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Abstract 
 
We address the previously unstudied task of roof part instance segmentation in 3D building models, which provides fine-grained 
semantic and structural information beyond traditional roof surface segmentation. This paper presents a framework that leverages 
official LoD2 semantic building models and airborne LiDAR point clouds to automatically generate training data for joint semantic 
and instance segmentation of roof part instances. We introduce a multi-task ConvPoint-based network with bidirectional cross-attention 
modules for feature sharing, along with a two-stage noise-robust training pipeline designed to mitigate annotation noise and geometric 
complexity. Experiments on datasets derived from public 3D semantic building models demonstrate that our approach substantially 
improves segmentation quality under noisy, real-world conditions. The results highlight that progress in automated 3D building 
reconstruction depends not only on network design but critically on advanced training strategies that can exploit noisy, large-scale 
semantic building models, providing a reproducible methodology for harnessing public 3D city inventories. 
 
 

1. Introduction 

Three-dimensional (3D) building models are essential 
components of digital city representations, supporting 
applications in urban planning, environmental analysis and 
disaster management. Traditional reconstruction methods rely on 
manually crafted geometric rules and intensive human 
intervention, resulting in high costs and infrequent updates. 
Recent advances in deep learning (DL) have shown potential for 
automating 3D reconstruction; however, these approaches 
remain confined to research settings because large, accurately 
annotated datasets that capture real-world variability are scarce. 
Examples of DL-based 3D reconstruction include PolyGNN 
(Chen et al., 2024), which employs a graph-neural network for 
polyhedron-based reconstruction using a synthetic dataset 
supplemented with real-world data, and Point2Roof (Li et al., 
2022), a two-stage graph-based approach trained on the relatively 
simple RoofN3D dataset (Wichmann et al., 2019). Although 
these methods achieve promising geometric results, they 
generalise poorly to real-world point clouds because of 
significant geometric and semantic domain gaps. Public 3D 
building models—such as CityGML LoD2 datasets—could 
provide large-scale annotations, yet their labels are inherently 
noisy owing to geometric simplification and limited semantic 
validation. Previous work (Wang et al., 2023) uses self-
supervision to mitigate geometric annotation errors, but weakly 
supervised learning under semantic noise remains largely 
unexplored in this context. Consequently, a training strategy that 
is resilient to noisy labels is still missing. 
Semantic segmentation can enhance scene understanding by 
structuring urban data and guiding interpretation. Current 
methods treat buildings as monolithic entities—or extract roofs 
as planar primitives—thus missing higher-level semantics and 
failing to capture complex roof structures. The specific task of 
roof-part instance segmentation (RPI)—partitioning roofs into 
semantically meaningful components such as gables, hips or 
flats—has not been previously addressed. These finer-grained 
semantics can guide and constrain downstream geometric 
processing, support accurate physical simulations (e.g., wind 

loads and solar potential) and improve the interpretability of 
digital twins. 
The task is challenging because roof structures often consist of 
adjacent, interleaved primitives with subtle geometric transitions, 
which complicates reliable segmentation and requires models 
capable of learning robust geometric and semantic patterns. 
To overcome these limitations, we propose a novel approach that 
jointly tackles semantic and instance segmentation by explicitly 
targeting detailed roof-structural components, termed Roof-Part 
Instances (RPIs). An RPI is the connected subset of roof-labelled 
points in a 3D point cloud corresponding to a canonical roof 
primitive—e.g., gable, hip or flat—from a fixed taxonomy; it 
terminates at geometric discontinuities such as ridges, valleys, 
eaves or height offsets. Our contribution comprises two tightly 
integrated advances: (i) Noise-resilient multi-stage training 
pipeline. We combine self-supervised pre-training, confidence-
guided pseudo-labelling and selective relabelling to convert 
noisy, coarse CityGML data into effective supervision for RPI. 
(ii) an improved architecture for multi-task learning. A 
continuous-kernel ConvPoint-based (Boulch, 2020) encoder 
feeds separate semantic and instance decoders, which are coupled 
by multiscale bidirectional cross-attention modules. By 
exchanging information between the two decoder branches at 
multiple resolutions, these modules enhance the network’s ability 
to learn robustly from training labels affected by geometric and 
semantic noise. Taken together, our noise-resilient pipeline and 
cross-attentive architecture turn large yet imperfect LoD2 
repositories into reliable supervision for roof-part semantics, 
pushing the field markedly closer to fully automated, fine-
grained 3D urban reconstruction at scale. 
 

2. Related Work 

2.1 Instance Segmentation for 3D Point Cloud Data 

Various deep learning methods have been developed to tackle 
semantic and instance segmentation in 3D point cloud data, 
broadly categorized into proposal-based methods, proposal-free 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W15-2025 
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W15-2025-141-2025 | © Author(s) 2025. CC BY 4.0 License.

 
141



 

methods, and multi-task learning approaches, each offering 
distinct strategies to address the challenges of this complex task. 
 
2.1.1 Proposal-Based Methods 
 
Instance segmentation in 3D point clouds is a core challenge in 
computer vision and geospatial analysis. Early approaches, 
inspired by 2D object detection, adopt a proposal-based (top-
down) paradigm involving two stages: generation of coarse 
object proposals and subsequent refinement into instance masks. 
Examples include GSPN (Yi et al., 2019),which generates 
proposals through shape reconstruction, and methods that use 
voting schemes (Ding et al., 2020) or 3D anchor strategies 
(Boudjoghra et al., 2024). While effective in indoor scenes, these 
methods struggle in large-scale or structured outdoor 
environments such as roofscapes, where errors in the proposal 
stage and computational complexity are significant challenges.  

2.1.2 Proposal-Free Methods 
To address the limitations of proposal-based approaches, bottom-
up methods have emerged that directly learn point-wise 
embeddings. These methods map each point to a high-
dimensional space where embeddings from the same object 
instance are close, and those from different instances are well-
separated. Instance labels are then derived via clustering 
algorithms such as mean-shift or DBSCAN (Zhao & Tao, 2020). 
Panoptic-PolarNet (Zhou et al., 2021) utilizes polar Bird's Eye 
View representations for real-time LiDAR panoptic 
segmentation, incorporating class-agnostic clustering and 
adversarial pruning to handle occluded roof instances in urban 
scenes effectively. Proposal-free approaches provide greater 
flexibility in scenes with complex geometries and densely packed 
structures, which are commonly found in roof data. However, 
their performance depends on embeddings that encode both local 
geometry and broader semantic context. 

2.1.3 Multi-Task Learning for Joint Semantic and 
Instance Segmentation 
Given the intrinsic relationship between semantic and instance 
segmentation, where each instance belongs to a specific class, 
recent work often frames the problem as multi-task learning 
(MTL). These methods employ a shared encoder with task-
specific decoders for semantic labeling and instance embedding. 
ASIS (X. Wang et al., 2019) introduced inter-task 
communication modules to enhance mutual learning. This 
approach has proven effective in leveraging the synergy between 
semantic and instance segmentation tasks. Several efforts have 
adapted general-purpose frameworks to roof segmentation from 
airborne laser scanning (ALS) data. RoofNet (Zhang & Fan, 
2022) builds upon ASIS, tailoring it to sparse ALS point clouds 
and leveraging cross-branch feature fusion to capture planar 
structures more effectively. (L. Li et al., 2024) further enhance 
the segmentation of adjacent roof planes by introducing a 
boundary-aware three-branch network. In addition to semantic 
and instance branches, an offset-prediction branch shifts points 
toward their instance centers in Euclidean space, and boundary 
points are treated separately to minimize their disruptive impact 
on clustering. These innovations reflect a broader shift toward 
architectures that integrate geometric priors. Nonetheless, current 
models largely remain focused on roof surface segmentation, 
lacking the capacity to identify fine-grained, semantically 
meaningful roof components. 

To learn to discriminate between different types of roof surfaces, 
it is sufficient for most cases for a neural network to learn 
geometric regularities, such as height, surface normals, or 
planarity. For roof-part segmentation, however, these low-level 
geometric cues are insufficient. Canonical roof primitives, such 
as gables, hips, and dormers, often exhibit smooth transitions and 
similar geometric features, occur in close spatial proximity, and 
lack distinct separating boundaries. This challenge relates to the 
geometric shortcut phenomenon described by (Wu et al., 2025), 
where 3D models tend to collapse onto low-level geometric 
signals rather than learning semantic structure. Thus, roof-part 
instance segmentation demands expressive feature learning, 
deeper semantic-instance interaction, and training paradigms that 
resist shortcut-driven collapse, which is essential for precise, 
semantically enriched 3D roof analysis in digital twins and 
automated urban modeling. 

2.1.4 Automatic Training Data Derivation from 3D 
Building Models 
Recent advances in generating training data for semantic and 
instance segmentation of roof structures primarily leverage 
publicly available 3D city models and LiDAR point clouds. 
(Faltermeier et al., 2023) introduced a large-scale, automated 
method for generating datasets based on semantic CityGML 
models, addressing data scarcity in roof segment orientation 
classification tasks. Their approach utilizes roof polygons 
extracted from official LOD2 building models, projecting them 
onto orthophotos to generate pixel-wise semantic labels for roof 
orientation classes. While this method expands the dataset size 
and diversity, the segmentation granularity remains coarse, as it 
is restricted to entire roof segments without instance-level 
differentiation. Similarly, (Kong & Fan, 2024) proposed an 
automated method for generating datasets for roof segmentation 
directly from open-source LoD2 building models, emphasizing 
flexibility by allowing user-defined point densities and noise 
levels. Their dataset, NRW3D, leverages real geographic context 
to enhance model generalization but focuses primarily on 
semantic labeling without addressing detailed hierarchical 
modeling or roof type diversity. (R. Wang et al., 2023) created 
the Building3D dataset, comprising aerial LiDAR point clouds 
and corresponding mesh and wireframe models across urban-
scale areas, designed to facilitate urban modeling research. This 
dataset emphasizes structural complexity and geometric fidelity. 
However, it does not explicitly integrate semantic labeling 
related to roof orientation or canonical roof shapes, limiting its 
direct applicability to detailed semantic segmentation tasks. Our 
work differentiates itself by introducing a methodology that 
integrates geometric and semantic information from publicly 
available CityGML-based LOD2 building models with LiDAR 
point clouds to generate high-quality annotations for 
simultaneous semantic and instance segmentation of roof part 
instances (RPIs). By explicitly exploiting hierarchical structures 
inherent to CityGML models, including building parts, roof 
surfaces, and the detailed roof type attributes included by these 
models, we provide finer-grained annotations at the instance 
level. Moreover, our approach explicitly addresses granularity 
mismatches and semantic ambiguities in the input data through 
targeted refinement strategies, aiming to produce a robust 
training dataset suited for deep learning methods. 
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3. Workflow for Automated Dataset Derivation and Point-
Level Annotation 

A roof part instance (RPI) is defined in this work as the connected 
subset of roof-labeled points in the 3D point cloud that 
corresponds uniquely to a canonical roof primitive a fixed 
taxonomy which currently includes eight roof classes: flat, shed, 
gable, hip, jerkinhead, pyramid, hip-gable, mansard roof. Each 
RPI terminates at geometric discontinuities such as ridges, 
valleys, eaves, or height offsets.  

The main data source comprises official German Level-of-Detail 
2 (LoD2) 3D building models delivered in the AdV-CityGML 
profile. Compliance with the “Product and Quality Standard for 
3D Building Models” defined by the German Working 
Committee of the Surveying Authorities (AdV) ensures 
nationwide consistency in geometric representation and semantic 
annotation. According to this standard, a building is decomposed 
into building part objects whenever it contains two or more 
discrete volumetric bodies; contrasting roof forms frequently 
coincide with such divisions but are not a prerequisite. In LoD2, 
each building part is annotated with the roofType attribute, 
selected from the current AdV code list of sixteen roof-type 
classes, while the parent building carries this attribute only when 
no parts exist. This geometric–semantic hierarchy underpins the 
derivation of individual roof-section instances in our workflow. 
Additional data sources include airborne laser-scanning (ALS) 
point clouds in LAS format and pre-segmented 2D building-
instance polygons generated via deep-learning methods from 
aerial imagery and elevation data.  

Preprocessing: CityGML tiles are converted to CityJSON for 
efficient parsing. We extract semantic and geometric 
information, isolating individual buildings, their hierarchical 
subdivisions into building parts, and corresponding roof surfaces. 
Each extracted building and its associated surfaces—including 
roof, wall, and ground surfaces—are stored along with semantic 
roof-type labels and geometric parameters. 
 
RPI Candidate Generation and Refinement: 
A key component of the methodology is the generation and 
refinement of Roof Part Instance (RPI) candidates for precise 
annotations. Initially, ground surfaces from LoD2 data are used 
as preliminary polygons to define the horizontal extent of roof 
instances. Due to inherent geometric simplifications in LoD2 
models, these polygons often require adjustment. Refinement 
integrates detailed planar roof surfaces from LoD2 data, 
matching them to candidates using a 50% overlap threshold to 
optimize accuracy and computational efficiency. Matched roof 
surfaces are merged into unified polygons, enhancing delineation 
by capturing geometric discontinuities like ridges and eaves. 
Further, attributes such as slope, surface normal orientation, 
and height differentials aid in identifying continuous roof 
structures across adjacent building parts. The process is 
exemplified in Figure 1, where the top panel displays the 
initial ground surface polygons outlined in orange alongside the 
individual roof surface polygons highlighted in red. The leftmost 
building illustrates a common challenge: the ground polygons 
fail to align with actual roof part transitions, resulting in 
inaccurate and fragmented delineations. In contrast, the central 
building serves as a successful example of refinement, where the 
integration of detailed roof surface geometries produces 
polygons that closely correspond to the actual roof structure, 
demonstrating improved accuracy. However, the rightmost 
building reveals a limitation of the approach, as neither the 

ground polygons nor the roof surface geometries adequately 
capture the transition between distinct roof parts, indicating a 
failure to resolve complex roof morphology. 
The bottom panel presents the final automatically generated 
polygons for roof part instances (RPIs) in magenta, after the 
refinement process. While these refined polygons generally 
improve the representation of roof parts, several errors remain 
visible. These include missed transitions, where distinct roof 
parts are not separated, and misaligned boundaries, where 
polygon edges do not precisely follow roof discontinuities. Such 
errors underscore the inherent challenges and limitations of fully 
automated geometric and semantic annotation workflows, 
particularly in handling complex or irregular roof configurations. 
This visual comparison highlights the necessity for further 
methodological improvements to enhance delineation fidelity 
and semantic accuracy in roof part instance extraction. 
Semantic labels are assigned based on LoD2 attributes, with a 
selective sampling strategy that prioritizes rare roof types and 
limits the overrepresentation of common types, such as flat and 
gable roofs, to ensure dataset diversity. 
 
Semantic Labeling, Patch Extraction, and Annotation: In the 
concluding phase, point cloud patches are extracted from input 
tiles using Building Instance Polygons (BIPs) derived from aerial 
imagery and ALS data. Patches are refined to maintain spatial 
continuity across tile boundaries. For annotation, refined RPI 
polygons are projected onto the horizontal plane, and LiDAR 
point coordinates are assessed against these boundaries. Points 
within polygons are assigned unique RPI identifiers and 
corresponding roof type labels, while others are labeled as 
background. This workflow creates a comprehensive dataset for 
training algorithms in the semantic classification of diverse roof 
structures. 
 
 

 
Figure 1: Top: Ground polygons (orange) and roof 
surface polygons (red). Bottom: Final roof part 
instance polygons (magenta) after refinement. 
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Figure 2: Architecture of the proposed bidirectional multi-task network. The encoder extracts features from the 
input point cloud, which are then processed by separate semantic segmentation (green) and instance segmentation 
(blue) decoder branches. 

 

4. Method  

The objective of this work is to develop a robust deep learning 
framework for roof-part instance segmentation (RPI) from 
airborne LiDAR point clouds. Specifically, the goal is to assign 
each point in a 3D point cloud patch—potentially containing 
complex or multiple adjacent roofs—both a semantic label 
(indicating roof-part type) and an instance label (a unique 
identifier for each contiguous roof part), even in the presence of 
noisy training annotations.  while handling noisy annotations in 
the training data.  

Let an input point cloud patch be denoted as: 𝑃 = (𝑥௜ , 𝑎௜)௜ୀଵ
ே  

where 𝑥௜ ∈ 𝑅𝟛  represents the 3D coordinates of point 𝑖, 𝑎௜ ∈ 𝑅ௗ  
denotes optional attributes such as intensity. Each point is 
annotated with: 

 A semantic label  𝑦௜
௦ ∈ 𝒞 where 𝒞 = 𝑐ଵ, 𝑐ଶ, … , 𝑐௄  is 

the set of semantic roof categories. 

 An instance label 𝑦௜
ூ ∈ 1,2, … , 𝑅 , where 𝑅  is the 

number of roof-part instances in the patch  

Due to the automatic nature of annotation derived from LoD2 3D 
building models, the observed labels ൫y෤୧

ୱ, y෤୧
୍൯ may be corrupted 

versions of the true labels ൫𝑦௜
௦ , 𝑦௜

ூ൯ i.e., they can be incorrect or 
inconsistent with the true underlying roof structure. 
The core task is to learn a function 𝑓ఏ  parameterized by neural 
network weights 𝜃, mapping the input point cloud to both 
semantic and instance predictions: 𝑓ఏ: 𝑃 →  {(𝑦ො௜

ௌ, 𝑦ො௜
ூ)}௜ୀଵ

ே   (1) 
where 𝑦ො௜

ௌ  and 𝑦ො௜
ூ , are the predicted semantic and instance label 

for point 𝑖 in a input cloud patch including 𝑀 points. 
 
4.1 Multi-Scale Attention Network for Robust Roof-Part 
Instance Segmentation 

Building upon recent advances in joint semantic and instance 
segmentation of 3D point clouds we propose a novel architecture 
designed explicitly for segmenting roof building parts in airborne 

laser scanning (ALS) point cloud patches. While prior works 
have demonstrated the effectiveness of multi-task learning and 
feature interaction mechanisms, significant challenges remain in 
delineating complex roof geometries, resolving ambiguous 
boundaries, and efficiently processing large-scale LiDAR data 
with potentially noisy annotations. 
The network operates on a point cloud patch with a fix number 
of points and produces two types of output: per-point semantic 
logits s ∈ ℝ୒୶େ, where 𝐶 is the number of semantic classes and 
instance embedding maps 𝐸 ∈ ℝே௫஽, where 𝐷  is the 
dimensionality of the learned embedding space. 
The network backbone utilizes ConvPoint layers, which perform 
continuous convolutions directly on raw point clouds. This 
approach maintains permutation and translation invariance, while 
avoiding the information loss commonly associated with 
voxelization or quantization. As a result, the network is able to 
capture both fine-grained geometric features and broader 
contextual information. The encoder is structured as a sequence 
of down-sampling stages, each halving the number of points and 
increasing the feature dimensionality. Two dedicated decoder 
branches—one for semantic segmentation and one for instance 
segmentation—mirror the encoder by progressively restoring 
spatial resolution through inverse neighborhood aggregation. 
Skip connections link corresponding encoder and decoder stages, 
enabling the retention of high-resolution geometric details 
throughout the network. Figure 1 illustrates the overall 
architecture. This architecture is inspired by recent advances in 
point-based segmentation, emphasizing the value of multi-scale 
feature extraction and careful preservation of spatial structure. 
To enable effective information exchange between semantic and 
instance segmentation tasks, the network employs two parallel 
decoder streams: one for semantic segmentation (𝑆) and one for 
instance embedding 𝐼 .At intermediary and top decoder level, we 
introduce a pair of multi-head attention (𝑀𝐻𝐴𝑡𝑡) modules 
(Vaswani et al., 2017) , facilitating bidirectional, multi-scale 
feature interaction between the two streams:  
𝑍ூ←ௌ = 𝑀𝐻𝐴𝑡𝑡(𝑄ூ , 𝐾ௌ, 𝑉ௌ),   𝑍ௌ←ூ = 𝑀𝐻𝐴𝑡𝑡(𝑄௦, 𝐾ூ , 𝑉ூ) (2)  
where: 𝐻௦ and 𝐻ூ denote the semantic and instance decoder 
features at the current layer, respectively. 𝑄௦ =  𝐾௦ =  𝐻௦ are the 
queries, keys, and values from the semantic decoder.  𝑄ூ =  𝐾ூ =
𝐻ூ   are the queries, keys, and values from the instance decoder. 
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The updated decoder features are then computed as:                                
𝐻ூ ←  𝐻ூ + 𝑍ூ←ௌ ,  𝐻௦  ← 𝐻௦  + 𝑍ௌ←ூ  (3)                                       
This bidirectional attention is applied at multiple decoder scales, 
allowing the network to dynamically aggregate contextual 
information at different levels of abstraction. The semantic-to-
instance path helps the instance decoder distinguish 
geometrically similar roof parts of different types, while the 
instance-to-semantic path improves the delineation of semantic 
boundaries between adjacent roof parts. 
 
4.2 Noise-Robust Training Pipeline for Joint Semantic and 
Roof-Part Instance Segmentation  

Learning from LoD2-derived roof labels presents unique 
challenges due to frequent misclassifications and per-point label 
corruption. To address this, we propose a three-stage training 
pipeline that (1) learns geometric priors without reliance on 
labels, (2) progressively denoises supervision during early 
training, and (3) guards against late memorization of noise.  

Given a training set 𝐷 =  ൛(𝑃௜, 𝑦෤௜
௦, 𝑦෤௜

ூ)ൟ
௜ୀଵ

ெ
  (4), where  𝑦෤௜

௦ , 𝑦෤௜
ூ   

noisy labels, the network is trained to minimize a robust multi-
task loss: 
ℒ(𝜃)  =  𝜆௦ ∙  ℒ௦௘௠(𝑦ො௜

ௌ , 𝑦෤௜
௦)  + 𝜆ூ ∙  ℒ௜௡௦௧(𝑦ො௜

ூ , 𝑦෤௜
ூ) (5)  where:  

ℒ௦௘௠ is a noise-robust semantic segmentation loss function (e.g., 
Generalized Cross Entropy), ℒ௜௡௦௧ is a discriminative loss, for 
instance embedding, encouraging points from the same instance 
to be close in embedding space and different instances to be well 
separated 𝜆௦ 𝑎𝑛𝑑 𝜆ூ are weighing factors. The discriminative loss 
(Wang 2019) acts on embeddings 𝑒௜:  

ℒௗ௜௦௖ =  
ଵ

ெ
∑ ൣ𝛼 ∑ ‖𝑒௜ − 𝜇௠‖ଶ +௜ఢூ೘

𝛽 ∑ 𝑚𝑎𝑥(0, 𝛿 −௡ஷ௠
ெ
௠ୀଵ

‖𝜇௠  − 𝜇௡‖)ଶ൧  (5) where  𝜇௠ is the mean embedding of instance 
𝑚.  
4.2.1. Geometry-Centred Pre-Training 
In order to equip the encoder with robust geometric priors, we 
utilize a self-supervised occlusion-completion pretext task 
(Wang et al., 2021). In each input patch, 60% of the points are 
occluded. The occluded portions are selected using farthest-
point sampling. A decoder is trained to reconstruct the 
coordinates of the occluded points. As self-supervised loss we 
use Chamfer Distance (CD) ℒ =  𝐶𝐷(𝑃௠௔௦௞,𝑃෠)   (6) which 
calculates a symmetric distance between two sets of points. This 
produces weights 𝜃୥ୣ୭୫ based on the learned features space and 
is agnostic to label noise.  
 
4.2.2 Noise-Aware Warm-Up with Bootstrapping 
Initializing with the encoder weights with 𝜃୥ୣ୭୫, we train the 
network with the multi-task loss (eq. 5), where for the semantic 
component we Generalized Cross-Entropy (Zhang and Sabuncu, 

2018) 𝐺𝐶𝐸(𝑝௧ ;𝑞) =
ଵି௣೟

೜

௤
), 0 < 𝑞 ≤ 1, (7) where 𝑝௧ denotes the 

predicted probability assigned to the true class. Setting 𝑞 = 1 
recovers the standard cross-entropy loss, while values of 𝑞 < 1 
increases robustness to label noise. 
To further mitigate noise, we apply soft bootstrapping (Reed et 
al., 2015) combining model prediction confidences and the noisy 
labels:  𝑦ො௜

ௌ = (1 − 𝛽)𝑝 + 𝛽y෤୧
ୱ (7) . During this phase, we exploit 

the “memorization effect”  (H. Zhang et al., 2024) deep networks 
first learn clean patterns before fitting noise. By monitoring 
prediction confidence, we dynamically refine the label set—
replacing noisy labels with high-confidence predictions when 
they remain stable across epochs. This targeted pseudo-labeling 
reduces the effective noise rate and improves the reliability of 
supervision for semantic tasks. 
The resulting hybrid loss function can be formally expressed as: 

ℒ௦௘௠ = (𝑦ොௌ , 𝑝, 𝛽, 𝑞) =  
ଵି(௬෤ೞ∙௣)೜

௤
  (8) where 𝑦ොௌ represents the 

soft bootstrap-adjusted labels, 𝑝 represents the predicted 
probabilities from the model, parameters 𝛽 and 𝑞 control label 
adjustment and robustness, respectively.  A 𝛽 value close to 1 
emphasizes reliance on the original annotations, whereas a 
smaller value increasingly trusts the model's predictions, 
effectively self-correcting mislabeled data points during training. 
The combined approach aims to benefit simultaneously from the 
self-correcting nature of bootstrap targets and the inherent noise 
robustness of GCE loss, thus enhancing the segmentation model's 
resilience to noisy annotations.  
 
4.2.3 Stable Long-Run Optimization 
During the final training stage, we employ beta-mixture re-
weighting to mitigate the influence of noisy labels. This method 
fits a two-component beta mixture model to the distribution of 
per-sample training losses, distinguishing clean and noisy 
samples and dynamically adjusting their contributions to the total 
loss. 
During training, we model the distribution of per-sample losses 
𝑙୧ as a two-component beta mixture: 
p(𝑙୧)  = 𝜋ଵBeta(𝑙୧; 𝛼ଵ, 𝛽ଵ)  + 𝜋ଶBeta(𝑙୧; 𝛼ଶ, 𝛽ଶଵ), (9) where 
𝜋ଵ  and  𝜋ଶ are the mixing coefficients and 𝛼ଵ, 𝛽ଵ, 𝛼ଶ, 𝛽ଶ are the 
beta distribution parameters for clean and noisy samples, 
respectively. 
The posterior probability that a sample is clean, w୧  is used to 

weight its loss: w୧ =
గభ୆ୣ୲ୟ(௟౟; ఈభ,ఉభ)

୮(௟౟)
  (10). are the beta 

distribution parameters for clean and noisy samples, respectively. 

The final loss is then a weighted sum: ℒ =  
ଵ

୒
∑ w୧𝑙୧

୒
୧ୀଵ . (11). For 

a comprehensive description of the estimation and EM algorithm, 
we refer the reader to the original work by Arazo et al. (2019). 
 
4.3 Evaluation Metrics 

We evaluate our joint semantic and instance segmentation results 
using four complementary metrics: mean Intersection-over-
Union (mIoU), mean coverage (mCov) and  Panoptic Quality 
(PQ). We evaluate our joint semantic and instance segmentation 
results using four complementary metrics: mean Intersection-
over-Union (mIoU), mean coverage (mCov) and  Panoptic 
Quality (PQ). Mean Intersection-over-Union evaluates the 
semantic segmentation performance by averaging the IoU௖ 

across all classes.  IoU௖ =
்௉೎

்௉೎ାி௉೎ାிே೎
 (9) where, 𝑇𝑃௖ ,  𝐹𝑃௖, and 

𝐹𝑁௖ are the true positive, false positive, and false negative counts 
for class c. Mean coverage assesses instance segmentation 
quality by averaging the best intersection-over-union (IoU) 
between each ground-truth instance and its most overlapping 

predicted instance: 𝑚𝐶𝑜𝑣(𝐺, 𝑃) =  
ଵ

|ୋ|
∑ max

୮∈୔
IOU(g, p)୥∈ୋ  (10), 

where 𝐺 is the set of ground-truth instances and 𝑃 s the set of 
predicted instances. Panoptic Quality (PQ) jointly measures 
semantic and instance segmentation performance by combining 

segmentation and recognition quality: PQ =
∑  (೛,೒)∈೅ು  ୍୭୙(௣,௚)

|்௉|
⋅

|்௉|

|்௉|ା
భ

మ
|ி௉|ା

భ

మ
|ிே|

 (11) where  p, g are matched predicted and 

ground-truth segments. 
 
4.4 Datasets 

The RoofN3D dataset consists of point cloud data from New 
York City, providing geometric and semantic labels for building 
reconstruction tasks. It includes only simple, standard roof 
types—primarily flat, gabled, hipped, and pyramid roofs. For full 
details, readers are referred to Wichmann et al. (2019). 
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The SemRoof dataset covers 337 km² in Lower Saxony, 
Germany, and is based on official LoD2 building models, 
airborne LiDAR point clouds (≥4 points/m², ≤0.30 m horizontal 
and ≤0.15 m vertical accuracy). Approximately 75% of the data 
is from urban regions. LoD2 models are generated via building 
footprint intersection and model-driven shape recognition 
(∼70% semantic roof type accuracy). The dataset comprises 
42,690 point cloud patches (84,588 building parts), with 70% of 

buildings exhibiting complex roofs (1–11 segments) and eight 
semantic roof types. To enhance quality, single-segment standard 
roofs were excluded, patch areas were limited to 35–450 m², and 
points below the 5th height percentile were removed to reduce 
noise. 
 

 
Figure 3: Illustration of segmentation and instance prediction results for two example cases. The figure includes: 
(a) noisy ground truth for segmentation (SemRoof dataset), (b) predicted segmentation, (c) confidence map for 
segmentation, (d) ground truth for instance segmentation 
 
 

5. Experiments 

The network is built on ConvPoint layers, each with 16 
convolutional centers and an initial feature dimension of 48, 
which is doubled in the second layer and maintained thereafter. 
Both the encoder and each decoder branch comprise three 
ConvPoint layers, forming a three-level hierarchy with 
progressive 4:1 downsampling at each stage. Each input patch 
consists of 256 input points for RoofN3D data and 1,024 points 
for SemRoof data. Batch normalization and ReLU activation 
follow each convolutional layer. Bidirectional cross-attention 
modules operate on 96-dimensional feature spaces, enabling 
multi-scale interaction between the semantic and instance 
decoders. Skip connections and bottleneck layers are used to 
preserve spatial detail while controlling feature dimensionality. 
 
The semantic decoder outputs per-point class logits for 12 
semantic roof-part classes, which are converted to labels via 
argmax. The instance decoder outputs per-point embedding 
vectors of dimension 5. In post-processing, instance predictions 

are obtained by applying mean shift clustering with a bandwidth 
of 0.8 to the embedding space. 
Training is performed using the AdamW optimizer with an initial 
learning rate of 0.001 and weight decay of 0.01, with a batch size 
of 1. The multi-task loss combines a semantic segmentation loss 
and a discriminative instance embedding loss, weighted by a 
factor of 5. Dropout regularization (p = 0.5) is applied throughout 
the network. Data augmentation strategies—including point 
jittering, random z-axis rotations, and small random occlusions—
are used during training.  

6. Results 

On the RoofN3D dataset, our network demonstrates rapid 
convergence, achieving stable and robust results in fewer than 50 
training iterations with the Adam optimizer and cross-entropy 
loss. To systematically evaluate the impact of feature knowledge 
transfer between the semantic and instance segmentation 
decoders, we conducted experiments under four scenarios: (1) no 
feature transfer, (2) transfer from the instance decoder to the 
semantic decoder (S ← I), (3) transfer from the semantic decoder 
to the instance decoder (I ← S), and (4) bidirectional transfer 
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(S ← I, I ← S). The quantitative results for each transfer scenario 
are summarized in Table 1. 

 mCov mIoU PQ 
Baseline 0.87 0.89 0.93 
(S ← I) 0.91 0.93 0.95 
(S ← I, I ← S). 0.92 0.94 0.96 

 
Table 1:Performance metrics for different feature 
transfer scenarios on the RoofN3D dataset. 
 
The baseline configuration without feature transfer achieves 
strong performance, indicating that simple geometric cues suffice 
for planar roof surfaces. Knowledge transfer from the instance to 
semantic branch (S ← I) improves both semantic and instance 
segmentation, supporting findings that cross-task feature sharing 
is beneficial. Transferring features from semantic to instance 
branch (I ← S) has little effect, likely because semantic classes 
align closely with geometric structure. Bidirectional transfer 
maintains the gains seen with instance-to-semantic transfer. The 
network performs consistently across roof types, with most 
remaining errors attributable to ground truth inaccuracies rather 
than model limitations. 
 
The SemRoof dataset poses greater challenges due to higher 
annotation noise and increased roof-part complexity. 
Conventional training quickly led to stagnating metrics and 
overfitting, highlighting the need for robust strategies. To address 
this, we implemented a noise-robust training pipeline: the 
encoder is first initialized via self-supervised geometric pre-
training, followed by a noise-aware warm-up using generalized 
cross-entropy loss (β=0.7β=0.7) and soft bootstrapping for 36 
epochs. Once the loss plateaued, high-confidence predictions 
(over 90%) were used to replace likely corrupted ground truths, 
generating pseudo-labels for further optimization. The network 
was then retrained with these pseudo-labels for 120 epochs at a 
fixed learning rate of 0.001. 
This protocol led to substantial improvements in both semantic 
and instance segmentation, as shown in Table 2. Many remaining 
errors are linked to ambiguous or incorrect roof-part boundaries, 
underscoring the need for higher-quality ground truth.  
 

Training 
Stage 

mCov mIoU PQ 

Stage 1 0.60 0.55 0.68 
Stage 3 0.76 0.67 0.78 

 
Table 2: Performance metrics for the two training 
stages on the SemRoof dataset. 
 
6.1 Discussion 

This work demonstrates not only the feasibility of leveraging 
existing semantic 3D building models as training data for fine-
grained roof-part interpretation, but—more importantly—the 
potential of noise-robust training strategies to advance deep 
learning for 3D semantic building reconstruction. Our results 
show that, under controlled conditions and with relatively clean 
datasets such as RoofN3D, the proposed bidirectional multi-task 
ConvPoint network achieves rapid convergence and high 
segmentation accuracy. Cross-attention modules, particularly 
with knowledge transfer from the instance to the semantic 
decoder, further enhance performance at challenging roof 
boundaries, confirming the value of multi-task feature sharing. 
However, our experiments on the SemRoof dataset highlight the 
challenges of applying such models to real-world, automatically 
labeled data. Despite a systematic pipeline for dataset 

preparation, SemRoof exhibits substantial annotation noise, 
especially at roof-part boundaries and in complex structures. This 
noise has a clear negative impact on model performance, as seen 
in rapid overfitting and stagnating metrics with conventional 
training. Our multi-stage, noise-robust training protocol, which 
includes self-supervised pre-training, generalized cross-entropy, 
bootstrapping, and pseudo-labeling, substantially improves 
results; however, absolute performance remains constrained by 
the quality of the underlying labels. Furthermore, the manually 
verified evaluation set contains relatively simple cases, which 
may inflate reported metrics and limit generalizability to more 
complex scenarios. 
Looking ahead, several directions are essential. Expanding 
datasets to include 3D building models generated by a variety of 
reconstruction algorithms will help disentangle model errors 
from those inherent to specific pipelines. Including more 
complex roof structures in training, validation, and test sets is 
necessary for robust evaluation and generalization. Our 
experiments were limited to patches of sloped roof surfaces 
smaller than 450 m² and 1,024 points per patch; adapting the 
approach for larger and more variable patches is essential for 
scalability. Incorporating a weak supervision strategy, where at 
least a portion of the training data is manually verified, would 
improve label quality and model reliability, supporting more 
accurate benchmarking. 
While our two-step training protocol yields promising results, it 
remains complex and resource-intensive. Future work should 
explore ways to simplify and streamline the training process, 
reducing computational demands without compromising 
segmentation accuracy. Additionally, we note that architectural 
parameters were not exhaustively tuned, and no ablation studies 
were conducted in this direction; further optimization of these 
parameters may yield additional performance gains. 
In summary, our findings underscore that the key to progress in 
3D semantic building reconstruction lies not only in network 
design but in the effective exploitation of noisy, large-scale 
semantic building models through advanced training 
methodologies. This paradigm enables the field to move beyond 
the limitations of small, manually curated datasets and accelerate 
innovation in automated urban modeling. 
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