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Abstract

With the increasing availability of large-scale 3D city models, efficient data storage and transmission formats are essential. While
the geospatial community has developed cloud-optimised formats for 2D datasets (binary files that can be efficiently indexed and
accessed through HTTP Range requests), 3D city models with complex geometries, attributes, textures, and semantic surfaces still
rely on text-based files using the CityGML standard (CityJSON and XML files). In this paper, we present FlatCityBuf, a new
compact binary encoding format for 3D city models based on FlatBuffers and CityJSON. Our approach leverages the benefits of
FlatBuffers, including cross-platform support, zero-copy data access, and efficient deserialisation, while adhering to the CityGML
data model. The addition of spatial and attribute indices enables efficient queries to retrieve partial data. We evaluate the read
performance and compression ratios of FlatCityBuf against CityJSONSeq using real-world 3D city models and demonstrate its
advantages over existing formats. The results highlight FlatCityBuf’s efficient storage and transfer of 3D city model data, achieving
for real-world datasets 10-30% compression compared to the already compact CityJSON format; for deserialisation it is 9-250x
faster and uses 2—6x less memory. The schemas and accompanying software for conversion to/from CityJSON are publicly available
athttps://github.com/cityjson/flatcitybuf under a permissive license.

1. Introduction

Three-dimensional city models have recently evolved from visu-
alisation tools to fundamental components in urban planning,
environmental simulation, and emergency response (Biljecki et
al.,2015). National initiatives such as the Netherlands’ 3DBAG
(Peters et al.}|2022), Japan’s PLATEAU (PLATEAU|[2020), and
Switzerland’s SwissBUILDINGS3D (Swiss Federal Office of
Topography, |2024) are examples containing millions of build-
ings. These are usually disseminated in one formats of the
CityGML conceptual model (OGC, 2021), that is CityJSON
(Ledoux et al.,[2019) or CityGML-XML (OGC, [2021)).

At the same time, to combat the growth in file size, the (2D)
geospatial industry has shifted from desktop-based to cloud-
optimised formats. These new formats allow us to download
on-the-fly subsets of large datasets, increase accessibility and
multi-user scalability, and are cross-platform (Cloud-Native Geo-
spatial Foundation, 2023). However, this transition introduces
technical challenges including network latency, bandwidth lim-

This paper investigates FlatBuffers (Google, 2014b) as an en-
coding mechanism for CityJSONSeq. Our proposed data format,
FlatCityBuf, combines FlatBuffers’ binary serialisation with
HTTP Range Requests, enabling partial data retrieval and server-
less architectures. As futher defined in Section[3] it incorporates
spatial- and attribute- indexing to achieve logarithmic query
complexity. It achieves this while being compacter than exist-
ing formats and while being more performant in a cloud envir-
onment. All the features of CityJSON are preserved: textures,
geomatry templates, metadata, etc.

2. Related work

2.1 CityJSON and CityJSONSeq

CityJSON is a JSON-based encoding format, standardised by
the OGC, implementing a subset of the CityGML conceptual
model (OGC} [2021)) As defined in|Ledoux et al.| (2019), unlike

itations, and the need to serve concurrent users efficiently (AlesheikhCityGML’s hierarchical structure, it employs a flattened archi-

et al.,[2002)).

Traditional 3D city model formats face severe performance lim-
itations in cloud environments. CityGML-XML’s text-based
format exhibits performance constraints, and its counterpart City-
JSON, while being generally 7X smaller, also struggles (Van
Liempt, 2020). While the format CityJSON Text Sequences
(CityJSONSeq) (Ledoux et al., 2024) was developed to enable
streaming processing of features, it retains the performance lim-
itations inherent to text-based encoding.

While cloud-optimised geospatial formats have emerged for 2D
data (Cloud-Native Geospatial Foundation,|2023)), efficient cloud-
optimised solutions for 3D city models remain limited. This
gap necessitates specialised data formats that operate effect-
ively in cloud computing environments while maintaining se-
mantic richness.

tecture and different mechanisms to simplify the structure and
create smaller file sizes.

CityJSONSeq modifies CityJSON for streaming applications by
decomposing objects into independent CityJSONFeature se-
quences (Ledoux et al.,|2024). Each feature maintains local ver-
tex lists and appearance data, ensuring self-containment while
adhering to the Newline Delimited JSON speciﬁcatiorﬂ How-
ever, CityJSONSeq’s text-based format exhibits several limit-
ations in a cloud environement: lack of explicit data typing,
complete data parsing requirements during processing (not pos-
sible to obtain a subset without parsing the whole file), and ab-
sence of built-in indexing mechanisms for efficient spatial and
attribute-based querying.

! https://github.com/ndjson/ndjson-spec/
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2.2 Cloud-Optimised geospatial formats

Cloud-optimised geospatial formats enable efficient on-demand
access to geospatial data through reduced latency, scalability,

flexibility, and cost-effectiveness (Cloud-Native Geospatial Fouhd-

ation} 2023)). Contemporary implementations include FlatGeo-
buf, GeoParquet, PMTiles, and Mapbox Vector Tiles, each tar-
geting specific use cases and performance characteristics.

FlatGeobuf implements the Simple Features specification (OGC|
2011) using FlatBuffers serialisation with a packed Hilbert R-
tree spatial index (Williams| [2022). This architecture enables
efficient serialisation, deserialisation, and selective geographic
region retrieval through HTTP Range Requests without requir-
ing complete dataset loading. The format demonstrates excel-
lent deserialisation performance, memory utilisation, and spa-
tial indexing capabilities, making it particularly suitable for web-
based applications requiring partial data access.

While these formats have proven successful for 2D geospa-
tial applications, efficient cloud-native solutions specifically de-
signed for 3D city models remain limited, creating opportunit-
ies for specialised formats that maintain semantic richness while
optimising cloud performance.

2.3 FlatBuffers framework

FlatBuffers is a cross-platform serialisation framework designed
for performance-critical applications, implementing zero-copy
deserialisation that enables direct access to serialised data without

intermediate parsing (Google,[2014b)). This characteristic provides

significant advantages for large geospatial datasets where pars-
ing overhead impacts performance substantially.

The framework employs schema-based serialisation with strongly
typed data structures defined in . £bs files, compiled using f1latc
to generate language-specific access code. FlatBuffers supports
comprehensive data types including tables (variable-sized ob-
jects with optional fields), structs (fixed-size inline aggregates),
scalar types, and complex types such as vectors and strings. The
binary structure organises data with vtable-based field access,
little-endian encoding, and offset-based references, enabling ef-
ficient navigation within buffers.

Key technical advantages include memory efficiency through
zero-copy access, schema evolution support via backward com-
patibility, and extensive cross-platform language support. Bench-
mark analyses indicate FlatBuffers outperforms alternative seri-
alisation formats including Protocol Buffers and JSON in deseri-
alisation efficiency and memory utilisation (Google, |2014al).

3. FlatCityBuf

FlatCityBuf addresses the limitations of text-based 3D city model
formats through binary encoding, spatial indexing, and cloud-
optimised access patterns. The format maintains semantic com-
patibility with CityJSON while enabling efficient partial data
retrieval through HTTP Range Requests.

Its schema and accompanying software for conversion is avail-
able athttps://github.com/cityjson/flatcitybufl

3.1 File structure

FlatCityBuf implements a structured binary encoding with five
sequentially arranged components (see Figure [T): (1) Magic
bytes: 8-byte identifier for format validation and version com-
patibility; (2) Header section: Contains metadata, CityJSON
properties, coordinate transformations, and indexing metadata
encoded as size-prefixed FlatBuffers; (3) Spatial index: Packed
Hilbert R-tree enabling efficient geospatial queries through 2D
spatial indexing; (4) Attribute index: Static B+tree structures
for accelerated attribute-based filtering with logarithmic com-
plexity; (5) Features section: Individual CityJSONFeatures en-
coded as FlatBuffers tables with zero-copy access.

This sequential structure enables incremental file access crit-
ical for cloud applications where minimising data transfer is
essential. All components use little-endian encoding with size-
prefixed FlatBuffers records to facilitate precise HTTP Range
Requests.

The magic bytes (FCB01000) provide immediate file type iden-
tification and version compatibility checking, following the ap-
proach established by cloud-optimised formats like FlatGeo-
Buf. This signature design enables applications to validate file
type and version compatibility without parsing the entire header
content.

FlatCityBuf leverages FlatBuffers’ zero-copy deserialisation to
eliminate parsing overhead common in JSON-based formats,
using schema-based serialisation with size-prefixed records for
efficient memory access. The approach prioritises read per-
formance over update capabilities while maintaining full City-
JSON compatibility .

3.2 Header Section

The header section encapsulates essential metadata for file in-
terpretation, implemented as a size-prefixed FlatBuffers-seria-
lised table. Following the approach of CityJSONSeq, the header
maintains compatibility with CityJSON’s global properties while
adding FlatCityBuf specific extensions for optimised retrieval.

Core metadata components. The header preserves essential
CityJSON metadata including version identifiers, coordinate ref-
erence system information, transformation parameters for co-
ordinate quantisation, and geographical extent definitions. Ad-
ditional fields support appearance information (materials and
textures), geometry templates for reusable structures, and City-
JSON extension mechanisms through embedded schema defini-
tions. Key technical components include: (1) Coordinate trans-
formation: Scale and translation vectors enabling efficient ver-
tex coordinate storage through quantisation, maintaining pre-
cision while reducing storage requirements; (2) Appearance
model: Global material and texture definitions with UV co-
ordinate mappings, supporting visual representation properties
defined in the CityJSON specifications; (3) Geometry tem-
plates: Reusable geometry definitions enabling storage effi-
ciency for datasets with repetitive structures such as standard-
ised building designs or street furniture; (4) Extension sup-
port: Embedded JSON schema definitions for CityJSON ex-
tensions, creating self-contained files without external depend-
encies.

Attribute Schema and indexing metadata. The header in-
cludes both attribute schema definitions and indexing-specific
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Figure 1. FlatCityBuf file structure showing sequential component layout optimised for HTTP Range Requests

metadata essential for data interpretation and efficient query-
ing: (1) Attribute schema: Column definitions specifying data
types, nullability, and validation constraints for feature attrib-
utes, enabling interpretation of binary-encoded attribute value;
(2) Spatial index parameters: Node size configuration and
feature count information for spatial index interpretation; (3)
Attribute index metadata: Branching factors, byte lengths,
and unique value counts for each indexed attribute, enabling ef-
ficient B+tree traversal.

The attribute schema system, directly adopted from FlatGeo-
Buf’s approach, provides a flexible framework for defining at-
tribute schemas while maintaining compatibility with 3D city
model requirements. The indexing metadata enables client ap-
plications to determine optimal query strategies and navigate
the spatial and attribute indices efficiently without parsing the
entire dataset. The spatial index uses a configurable node size
(defaulting to 16 entries) optimised for typical HTTP request
patterns, while attribute indices store B+tree structural inform-
ation including branching factors and unique value counts for
query optimisation.

Binary Encoding conventions. FlatCityBuf follows two key

conventions for consistent binary data encoding: (1) Size-prefixed

FlatBuffers: All FlatBuffers records include a 4-byte prefix
indicating buffer size, enabling precise HTTP Range Requests
without parsing entire content; (2) Little-endian encoding: Con-
sistent byte ordering for all numeric values outside FlatBuffers
records, matching modern CPU architectures and FlatBuffers
conventions.

These conventions ensure format consistency and maximise com-
patibility with modern architectures while facilitating efficient
cloud-based access patterns.

3.3 Spatial Index Section

Efficient spatial querying is critical for cloud-based 3D city
model access where minimising data transfer is essential. Flat-
CityBuf implements spatial indexing through a packed Hilbert
R-tree mechanism, directly adapting the proven approach from
FlatGeoBuf (FlatGeobuf] 2020a).

Packed Hilbert R-tree Implementation. The spatial index-
ing mechanism reuses FlatGeoBuf’s packed Hilbert R-tree im-
plementation with minimal modifications for 3D city model in-
tegration. Key characteristics include: (1) Hilbert curve order-
ing: Features are spatially sorted using a Hilbert space-filling
curve to optimise data locality, ensuring spatially proximate
features are stored adjacently in the file; (2) Packed tree struc-
ture: The R-tree is maximally filled with no empty internal
slots, optimised for static datasets through bottom-up construc-
tion; (3) Flattened storage: Level-ordered tree serialisation en-
ables efficient streaming and remote access via HTTP Range
Requests; (4) Fixed-size nodes: Each node contains bounding
box coordinates (4 double values) and byte offset (64-bit un-
signed integer), enabling predictable memory layouts.

The implementation directly incorporates FlatGeoBuf’s refer-
ence implementation (FlatGeobuf] 2020b), which itself draws

from Vladimir Agafonkin’s flatbush library (Agafonkin| 2010).
The Hilbert curve encoding algorithm follows the non-recursive
approach described by Warren (Warren, 2012)), ensuring effi-
cient 2D coordinate mapping to 1D ordering values.

2D Spatial Indexing for 3D City Models. Although designed
for 3D city models, FlatCityBuf deliberately employs 2D spa-
tial indexing rather than full 3D implementation. This design
decision reflects the horizontal distribution characteristics of
most 3D city models, which are primarily distributed horizont-
ally with limited vertical extent relative to their horizontal foot-
print. Additionally, typical spatial queries focus on horizontal
regions (e.g., buildings within districts) rather than volumetric
queries, aligning with how OGC API standards (OGC, 2019a)
primarily support 2D spatial querying.

The indexing process extracts 2D bounding boxes from city fea-
tures by calculating minimum and maximum X,Y coordinates
across all vertices. Feature centroids are encoded using 32-bit
Hilbert values for sorting, while complete 2D bounding boxes
are stored for spatial intersection tests.

The packed R-tree structure enables efficient cloud-native ac-
cess through incremental traversal via HTTP Range Requests,
predictable byte layouts for remote access, and Hilbert-sorted
feature ordering that allows to batched HTTP requests.

3.4 Attribute index section

Efficient attribute-based querying is essential for 3D city model
applications requiring feature filtering based on non-spatial prop-
erties. FlatCityBuf implements attribute indexing through Static
B-+trees, enabling logarithmic query complexity for attribute-
based operations.

FlatCityBuf adopts a Static B+tree (S+tree) (Slotin) 2021) with
significant modifications. The design prioritises read-only ac-
cess patterns common in cloud-based applications while sup-
porting diverse query operators defined in OGC Filter Encod-
ing (OGC 2010) and Common Query Language (OGC, [2024)
standards.

Similar to the spatial index, the attribute index uses an immut-
able structure that remains fixed once constructed, eliminating
rebalancing operations and optimising for static datasets. All
nodes except rightmost nodes at each level are maximally filled
to ensure space efficiency, with trees built bottom-up from sor-
ted data in a single pass rather than through incremental inser-
tions. The predictable layout means tree structure is determined
solely by element count and node size, enabling efficient nav-
igation patterns essential for HTTP Range Request access.

The implementation supports common comparison operators
and logical combinations addressing typical 3D city model query
patterns. Supported operators include equality (building_type
= "residential"), inequality (city_name != "Amsterdam"),

comparison operators (height > 25), range queries (floor_count

BETWEEN 3 AND 8), and logical combinations (height > 15
AND building type = "office"). These roughly follow OGC
Filter Encoding standards (OGC} 2010) while maintaining effi-
cient cloud-based performance.
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Modifications for FlatCityBuf. Several modifications adapt
the S+tree algorithm (Slotinl 202 1)) for FlatCityBuf requirements:
(1) Duplicate key handling: City model attributes often con-
tain numerous duplicate values (e.g., hundreds of features with
identical city names). The implementation incorporates a ded-
icated payload section storing multiple feature references for
identical attribute values without compromising tree structure
or search performance; (2) Multi-type support: Extended to
handle various attribute data types including numeric types (in-
tegers, floating-point), string values, boolean flags, and tem-
poral data; (3) Explicit node offsets: Stores explicit byte offsets
to child nodes rather than mathematical calculations, simplify-
ing implementation while maintaining performance; (4) Pay-
load pointer mechanism: Uses tag bits in offset values to dis-
tinguish between direct feature references and pointers to pay-
load sections containing multiple feature offsets.

These modifications ensure optimal performance while preserving

S+tree algorithmic advantages.

Key serialisation strategy. Key serialisation balances stor-
age efficiency, comparison performance, and implementation
complexity through type-specific strategies: (1) Fixed-length
values: Integer and floating-point types use native binary rep-
resentation with little-endian encoding. Temporal values use
composite encoding (164 seconds + u32 nanoseconds) support-
ing full ISO 8601 (ISO, 2017) datetime ranges; (2) Variable-
length strings: Employ fixed-length encoding with 50-byte max-
imum length based on analysis of common 3D city model string
attributes. Shorter strings are space-padded to ensure consist-
ent key sizes throughout tree structures; (3) Boolean values:

Single-byte encoding (0/1) maintaining sort order, though boolean |

attributes rarely provide effective indexing due to limited dis-
criminative power.

This approach prioritises implementation simplicity while sup-
porting the most common attribute types found in 3D city model
datasets.

Index construction and query execution. Index construc-
tion follows a systematic process: (1) Create attribute value
and feature offset pairs; (2) Sort pairs by attribute values; (3)
Generate payload section grouping feature offsets for duplic-
ate values; (4) Build tree structure bottom-up using configured
branching factor; (5) Serialise tree in top-down order with ex-
plicit byte offsets.

Query execution leverages two core functions: find_exact_match

for precise value location and find_partition_point for bound-
ary identification in range operations. Range queries combine
lower and upper bound determination with result set retrieval,
while inequality queries use exact matching with result set neg-
ation.

Figure 2] illustrates the complete S+tree structure implement-
ation in FlatCityBuf, showing the hierarchical arrangement of
tree nodes, the payload section for handling duplicate keys, and
the connections to feature references.

3.5 Feature Section

The feature section stores individual city features as FlatBuffers-
encoded binary structures, preserving CityJSON’s semantic rich-
ness while enabling zero-copy access. This component repres-

ents the core contribution of mapping CityJSON data structures

to efficient binary encoding.

CityJSONFeature to FlatBuffers mapping. FlatCityBuf im-
plements CityJSONSeq’s core structure through FlatBuffers tables
that maintain semantic compatibility while optimising for bin-
ary access: (1) CityFeature: Top-level container with identi-
fier, collection of CityObjects, quantised vertices, and optional
appearance information; (2) CityObject: Individual city ob-
jects containing type classification, geographical extent, geo-
metry arrays, binary-encoded attributes, and hierarchical rela-
tionships; (3) Geometry: Boundary representation following
CityJSON’s geometric model with flattened arrays for FlatBuf-
fers compatibility; (4) SemanticObject: Surface classification
system supporting both standard CityJSON semantic types and
extension mechanisms.

This mapping preserves all CityJSON capabilities including co-
ordinate quantisation, geometry templates, semantic surfaces,
and extension support while enabling direct binary access without
parsing overhead.

Hierarchical boundary encoding. A key technical challenge
involves adapting CityJSON’s recursive boundary representa-
tion to FlatBuffers’ flat array structure. FlatCityBuf addresses
this through dimensional hierarchy encoding using parallel flattened
arrays: boundaries: Single array of vertex indices referen-
cing the feature’s vertex list; strings: Array indicating ver-
tex counts per ring/boundary; surfaces: Array indicating string
counts per surface; shells: Array indicating surface counts per
shell; solids: Array indicating shell counts per solid.

For example, a simple triangle encodes as:

boundaries: [0,1,2]
strings: [3]
surfaces: [1]

Complex geometries like buildings use the full dimensional hier-
archy. This approach maintains CityJSON’s geometric express-
iveness while enabling efficient binary storage and access.

Semantic surfaces follow the same hierarchical boundary en-
coding approach, using parallel arrays to classify geometric com-
ponents with semantic meaning (WallSurface, RoofSurface, etc.).
This maintains consistency with the geometric boundary struc-
ture while preserving CityJSON’s semantic richness.

Attribute encoding strategy. Attributes in FlatCityBuf are
encoded as binary data with schema definitions provided through
Column tables in the header (see Figure[3) The encoding strategy
focuses on efficient type-specific serialisation, and we use length-
prefixed JSON string encoding for nested JSON objects.

Each attribute is stored as a key-value pair where the key rep-
resents the column index and the value contains the binary-
encoded attribute data. Semantic surface attributes follow the
same encoding strategy as city object attributes, using identical
type-specific serialisation for consistency across the format.

Extension mechanism. FlatCityBuf supports CityJSON’s Ex-
tension mechanism for data model customisation. Extended
city object types (prefixed with "+") use a two-part encoding:
standard enum values (ExtensionObject, ExtraSemantic-
Surface) combined with extension type strings (e.g., "+Noise-
CityFurnitureSegment"). Extension attributes follow the same
binary serialisation as core attributes.

It should be noticed that unlike CityJSON’s external schema
references, FlatCityBuf embeds all extension information within
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Figure 3. Example of attribute encoding in FlatCityBuf showing
type-specific binary serialisation

the file, maintaining cloud-optimised self-containment while pre-
serving full extension compatibility.

3.6 HTTP Range request implementation

HTTP Range Requests enable FlatCityBuf’s cloud-optimised
data access by allowing selective retrieval of file segments without
downloading entire datasets. This capability is fundamental to
serverless architectures and efficient bandwidth utilisation.

Partial data retrieval principles.
in RFC 7233 (Internet Engineering Task Force), [2014), allow
clients to request specific byte ranges from server resources.
FlatCityBuf leverages this capability through strategic file or-
ganisation and size-prefixed record design. Since each feature
uses length-prefixed encoding, clients can determine exact byte
boundaries and request precisely the required data segments.

The approach supports diverse access patterns including sequen-
tial reading, spatial index traversal, and attribute-based filter-
ing while maintaining consistent performance characteristics
regardless of query complexity.

Range Request workflow. FlatCityBuf implements a system-
atic workflow that minimises both HTTP request frequency and
total data transfer volume while supporting complex spatial and
attribute query combinations: (1) Header retrieval: Initial re-
quest fetches magic bytes and header section, providing es-
sential metadata including coordinate systems, transformations,
feature counts, and index structure information; (2) Index nav-
igation: Based on query parameters, clients selectively traverse
relevant index structures (spatial R-tree for bounding box quer-
ies, attribute B+trees for property filters) using targeted range
requests; (3) Feature resolution: Using byte offsets from in-
dex traversal, clients make targeted requests for specific fea-
tures with sizes determined by consecutive offset differences;
(4) Progressive processing: Features are processed increment-
ally as they arrive, enabling responsive user interfaces before
complete data retrieval.

Network optimisation techniques. Several techniques, pri-
marily derived from FlatGeoBuf’s approach (FlatGeobuf}|2020a),
minimise network latency overhead: (1) Request batching:
Multiple feature requests are consolidated into larger HTTP re-
quests, reducing round-trip frequency while maintaining pre-
cise data boundaries; (2) Payload prefetching: Attribute in-
dex payload sections are proactively downloaded when indexes

HTTP Range Requests, defined

are accessed, reducing latency for subsequent operations; (3)
Streaming index traversal: Index structures load only neces-
sary nodes during tree navigation rather than complete index
structures, supporting efficient remote traversal; (4) Buffered
HTTP client: Implementation uses cached range clients that
avoid redundant requests for overlapping byte ranges.

4. Experiments with real-world data

This section presents comprehensive evaluations of FlatCity-
Buf performance across multiple dimensions including imple-
mentation outcomes, storage efficiency, local processing bench-
marks, and web-based performance characteristics.

FlatCityBuf implementation produced several tangible research
outcomes demonstrating practical applicability:

e Reference implementation: Comprehensive Rust library
for encoding/decoding (from/to CityJSONSeq), and query-
ing FlatCityBuf files with command-line interface tools for
conversion and validation;

e Cross-platform support: Native Rust library and WebAs-
sembly (W3C| 2019) module enabling deployment across
server-side applications, desktop GIS tools, and browser-
based environments;

e Web demo: Functional prototype accessible at https:
//flatcitybuf-prototype.hideba.me/|operating ona
3.4GB dataset covering 20kmX20km of the Netherlands,
demonstrating spatial and attribute query capabilities through
HTTP Range Requests;

e Cloud integration: Seamless integration with object stor-
age services (AWS S3, Google Cloud Storage, Azure Blob
Storage) supporting serverless architectures without spe-
cialised server processing

The web prototype demonstrates practical performance improve-
ments by enabling responsive interaction with large 3D city
models without downloading entire datasets, providing spatial
querying, attribute filtering, and data export capabilities.

4.1 File size analysis

We analysed the file size of diverse real-world datasets, we used
the same datasets as those from |Ledoux et al.[(2024)), and sup-
plemented them with PLATEAU datasets (PLATEAU, [2020);
see Table

Results demonstrate that FlatCityBuf achieves superior com-
pression for several datasets (Helsinki, Ingolstadt, NYC, Ziirich)
with compression factors of 16-24%. Conversely, PLATEAU
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Table 1. File size and deserialisation (time and memory) for several openly available real-world datasets.

| File size | Deserialisation time | Deserialisation memory
Dataset | CityJSONSeq  FlatCityBuf  compress | CityJSONSeq  FlatCityBuf ratio | CityJSONSeq  FlatCityBuf  ratio
3DBAG 6MB 6MB -6% 56.3ms 6.6ms 8.6x 23.9MB 5.1MB 4.7x
3DBV 317MB 281MB 12% 3.99s 122.5ms 32.6x 283.8MB 63.2MB 4.5x
Helsinki 412MB 345MB 16% 4.05s 132.2ms 30.6x 15.3MB 5.2MB 2.9%
Ingolstadt 4MB 3MB 19% 37.2ms 0.5ms 75.8% 30.1IMB 6.9MB 4.4x
Montréal 5MB 5MB -4% 50.3ms 0.6ms 81.6x 36.3MB 5.7MB 6.4%
NYC 95MB 76MB 20% 887.6ms 42.9ms 20.7x 20.6MB 5.0MB 4.1x
Rotterdam 3MB 3MB -4% 22.2ms 1.3ms 17.6x 9.2MB 4.4MB 2.1x
Vienna 5MB 4MB 14% 45.9ms 1.9ms 24.0x 14.6MB 5.2MB 2.8%
Ziirich 247MB 189MB 24% 1.88s 151.9ms 12.4x 31.3MB 5.1MB 6.2x
Building 77TMB 79MB -3% 861.4ms 32.5ms 26.5% 220.9MB 64.4MB 3.4x
Bridge 5SMB 5MB -9% 83.9ms 0.3ms 256.8x 75.0MB 12.0MB 6.3x
Railway 4MB 4MB -2% 37.9ms 2.0ms 18.5x 19.0MB 5.1MB 3.8%
Transport 26MB 26MB -1% 244.0ms 13.3ms 18.4x 76.7MB 20.2MB 3.8x
Tunnels 5MB 5MB 4% 47.9ms 1.9ms 24.9% 70.6MB 12.6MB 5.6%
Vegetation 2MB 2MB -31% 852.3ms 32.9ms 25.9x% 189.8MB 56.9MB 3.3x

— e

A
A

CityJSONSeq Overview

Figure 4. Our web prototype demonstrating FlatCityBuf’s spatial
and attribute query capabilities on a 3.4GB dataset, accessible at
https://flatcitybuf-prototype.hideba.me/|

datasets exhibit mixed results, with vegetation data showing in-
creased file sizes. Analysis reveals that compression efficiency
depends on multiple interconnected factors rather than format
limitations.

We ran controlled experiments and identified four key factors

affecting compression performance: (1) Level of Detail (LoD):

Compression remains consistent at 25% across LoDO0 to LoD2.2,
indicating format design determines efficiency regardless of geo-
metric detail level; (2) Number of attributes: Compression

improves dramatically from 5% (10 attributes) to 44% (1000 at-

tributes) due to FlatCityBuf’s schema-based approach eliminat-

ing redundant key storage (which are very common in practice);

(3) Geometric complexity: More complex geometries achieve

better compression (26% vs 15%) as FlatCityBuf’s fixed-size

encoding becomes advantageous over text-based representation

with larger boundary fields; (4) Coordinate scale: Large co-

ordinate values favour FlatCityBuf (18% compression) while

small values favour CityJSONSeq (-29%), explaining superior

performance for metric coordinate systems versus geographic

coordinates.

These findings explain dataset-specific performance variations,
with FlatCityBuf demonstrating optimal efficiency for attribute-
rich datasets using large-scale coordinate systems with complex
geometries.

4.2 Deserialisation performance

Table|I| shows the performance results of a local benchmark that
reads all features from each dataset and accesses their geometry
type field. This processing task requires deserialisation for both

formats, but FlatCityBuf benefits from zero-copy deserialisa-
tion where data can be accessed directly without parsing over-
head. The table presents both processing time and memory con-
sumption for this representative read operation.

FlatCityBuf demonstrates substantial performance improvements
across all datasets, achieving processing time speedups ranging
from 8.6x (3DBAG) to 256.8x (PLATEAU Bridge). Memory
consumption reductions range from 2.1x to 7.6, with partic-
ularly notable improvements for larger datasets where parsing
overhead becomes significant.

The results highlight FlatBuffers’ zero-copy deserialisation ad-
vantages, where smaller datasets like PLATEAU Bridge show
the most dramatic improvements due to proportionally higher
parsing overhead in traditional JSON processing.

4.3 Web performance evaluation

Web-based performance evaluation compares FlatCityBuf’s HTTP
Range Request approach against the 3DBAG API
for realistic cloud-based access patterns. Testing used the
complete Netherlands 3DBAG dataset, comprising 65.2GB in
CityJSONSeq format, 63.89GB in FlatCityBuf without index-
ing, and 70.8GB in FlatCityBuf with full spatial and attribute
indexing. Performance evaluation utilized the indexed 70.8GB
FlatCityBuf file with spatial and identifier-based queries across
100 samples with 10 warmup iterations.

Results demonstrate substantial performance advantages for both
query types:

e Feature ID queries: Testing across 5 landmark buildings
(TU Delft, Amsterdam Central Station, Groningen Station,
Eindhoven Station, Enschede Station) shows FlatCityBuf
averaging 1012.9ms versus 3DBAG API’s 2169.2ms, achiev-
ing 2.1x speedup through attribute indexing and logarithmic
lookup complexity

e Spatial bounding box queries: 2km x 2km area around
TU Delft campus demonstrates FlatCityBuf’s 492.6ms versus
3DBAG API’s 7420.3ms, achieving 15.1x speedup through
Hilbert curve spatial sorting and batched HTTP Range Re-
quest operations

While acknowledging architectural differences between static
file access and dynamic API services, the evaluation demon-
strates FlatCityBuf’s practical advantages for cloud-native 3D
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city model applications. The 15.1x improvement for spatial
queries particularly highlights the benefits of client-side spatial
indexing combined with range request optimization.

The web prototype validates these performance characteristics
by providing responsive interaction with multi-gigabyte data-

sets through standard web browsers, demonstrating the format’s
practical applicability for modern web-based GIS applications.

5. Discussion
5.1 Use cases of FlatCityBuf

FlatCityBuf demonstrates particular advantages in scenarios re-

quiring flexible data access and high-performance data processing.

The format enables precise data retrieval through selective down-
loading, addressing limitations of existing services that con-

strain users to predefined tiles. The web prototype demonstrates

users can download filtered datasets based on specific criteria

(e.g., buildings exceeding 100m in height if it is stored as an

attribute) through attribute indexing mechanisms.

For large-scale data processing pipelines, FlatCityBuf’s super-
ior read performance addresses I/O bottlenecks that typically
constrain analytical workflows. The 3DBAG generation pipeline
exemplifies this application, where multiple processing stages
requiring CityJSONSeq file access would benefit substantially
from improved I/O efficiency. Additionally, the format simpli-
fies analytical workflows by encapsulating data in unified files
accessible across platforms, eliminating the complexity of man-
aging chunked datasets across multiple files while maintaining
high performance for both selective queries and full dataset pro-
cessing.

5.2 Impact on Server Architecture

FlatCityBuf enables fundamental simplification of server archi-
tectures for 3D city model delivery. Traditional approaches
typically employ both application and database servers. For
example, 3DCityDB (Yao et al., 2018) utilises PostgreSQL or
Oracle as the database server with PostgREST API providin
data access through its toolchain. Similarly, the 3DBAG AP
uses PostgreSQL as its database server and Flask (Python web
framework) as the application server.

In contrast, FlatCityBuf operates as a static file requiring only
basic HTTP servers such as ng in aligning with modern cloud
service offerings like AWS S and Google Cloud Storageﬂ

This architectural shift provides substantial scalability advant-
ages. Traditional RDBMS-based systems encounter scaling lim-
itations requiring sharding, replication, or resource expansion,
all demanding additional computational resources. FlatCityBuf
circumvents these challenges by leveraging cloud providers’ in-
herent scalability and high availability infrastructure, enabling
unrestricted access without rate-limiting mechanisms typically
necessary with traditional architectures.

Cost-effectiveness represents another significant advantage. While

precise comparisons vary by use case, hosting static files through

https://api.3dbag.nl
https://nginx.org/
https://aws.amazon.com/s3/

2
3
4
5 https://cloud.google.com/storage

cloud providers is substantially more economical than main-
taining dedicated database and application servers. For example,
Google Cloud Storage costs $0.020 USD per GB per month in
the Netherlands (europe-west4) regiorﬂ In contrast, computing
services such as Compute Engine cost $0.25 USD per vCPU
hour for on-demand instances in the same region (4 vCPU, 16
GiB memory, 375 GiB SSDJ| This demonstrates the funda-
mental cost advantage of storage-based over compute-intensive
architectures.

5.3 Limitations

Despite advantages in simplicity, scalability, and cost-effectiveness,
FlatCityBuf presents notable limitations. Query flexibility re-
mains more constrained than specialised spatial database ap-
plications. Traditional approaches employing RDBMS with
spatial indexing provide more comprehensive query functional-
ity. For instance, 3DCityDB enables filtering by LoD, CityObject
type (Yao et al., |2018)), and various other parameters, whereas
FlatCityBuf primarily supports spatial- attribute-based filtering.
Similarly, regarding spatial functions, 3DCityDB can utilise the
extensive spatial capabilities of PostGIS (PostGIS}[2001), while
FlatCityBuf currently only implements bounding box queries,
nearest neighbour queries, and point intersection queries.

Furthermore, client-side application complexity increases as Flat-
CityBuf shifts computational responsibility from server to cli-
ent. This shift follows the client-server architecture spectrum
described by |Alesheikh et al.| (2002), who categorised systems
ranging from “Thin Client” (where clients primarily handle dis-
play) to ”Thick Client” (where clients perform most processing
tasks). FlatCityBuf represents an extreme case of the “Thick
Client” architecture, where clients assume responsibility for fil-
tering services in addition to other processing tasks (Figure 3)).

This architectural choice impacts interoperability. OGC API
(OGC,2019b) and equivalent Web API services adhere to stand-
ardised designs that enable universal client access—whether
through command-line interfaces, web browsers, or mobile ap-
plications. While FlatCityBuf supports cross-platform deploy-
ment, it requires language-specific or platform-specific library
implementations, potentially limiting accessibility compared to
standard web APIs.

Display Thin Client
\l/ Medium Cli Display Thin Client
Render ledium Client -
\L . . Render Medium Client
» Thick Client
Display Element \J/
Generator Service : .
Display Element
\l’ Generator Service
Filter Service J
Filter Service FlatCityBuf Client

(a) Client architecture model
modified from|Alesheikh et al.
2002)

(b) FlatCityBuf architecture with
Alesheikh et al.|(2002)’s model

Figure 5. Comparison of client complexity with|Alesheikh et al.
(2002)’s model and FlatCityBuf’s architecture.

Furthermore, since the format contains immutable spatial and
attribute indices, updating data necessitates rewriting the entire

6 Google Cloud Storage Pricing, https://cloud.google.com/
storage/pricing#europe, accessed January 2025

7 Google Cloud Compute Engine Pricing, https://cloud.google.
com/compute/all-pricing7hl=en, accessed January 2025
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file. This constraint renders FlatCityBuf less suitable for fre-
quently updated datasets, positioning it optimally for data ana-
lysis and efficient download services rather than dynamic data
management scenarios.

5.4 Future work

Several promising directions emerge for extending FlatCity-
Buf’s capabilities and adoption. Expanding language support
beyond Rust would enhance accessibility and ecosystem integ-
ration, particularly for languages with garbage collection mech-
anisms such as Python, JavaScript, and Java. Python support
would enable seamless integration with geospatial analysis work-
flows, while JavaScript implementation would facilitate web-
based visualisation without WebAssembly dependencies.
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