 meters (one floor) and large outlier values–the
threshold was set as 40 meters as this value corresponds to high
industrial buildings, skyscrapers, and high residential tower
blocks (Milojevic-Dupont et al., 2020)-as well as any observa-
tions with missing values, were removed to ensure data integrity
and predictive reliability.

Geometric Features. Geometry was converted from WKB
to CRS EPSG:32654. Based on building footprints, we com-
puted multiple geometric features, including area, perimeter,
compactness, number of vertices, length&width&slimness of
the minimum bounding rectangle (MBR), and complexity.

Neighborhood Features. To describe local spatial context,
neighborhood features such as the number of adjacent build-
ings and nearby buildings were also extracted. The original
zoning categories (youto chiiki) were mapped into three aggreg-
ated categories based on building use and regulatory stringency,
encoded into a new categorical variable category.

Zoning-Based Grouping. Due to substantial intra-class vari-
ance in building height across Japan’s 12 standard zoning types
(Use Districts), we applied K-means clustering on statistical
descriptors of building height per zoning type (mean, std, max,
min, median, skewness). The output clusters were used to par-
tition the dataset into three representative groups. This allowed
more tailored model training per cluster, improving accuracy
and robustness.

Roof Type Integration. We merged roof-type labels gener-
ated by a deep learning model . These labels were matched
using building GML IDs. The model achieved over 95% classi-
fication accuracy and provides essential structural information
absent in most public datasets.

Road Information. Road level and width data from the Ja-
pan Digital Road Map (DRM) dataset were matched to each
building by computing the nearest road geometry using spatial
indexing. This step enabled inclusion of road classification at-
tributes such as rdclasscd and rdwdcd.

1.7 Machine Learning Methods

To train predictive models for building height, we implemen-
ted a supervised machine learning workflow incorporating both
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Feature Description
Compactness Normalized Perimeter Index (NPI)
Perimeter The total perimeter length of the building footprint (m)
Vertices The number of vertices in the polygon
Length of MBR Length of the minimum bounding rectangle (MBR)
Width of MBR Width of the minimum bounding rectangle (MBR)
Slimness Ratio of the length to width of the MBR
Complexity Shape complexity calculated by perimeter divided by area
Number of adjacent buildings Number of buildings adjacent to the target building
Number of neighbours Number of buildings within a fixed radius around the target building
Level of adjacent road Hierarchy level of the adjacent road
Width of adjacent road Width (m) of the adjacent road
Roof type Categorized roof type

Table 2. Features selection

baseline and optimized models. Our approach consists of
zoning-aware model training, hyperparameter tuning via cross-
validation, and evaluation using multiple error metrics.

Model Selection. Supervised learning methods have been
widely applied in building-height prediction tasks (Milojevic-
Dupont et al., 2020). We selected three representative regres-
sion algorithms based on prior studies and scalability: Random
Forest Regression (RFR), Support Vector Regression (SVR),
and Extreme Gradient Boosting (XGBoost). Each model was
trained on subsets of data from five representative Japanese
municipalities (Sendai, Maebashi, Omuta, Chino, Tokushima),
totaling 15,036 building samples. The data was randomly split
into 70% training and 30% testing subsets.

Stratified Data Splitting. Considering that a substantial pro-
portion of buildings were below 10 meters in height, we applied
stratified sampling on the target variable (measuredHeight) to
ensure balanced height group representation across training and
testing splits. Buildings were grouped into five height categor-
ies: 0–10m, 10–20m, 20–40m. This ensured the model learned
effectively across the full range of urban forms.

Zoning-Based Modeling. The data was divided into three
zoning groups according to the previously defined category

variable. Each group was modeled separately to reflect dif-
ferences in building regulation and morphology. A combined
model was also trained on the full dataset for benchmarking.

Cross-Validation and Optimization. For each model, we
performed 5-fold cross-validation using randomized search
over a grid of hyperparameters. For RFR, parameters included
number of estimators, maximum depth, minimum samples per
split/leaf, and feature selection strategy. For SVR, we tuned loss
functions, epsilon margins, regularization strength (C), iteration
limits, and dual formulation. For XGBoost,

Evaluation Metrics. Model performance was assessed using
Mean Absolute Percentage Error (MAPE), Mean Absolute Er-
ror (MAE), and the coefficient of determination (R2). Both bare
models (default hyperparameters) and optimized models were
tested to compare performance gains. Evaluation was conduc-
ted on both full datasets and zoning-specific subsets.

Implementation. All experiments were implemented in Py-
thon using scikit-learn, xgboost and executed on a multi-
core computing environment. Feature scaling was applied con-
sistently to all input features using min-max normalization.
This framework enabled us to robustly assess the sensitivity
of model performance to both hyperparameter configurations
and urban regulatory heterogeneity, offering insights into how
building morphology and policy context affect predictive accur-
acy.

2. Results

After integrating multiple data sources, we constructed a com-
prehensive dataset covering 5 Japanese cities. Due to vari-
ations in data availability across cities, not all datasets were
fully matched; however, the final sample includes only build-
ings with complete geometry and attribute records. Figure 5 il-
lustrates the distribution of measured building heights after data
cleaning. Subfigure (a) presents city-level variations in build-
ing height, with Sendai showing a higher median and broader
interquartile range compared to other cities as the only one met-
ropolitan area. Subfigure (b) displays the overall distribution
across the entire dataset, where most buildings cluster below 10
meters, indicating a highly skewed height distribution domin-
ated by low-rise structures. This skewness highlights the neces-
sity of stratified sampling in the model training process.

The predictive performance of the three supervised learning al-
gorithms with testing data is presented in Table 3, with the
joint plot of predicted values over target values for each data
group (Figure 6. Overall, RFR achieved the best predictive
performance among the three models, particularly in terms of
the coefficient of determination (R2) and mean absolute er-
ror (MAE). Notably, RFR obtained the highest R2 value of
0.67 in Group 2, which corresponds to the zoning category
with the most consistent height distribution. This suggests that
the model captures the relationship between building features
and height most effectively in more regulated or homogeneous
areas. SVR showed relatively high MAE and unstable R2 val-
ues, especially in Group 1, indicating poor generalization for
more diverse urban forms. Although the full-dataset perform-
ance of SVR was comparable to RFR in terms of MAPE, its
predictive reliability was notably lower. XGBoost yielded con-
sistent results across groups but underperformed compared to
RFR. Its relatively lower R2 values and higher errors suggest
that while robust.

3. Discussion

3.1 Model Implementation in Digital Twin Generation

In digital twin city systems, building height is a critical com-
ponent for generating accurate and realistic 3D urban models,
directly influencing the fidelity and analytical capabilities of
virtual environments. However, in practical scenarios such as
urban planning, disaster simulation, or energy analysis, com-
plete building height data is often unavailable, particularly in
newly developed areas or small to medium-sized cities lacking
comprehensive surveying resources. The building height pre-
diction model proposed in this study addresses this gap by lever-
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Figure 5. Building height statistics used in this study: (a) distribution by city and (b) full distribution across whole dataset.

aging building footprints, urban zoning regulations, and roof-
type attributes to estimate missing height information with high
accuracy. This substantially enhances the spatial completeness
and usability of digital twin systems.

By integrating our model into digital twin platforms, urban
planners can dynamically generate or modify 3D building rep-
resentations, enabling applications such as policy simulation,
development potential assessment, and urban morphology ana-
lysis. Furthermore, the model can be deployed without relying
on high-precision survey data, making it a cost-effective and
scalable solution for resource-constrained municipalities.

In practice, the proposed model has already been implemen-
ted as a key component in a branch of our “3D City Model
Generation Simulator,” where it provides height estimates for
generated buildings and contributes to the automated creation
of realistic 3D city models in user-defined areas. The simu-
lator has been released as an open-source project on GitHub.
By simply providing remote sensing imagery and street-view
images as input, users can generate LOD3-level 3D urban mod-
els for their regions of interest. The simulator is available as
an open-source project on GitHub: https://github.com/Project-

PLATEAU/3D-City-Model-Generator.git
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