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Abstract

Building accurate indoor digital twins is essential for smart-building services such as asset tracking, space planning, and AR/VR
navigation. Yet a single LiDAR sensor cannot supply both millimeter-level accuracy and complete coverage: fixed terrestrial laser
scanners (TLSs) leave occlusion holes, whereas handheld mobile laser scanners (HMLSs) suffer from lower geometric stability and
color drift. We propose an adaptive voxel-based fusion pipeline that combines a FARO Focus3D X330 TLS with a CHCNAV RS10
HMLS to overcome these limits. First, the handheld point cloud is rigidly registered to the TLS reference using Iterative Closest
Point. TLS voxels with sparse points are flagged as holes; for each hole we admit only handheld points whose point-to-plane
distance and normal deviation fall below strict thresholds, ensuring geometric consistency. Next, we correct color bias by learning
a global linear RGB mapping from overlapping scans and refining it locally with weighted regression. Finally, we blend colors
across the TLS–handheld boundary to remove visible seams. Experiments on classroom scenes from a smart-campus testbed show
that our method recovers 85.7 % of missing surfaces, lowers the global point-to-plane RMSE by 14.8 %, and improves mean color
difference by 22.2%. The resulting high-fidelity, color-consistent indoor models give facility managers and planners reliable data
for maintenance scheduling, occupancy analysis, and long-term space optimization.

1. Introduction

1.1 Background

Indoor environments play a crucial role in a wide range of ap-
plications, including smart building management, robotic nav-
igation, facility maintenance, and emergency responses. Re-
cently, digital twins are often used for accurate and up-to-
date digital representations of indoor environments enabling de-
cisions in real time (Shaharuddin et al., 2022). Digital twins
can be created using a range of technologies, including the In-
ternet of Things (IoT), LiDAR, photogrammetry, and machine
learning, which enable the automated generation of 3D models.
These models not only capture the geometric properties of in-
door scenes but also embed semantic information such as object
labels, spatial relationships, and functional attributes.

Despite the growing deployment of these devices, the integra-
tion of heterogeneous data continues to pose significant chal-
lenges (Rashdi et al., 2022). Differences in scanning angles,
lighting conditions, and point density make the registration pro-
cess more complex. For example, no single LiDAR device can
capture both the high-precision geometry and holistic cover-
age required: fixed terrestrial laser scanners deliver millimeter-
level accuracy (Rashdi et al., 2024) but suffer from occlusion-
induced holes, while handheld scanners boast flexible view-
points yet exhibit lower structural stability and inconsistent
point density (Shin and Kwak, 2024; Balado et al., 2025).
Equally problematic is the visual seam introduced by sensor-
specific color bias: different camera systems and lighting con-

ditions yield systematic RGB offsets between scans, undermin-
ing model realism.

In this paper, we introduce a unified fusion pipeline that co-
registers a mobile SLAM LiDAR scan with a TLS reference
and then automatically fills in holes and color-matches the
data. In this regard, we present a unified registration and
color-harmonization framework that seamlessly fuses FARO
and handheld point clouds into a complete, consistently colored
indoor twin (Yoon and Koo, 2023; González-Collazo et al.,
2024). We demonstrate the approach on real indoor scenes and
report significant gains in completeness, accuracy, and visual
quality over using TLS alone.

1.2 Related Work

LiDAR for Indoor Mapping. Indoor LiDAR mapping sys-
tems broadly fall into static terrestrial laser scanners (TLS) and
mobile/mobile-mapping LiDAR platforms, each with distinct
advantages and drawbacks. TLS devices deliver millimeter-
level accuracy and dense point measurements but are suscept-
ible to occlusion-induced gaps in cluttered environments and
require time-consuming multi-station setups for full coverage
(Luhmann et al., 2020; Qiu et al., 2023). In contrast, hand-
held and SLAM-based systems provide flexible viewpoints and
rapid area coverage, though they introduce cumulative drift, un-
even point density, and color inconsistencies; comparative eval-
uations of LiDAR SLAM algorithms (ICP variants, graph op-
timization, particle filters) highlight varied performance in loop
closure and stability across feature-poor indoor scenes (Zou et
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al., 2021). To address these challenges, recent reviews of mo-
bile mapping systems survey the integration of LiDAR with
cameras and IMUs, demonstrating how sensor fusion enhances
pose estimation, enables direct georeferencing, and enriches se-
mantic content for autonomous navigation and digital twin gen-
eration (Elhashash et al., 2022). Beyond algorithmic improve-
ments, systematic analyses of low-cost 3D mapping solutions
emphasize the trade-offs between accuracy, coverage, and oper-
ational efficiency across handheld, trolley, and vehicle-mounted
platforms (Balado et al., 2025). Finally, voxel-based fusion
of heterogeneous scans—including aerial, terrestrial, and hand-
held data—has shown promise in recovering occluded surfaces
and harmonizing color biases, achieving centimeter-level com-
pleteness and visual consistency in complex indoor and heritage
environments (Roggero and Diara, 2024).

Point Cloud Registration. Robust alignment of overlapping
point clouds is critical for building accurate 3D models of in-
door environments. The Iterative Closest Point (ICP) algorithm,
introduced by Besl and McKay, is still the standard for fine
registration: it iteratively minimizes point-to-point distances
between two clouds, but it often converges slowly and is sensit-
ive to the initial alignment (Besl and McKay, 1992). To address
these limitations, Das and Waslander (2014) propose a Seg-
mented Region Growing NDT (SRG-NDT) that first removes
ground points and then clusters remaining points into Gaus-
sian distributions, yielding a smooth cost function and redu-
cing runtime by over 90 % compared to voxel-based NDT and
ICP variants. In large-scale SLAM settings, Zou et al. (2021)
provide a comparative analysis of LiDAR-SLAM registration
methods—scan-to-scan and scan-to-map ICP, Generalized-ICP,
NDT, and graph-based optimizations—highlighting trade-offs
in robustness, loop-closure performance, and computational ef-
ficiency in feature-poor indoor scenarios. Together, these works
form a comprehensive foundation for selecting and extend-
ing registration techniques in our adaptive TLS–HMLS fusion
pipeline.

Color Calibration Color calibration in LiDAR–RGB point
clouds refers to the process of adjusting the raw RGB meas-
urements—typically captured by a co-registered camera rigidly
mounted to the LiDAR or by an integrated imaging sensor—so
that colors are consistent and accurate across multiple scans or
viewpoints. Giacomini et al. (2024) introduce Ca²Lib, which
uses small planar markers (e.g., A3 chessboards) to detect cor-
respondences between LiDAR returns and image pixels, and
then solves a joint non-linear optimization to estimate both the
extrinsic alignment and per-channel photometric parameters. Li
et al. (2024) propose LVBA, a LiDAR–Visual bundle adjust-
ment framework: it first performs a global LiDAR-only bundle
adjustment to refine sensor poses, then incorporates planar 3D
features into a photometric bundle adjustment that optimizes
camera poses and exposures for globally consistent RGB map-
ping. Xing et al. (2022) tackle illumination variation directly
on RGB–D scans with Point Cloud Color Constancy (PCCC),
a deep-learning approach based on PointNet that estimates the
scene’s illumination chromaticity per point and applies a global
correction to achieve color constancy under varying lighting
conditions.

Accurate color calibration is critical for applications that rely
on both geometric and photometric fidelity. In heritage docu-
mentation and virtual tourism, it ensures that textured 3D recon-
structions faithfully reproduce material appearance under vary-
ing lighting. In robotics and autonomous navigation, consistent

color in point clouds enhances semantic segmentation, object
recognition, and change detection. For AR/VR and digital-twin
platforms, seamless color integration across scans improves
visual realism and user immersion, reducing artifacts at sensor
boundaries and enabling reliable photometric measurements for
downstream analytics.

In Luhmann et al. (2020), terrestrial laser scans, UAV pho-
togrammetric point clouds, and close-range imagery are co-
registered by first aligning each dataset to a common control-
point network, refining the result via target detection (retro-
reflective spheres or ground control points), and applying a
global ICP adjustment to achieve millimeter-level residuals.
Roggero and Diara (2024) segment TLS, airborne LiDAR, and
UAV data into voxels based on point-density and roughness,
perform feature-based coarse alignment followed by ICP for
each sensor modality, and merge the datasets voxel-wise by
selecting the most accurate source per region. Elhashash et
al. (2022) survey mobile mapping systems that tightly fuse
LiDAR, cameras, and IMUs through extrinsic calibration (using
planar targets), time synchronization, SLAM-based pose estim-
ation (e.g., MSCKF or bundle adjustment), and back-projection
of LiDAR points into image frames for colorization and se-
mantic labeling.

In contrast to existing mixed-sensor workflows that rely on
external targets, photogrammetric imagery, or manual control
networks for alignment and color calibration, our fully auto-
mated, voxel-based fusion pipeline operates entirely within the
LiDAR domain. By extracting ceiling and wall primitives for
robust coarse registration, selectively admitting only geomet-
rically consistent handheld points to fill occlusions in terrestrial
laser scans, and learning both global and local color map-
pings directly from overlapping scan regions, our approach de-
livers precise registration, comprehensive surface reconstruc-
tion, and seamless color integration in purely indoor environ-
ments—promising a fast, turnkey solution for high-fidelity 3D
modeling without the overhead of mixed-sensor calibration or
image processing.

2. Sensor Specifications

We experiment with two devices (Table 1). The CHCNAV
RS10 is a SLAM-based handheld scanner with an integ-
rated 4th-generation GNSS RTK antenna (CHCNAV, 2024).
It provides approximately 1–5 cm accuracy (absolute hori-
zontal/vertical RMS < 5 cm, relative < 1 cm) and covers a
360◦ × 270◦ field of view (FoV). In 16-channel mode, it can
achieve a range of approximately 120 m; using a higher 32-
channel mode extends its range to around 300 m. The RS10
captures data at up to 320,000 points per second (in 16-channel
mode) and operates on a swappable battery lasting approxim-
ately 1 hour. Its portability and real-time SLAM capabilities fa-
cilitate quick scanning of cluttered indoor environments; how-
ever, its angular resolution (approximately 0.18◦ per step) and
precision remain moderate compared to TLS devices.

In contrast, the FARO Focus3D X330 is a tripod-mounted,
phase-shift TLS offering exceptionally high precision with a
ranging error of approximately ±2 mm and a fine angular
step resolution of 0.009◦ (around 40,960 samples per full 360°
sweep) (FARO, 2025). It has an effective range of up to 330
m under optimal conditions, coupled with low measurement
noise. Additionally, the X330 features a battery life of roughly
4.5 hours and captures up to 70 MP color imagery. However,
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its vertical FoV is 300◦ × 360◦, resulting in a 60◦ blind zone
vertically (up/down), and each scan is comparatively slow. In
practice, certain occluded regions (e.g., beneath tables and be-
hind pillars) remained unobserved. Table 1 summarizes these
differences.

Feature CHCNAV RS10 Faro Focus3D X330
Resolution 0.18◦ 0.009◦

Accuracy 10 mm 2 mm
Range 0.5 m – 120 m 0.6 m – 130 m
Battery duration 1 h 4.5 h
Field of view 360◦ vertical / 270◦ horizontal 300◦ vertical / 360◦ horizontal
Measurement rate 320,000 points/s 976,000 points/s

Table 1. Comparison of CHCNAV RS10 (Handheld SLAM
LiDAR) vs. FARO Focus3D X330 (TLS) capabilities.

3. Methodology

Our pipeline consists of three main stages: (1) Point Cloud Re-
gistration, (2) Hole Detection and Filling, and (3) color Har-
monization.

3.1 Point Cloud Registration

To enhance the robustness of the point cloud registration
method against initial rotational variations, this study employs
the approach proposed by Qiu et al. (2025). This method estab-
lishes a clearly defined spatial coordinate framework by extract-
ing floor, ceiling, and wall boundaries from indoor point cloud
data, effectively resolving issues arising from arbitrary initial
orientations.

Specifically, the ceiling plane of the indoor scene is initially
estimated using the RANSAC algorithm, resulting in a plane
equation defined as:

ax+ by + cz + d = 0 (1)

where (a, b, c) represents the normal vector of the plane, and d
is the plane offset. Subsequently, points from the original cloud
within a distance δ from this plane are removed according to:

|ax+ by + cz + d| < δ (2)

The remaining point cloud data is then segmented vertically
into multiple horizontal thin layers, each projected onto a refer-
ence plane parallel to the ceiling. Given the original point co-
ordinates (x, y, z), the projected two-dimensional coordinates
become (x′, y′). The frequency f(i, j) of occupancy for each
grid cell in the two-dimensional projected plane is computed to
identify stable wall structures:

f(i, j) =

K∑
k=1

vk(i, j) (3)

where K represents the total number of layers, and vk(i, j) in-
dicates the occupancy state of grid cell (i, j) in the k-th layer.

Subsequently, RANSAC-based line fitting is applied to these
stable structures to derive a set of linear segments representing
wall boundaries. These segments are further merged and exten-
ded to clearly define the room layout.

Following the establishment of the standardized spatial co-
ordinate framework described above, the classical Iterative
Closest Point (ICP) algorithm is employed for accurate re-
gistration of the point clouds. The ICP algorithm iteratively
matches pairs of points to minimize the distance error between
the source point cloud P = {pi} and the target point cloud
Q = {qi}, optimizing the following objective function (Sun et
al., 2024):

min
R,t

∑
i

∥Rpi + t− qσ(i)∥2 (4)

where R is the rotation matrix, t is the translation vector, and
σ(i) indexes the corresponding matching points. This compre-
hensive approach significantly enhances the robustness of the
registration method, ensuring accuracy and reliability in sub-
sequent fusion and analysis processes.

3.2 Hole Detection and Filling

To accurately identify and fill gaps within the Faro TLS data,
we first discretize the point cloud space into cubic voxels of
size r. For each point p in the Faro cloud PF , we define its
voxel coordinates v(p) as:

v(p) =
⌊p
r

⌋
. (5)

The set of occupied voxels by Faro points VF is then identified
as:

VF = {v | count({p ∈ PF : v(p) = v}) ≥ τ}, (6)

where τ is the minimum occupancy threshold.

Next, we find voxel occupancy for the handheld cloud PH :

VH = {v(p) | p ∈ PH}. (7)

To efficiently identify and compare voxel occupancy, we define
a simple but effective hashing function h : Z3 → Z. This func-
tion maps 3D voxel coordinates to a unique integer, enabling
fast set operations:

h(v) = 73856093 · vx + 19349663 · vy + 83492791 · vz, (8)

where v = (vx, vy, vz) ∈ Z3. This type of spatial hashing is
commonly used in graphics and geometry processing to accel-
erate lookup operations.

The set of hole voxels Vhole is computed by subtracting occu-
pied Faro voxels from handheld voxel occupancy:

Vhole = {v | h(v) ∈ h(VH) \ h(VF )}. (9)

Handheld points corresponding to these hole voxels form the
gap-filling point set PH,gap:

PH,gap = {p ∈ PH | h(v(p)) ∈ h(Vhole)}. (10)

To maintain consistency in point density with the Faro cloud,
we apply density-based upsampling. Let dF be the median
density of Faro-occupied voxels. For each voxel v ∈ Vhole,
the number of points to be added a(v) is:

a(v) = max(0, dF − |{p ∈ PH,gap : v(p) = v}|). (11)
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New points are interpolated by randomly selecting point pairs
(p1, p2) within the same voxel and creating midpoint interpola-
tions:

pnew =
p1 + p2

2
+ δ, δ ∼ U

(
− r

2
,
r

2

)3

, (12)

3.3 Color Harmonization

After geometric alignment and hole filling, we harmonize the
color information of the fused point cloud. Since the Faro
TLS point cloud typically provides more stable and reliable
color measurements, we use the RGB values from the TLS data
as the global color reference. To improve computational effi-
ciency, only the handheld points used for hole filling are color-
calibrated, while the original TLS points retain their measured
colors.

For each handheld point that fills a gap in the TLS data, we
first establish color correspondences (cH , cF ) within the over-
lapping region. A global affine color mapping is estimated via
least squares regression:

c′H = AcH + b (13)

where A is a 3× 3 color transformation matrix and b is an off-
set vector. The parameters (A, b) are computed using only the
paired colors from the overlap and are applied solely to the RS
points in the hole-filled regions, rapidly aligning their color ap-
pearance to the global TLS standard.

To further account for local color variation caused by lighting
or material differences, we perform a local color adjustment
for each filled handheld point. Specifically, for each handheld
point, we select its k nearest color correspondences in the over-
lap and fit a weighted local affine model:

c′H(p) = Ap cH(p) + bp (14)

where (Ap, bp) are locally adapted parameters. This ensures
that each filled handheld point is corrected according to its spe-
cific local context, improving visual coherence.

Finally, to avoid visible seams at the boundary between TLS
and handheld regions, we perform color blending within a nar-
row transition band using distance-weighted interpolation. By
restricting the color correction to the newly added handheld
points and transition areas, our approach achieves both high
computational efficiency and seamless visual integration in the
final indoor model.

4. Results and Discussion

4.1 Experimental Setup

We evaluated our method in a classroom characterized by a
complex and cluttered environment. Table 2 summarizes the
key characteristics of the point clouds captured by the TLS
(Faro), the handheld device (RS10), and their fusion, including
acquisition durations and sensor measurement rates.

Despite the Faro TLS possessing a significantly higher meas-
urement rate (976,000 points/s) compared to the RS10 hand-
held scanner (320,000/s), the total number of points captured by
the handheld device is much greater. This is primarily because

the RS10 scan was performed over a longer period and along
a continuous, flexible trajectory, allowing for dense sampling
throughout the scene and greater coverage, especially in oc-
cluded areas. In contrast, the Faro TLS acquired data from a
fixed tripod position with a shorter scan duration, which, while
offering high precision and measurement reliability, resulted in
a lower overall point count and density due to limited spatial
coverage and potential occlusions.

The similar room sizes and ceiling areas measured from each
point cloud highlight the repeatability and reliability of both
acquisition methods. Furthermore, both datasets were acquired
within a one-hour window with the environment kept stable (no
personnel entering or exiting), ensuring a consistent and con-
trolled setting for comparison. By integrating the complement-
ary advantages of each approach, the fused point cloud achieves
both high geometric fidelity and comprehensive spatial com-
pleteness.

As can be seen from Figure 1a, the original Faro TLS point
cloud exhibits high color fidelity but contains evident holes and
missing surfaces in occluded regions. In contrast, the handheld
RS10 point cloud (Figure 1b) provides denser coverage and ef-
fectively captures regions that are not visible from static TLS
positions, but its color consistency and geometric precision are
relatively lower.

(a) Faro TLS

(b) RS10 handheld

Figure 1. Original RGB point clouds captured by (a) the Faro
TLS and (b) the RS10 handheld scanner.

4.2 Registration Results

The registration pipeline proceeds through four sequential
stages. First, the ceiling is extracted using RANSAC plane fit-
ting with a 0.02m distance threshold, requiring 11.35 s to ro-
bustly isolate the dominant horizontal surface. The resulting
ceiling slice, as illustrated in Figure 2, serves as a stable ref-
erence for subsequent processing. Next, the scene is segmen-
ted vertically and each layer is projected onto the ceiling plane,
enabling the detection of major wall axes via RANSAC line
fitting; this wall detection step takes 23.71s. The extracted or-
thogonal wall-line segments, shown in Figure 3, provide critical
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Source Room Size Ceiling Area XY Density Total Points Acquisition Time Measurement Rate

(L×W×H), m (m2) (points/m2) (s) (points/s)

Faro TLS 12.02×9.84×3.71 118.34 52,794.33 6,247,838 309 976,000

RS10 12.07×9.88×3.48 119.20 178,927.67 21,327,571 473 320,000

Fused 12.07×10.01×3.71 120.88 147,337.78 17,809,660 – –

Table 2. Summary of point cloud characteristics and acquisition details for the classroom scene

geometric cues for initial alignment. Coarse alignment is then
performed, achieving an initial pose error below 2◦ with negli-
gible runtime compared to other stages. Finally, fine registra-
tion is accomplished by point-to-plane ICP refinement, which
converges in just 3.44s.

Overall, the entire coarse-to-fine pipeline completes in approx-
imately 38s. By leveraging ceiling and wall primitives for initial
alignment, this workflow not only accelerates convergence but
also avoids the inefficiency and local minima pitfalls commonly
encountered with direct global ICP, ensuring robust and rapid
registration well-suited for indoor digital-twin applications.

Figure 2. Ceiling slice extracted by RANSAC plane fitting.

Figure 3. Orthogonal wall-line segments detected from the
layered slices.

4.3 Quantitative Evaluation

To evaluate the performance of our proposed fusion and color
harmonization framework for creating high-fidelity indoor di-
gital twins, we employ three quantitative metrics: surface re-
covery rate, geometric accuracy via point-to-plane Root Mean
Square Error (RMSE), and color consistency using the mean
color difference. These metrics assess the method’s ability
to reconstruct missing surfaces, improve geometric alignment,
and achieve visual coherence, respectively.

The surface recovery rate quantifies the extent to which our
method reconstructs missing surfaces in the TLS point cloud
using data from the HMLS. To compute this, we voxelize the
point clouds with a voxel size r and identify the unique voxels
occupied by each point cloud. Let VF , VH , and VM denote the
sets of unique voxels in the TLS point cloud (PF ), the handheld
point cloud (PH ), and the fused point cloud (PM ), respectively.
The hole voxels, representing missing surfaces, are defined as:

Vhole = VH \ VF (15)

The new voxels, indicating areas filled by the fusion process,
are:

Vnew = VM \ VF (16)

The surface recovery rate is then calculated as:

Recovery Rate =

(
|Vnew|
|Vhole|

)
× 100% (17)

where | · | denotes the number of voxels in the set. In our experi-
ments, we achieved a surface recovery rate of 85.7 %, indicating
that 85.7 % of the missing surfaces in the TLS point cloud were
successfully reconstructed using handheld data. This high re-
covery rate demonstrates the method’s effectiveness in address-
ing occlusion-induced gaps, resulting in a more complete digital
twin suitable for applications such as facilities management.

Geometric accuracy is evaluated using the point-to-plane Root
Mean Square Error (RMSE), which measures how closely the
points in the fused point cloud align with the high-precision
TLS point cloud, used as the reference due to its superior ac-
curacy (2 mm as per Table 1). For each point pi in the fused
point cloud PM , we find its nearest neighbor qi in the TLS point
cloud PF using a k-d tree search. The point-to-plane distance
is computed as:

d(pi) = |(pi − qi) · ni| (18)

where ni is the normal vector at qi, estimated using principal
component analysis on the local neighborhood of qi. The
RMSE is then:

RMSE =

√√√√ 1

N

N∑
i=1

d(pi)2 (19)

where N is the number of points in the point cloud being eval-
uated. We compute the RMSE for both the original handheld
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point cloud (PH ) and the fused point cloud (PM ). The RMSE
for the handheld point cloud was 0.168 m, while the fused point
cloud achieved an RMSE of 0.143 m, representing a 14.8 % im-
provement.

This reduction in RMSE indicates that the fusion process,
which includes Iterative Closest Point (ICP) alignment and
error-driven point selection, significantly enhances the geomet-
ric alignment of the handheld data with the TLS reference, im-
proving the structural accuracy of the indoor model.

Color consistency is assessed by comparing the colors of the
handheld points to their nearest neighbors in the TLS point
cloud, using the CIELAB color space, which is designed to
approximate human perception of color differences. For each
point in the handheld point cloud PH , we identify its nearest
neighbor in PF and compute the ∆E color difference:

∆E =
√

(LH − LF )2 + (aH − aF )2 + (bH − bF )2 (20)

where (LH , aH , bH) and (LF , aF , bF ) are the CIELAB color
coordinates of the handheld and TLS points, respectively. The
mean ∆E is the average over all points:

Mean ∆E =
1

N

N∑
i=1

∆Ei (21)

We evaluate the mean ∆E for both the uncalibrated and calib-
rated handheld colors. Before harmonization, the mean ∆E
was 15.71, indicating noticeable color discrepancies due to
sensor-specific biases and lighting variations. After applying
our color harmonization method, which includes global and
local regression to adjust handheld colors, the mean ∆E de-
creased to 12.22, representing a 22.2 % improvement.

This improvement reflects a more visually coherent model, with
reduced color seams at the TLS-handheld boundaries, making it
suitable for immersive applications such as AR/VR navigation.

In conclusion, the high surface recovery rate of 85.7 % en-
sures that most occluded areas in the TLS scans are effectively
filled, resulting in a more complete digital twin. The 14.8 %
reduction in point-to-plane RMSE confirms improved geomet-
ric alignment, crucial for applications requiring precise meas-
urements, such as facility management. The 22.2 % improve-
ment in mean ∆E enhances the visual realism of the model,
making it ideal for applications where aesthetic quality is para-
mount. These results collectively demonstrate that our adapt-
ive fusion pipeline significantly enhances the structural com-
pleteness, geometric accuracy, and visual quality of 3D indoor
models, contributing to more reliable digital representations for
smart building management.

4.4 Qualitative Discussion

As shown in Figure 4, the fused point cloud achieves color char-
acteristics closely matching the high-fidelity Faro scan, while
simultaneously filling numerous voids and gaps caused by oc-
clusion in the original TLS data. This demonstrates that our fu-
sion approach is highly effective, yielding a complete and visu-
ally coherent indoor point cloud model.

Figure 4. Fused RGB point cloud integrating Faro TLS and
handheld RS10 data.

4.5 Compare to FARO Scene

Faro Scene is a commercial software suite that performs
automated point-cloud registration and color-consistent fusion
(FARO Technologies Inc., 2025), making it a suitable bench-
mark against which we compare our method.

Metric Ours (Proposed) Scene

Surface Recovery (%) 85.7 % 120.8 %

Geometric Accuracy (RMSE, m) 0.143 m (↓14.8 %) 0.155 m (↓7.7 %)

color Consistency (∆E) 12.22 (↓22.2 %) 13.43 (↓14.5 %)

Table 3. Comparison of surface recovery, geometric accuracy,
and color consistency for Ours and Faro Scene software.

As shown in Table 3, our method achieves better overall per-
formance across all evaluation metrics compared to the Scene
software. Specifically, it reconstructs 85.7 % of the missing
surfaces without overfilling, whereas Scene exceeds 100 % re-
covery, suggesting potential over-completion or noise. In terms
of geometric accuracy, Ours reduces the global point-to-plane
RMSE by 14.8 %, achieving a final error of 0.143m, lower than
Scene’s 0.155m. For color consistency, Ours also outperforms
Scene, with a 22.2 % improvement in mean ∆E.

As illustrated in Figure 5(a), the Faro TLS delivers the sharpest
geometry but leaves large wedge-shaped gaps around the door
and ceiling edges. Figure 5(b) shows that the RS10 handheld
scan fills these gaps thanks to its dense sampling, yet the colors
are darker because the camera operated under changing illumin-
ation. Our fusion result in Figure 5(c) first rectifies geometry by
selectively adding RS10 points only where the TLS is occluded,
then applies a global–local color correction anchored to the re-
liable TLS RGB values; therefore appear neutral and crisp, with
no “dragging” artefacts.

In contrast, Figure 5(d) (Faro Scene) blends colors purely by
point-count weighting. Because the handheld scan contains
many more points than the TLS, its noisier RGB values domin-
ate: the overall hue shifts toward RS10’s cast, and high-contrast
edges (e.g. lamp strips, wall–ceiling junctions) exhibit visible
streaks. This visual evidence supports the quantitative findings.
Scene’s surface-recovery exceeds 100 % (over-filling) while its
RMSE and mean ∆E are higher—illustrating that more points
do not necessarily translate into more reliable information.

5. Conclusion

We introduced an adaptive voxel-based fusion pipeline that
combines a Faro Focus TLS with a CHCNAV RS10 hand-
held scanner to generate complete, color-consistent indoor di-
gital twins. The workflow integrates a ceiling- and wall-guided
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(a) Faro TLS only (b) RS10 handheld only

(c) Ours: fused TLS+RS10 (d) Faro Scene fusion

Figure 5. Visual comparison of the classroom ceiling and walls obtained from four data sources.

coarse alignment followed by point-to-plane ICP, geometry-
based hole detection with selective handheld infill and density
equalization, and a two-stage color harmonization that applies
global RGB mapping, local regression, and seam blending.

On a cluttered classroom scene, the proposed method recon-
structs 85.7 % of TLS occlusion holes without over-filling, re-
duces the global point-to-plane RMSE from 0.168 m to 0.143
m, and lowers the mean color difference ∆E from 15.71 to
12.22. Compared with the commercial Faro Scene software,
our pipeline achieves lower RMSE and better color consistency.
These results confirm that the fused models deliver the geo-
metric fidelity and visual realism needed for smart-building ap-
plications such as asset tracking, maintenance scheduling, and
AR/VR navigation.

Future work will extend the method to larger indoor datasets
and leverage deep learning for feature extraction, semantic seg-
mentation, and color correction, aiming for greater automation,
robustness, and near-real-time performance.
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