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Abstract

Forest inventories are essential for sustainable forest management and health monitoring. Image-based surveys using unmanned
aerial vehicles (UAVs) are increasingly adopted for this purpose. DeepForest, a deep learning model pre-trained on large annotated
datasets, enables scalable and cost-efficient tree detection in the resulting imagery. Although it is known that fine-tuning DeepForest
to specific target sites improves its performance, optimal fine-tuning strategies remain unclear. In this study, we investigate the
fine-tuning of DeepForest on a small dataset of UAV imagery from a temperate mixed forest. We examine the influence of four
parameters on model performance: (1) the method used to label training data (manual labeling, manual correction of DeepForest
predictions, and automatic labeling using 3D point cloud segmentation), (2) input image resolution, (3) the number of fine-tuning
epochs, and (4) the size of the training dataset. Our results show that the out-of-the-box DeepForest model performs poorly on
the target dataset but substantially improves with fine-tuning, even when using limited data and a small number of training epochs.
Manual and automatic labeling achieve similarly high performance, both outperforming the manual correction approach. Although
the model initially performs better on lower-resolution images, this difference diminishes after fine-tuning on higher-resolution
inputs. We observe no clear benefit from increasing the training set size, possibly due to the low diversity of our test dataset.
Overall, our findings confirm that DeepForest is a suitable base model for forest tree detection in high-resolution UAV imagery and

can be adapted to new environments with low effort.

1. Introduction

Forest inventories are essential for assessing forest health and
sustainability (Lausch et al., 2017), especially since environ-
mental stressors, such as droughts, are becoming increasingly
frequent (Anderegg et al., 2020). Monitoring the state of spe-
cific tree species and counting the number of living trees in
forest areas is important to implement targeted conservation
measures (Bater et al., 2009). Traditionally, forest monitoring
has relied on manual ground-based surveys, which are time-
consuming, labor-intensive, and costly due to the need for on-
site personnel (Lausch et al., 2017). This manual approach
lacks scalability and limits the ability to collect data over ex-
tensive areas.

To address these challenges, many works explore the use of
unmanned aerial vehicle (UAV) imagery and associated data
processing techniques to automate forest monitoring. Tree de-
tection is a crucial first step in building comprehensive and
scalable forest monitoring systems. To automate tree detec-
tion, many approaches rely on Light Detection and Ranging
(LiDAR) data (Reitberger et al., 2007; Jeronimo et al., 2018;
Eysn et al., 2015) or photogrammetric point clouds (Nevalainen
et al., 2017; Kattenborn et al., 2014). For example, Eysn et al.
(2015) evaluated eight LiDAR-based tree detection approaches
and found that local maxima detection within a canopy height
model produced the best results, particularly in single-layered
forests. Similarly, Nevalainen et al. (2017) applied a local max-
ima approach to photogrammetric point clouds to detect trees in
boreal forests, while Kattenborn et al. (2014) used similar data
to detect palm trees on a plantation in Kiribati with an overall
accuracy of 86.1%.

Although 3D point clouds can provide accurate tree detection
results, in particular the acquisition of LiDAR point clouds re-
quires expensive and specialized hardware. Photogrammetric
point clouds can be acquired at lower cost from RGB imagery,
but their processing still requires substantial computational re-
sources. Recent advances in deep learning, particularly in ob-
ject detection tasks, have created opportunities to reduce the
costs of data acquisition and processing by directly leveraging
RGB images, which can be captured by consumer-grade UAVs.
For example, Ball et al. (2023) presented a neural network,
called Detectree2, which uses a masked R-CNN model to delin-
eate irregular edges of tree crowns from RGB images. Santos et
al. (2019) benchmark the R-CNN, YOLOvV3 and RetinaNet ar-
chitectures to obtain rectangular bounding boxes for particular
tree species. They find that RetinaNet outperforms the other ar-
chitectures tested when evaluating the models on a RGB image
dataset from an urban area in Brazil.

To reduce the technical barriers to applying deep learning meth-
ods to tree detection, Weinstein et al. (2020a) developed the
Python package DeepForest. In addition to providing various
functions for setting up tree detection pipelines, DeepForest in-
cludes a RetinaNet model (Lin et al., 2017) that was trained
on 10000 labeled trees from 22 different sites throughout the
US. It achieves an average recall of 72 % and a precision of
64 % (Weinstein et al., 2020a) on the NEON crowns bench-
mark dataset (Weinstein et al., 2021). Due to the additional pre-
processing functionalities provided by the DeepForest package,
the model can be easily applied to new data (Weinstein, 2025).

While the pre-trained DeepForest model can be used out-of-
the-box, Weinstein (2025) expects the model performance to
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(a) Manually labeled crown
polygons

manually labeled crown polygons

(b) Bounding boxes computed from

(c) Manually corrected bounding
boxes predicted by DeepForest

(d) Bounding boxes automatically
computed using a tree instance
segmentation of a 3D point cloud

Figure 1. Examples of annotations obtained with the different labeling approaches used in this work (Site 1, Plot 1.0 is shown).

improve when fine-tuning the model to the target dataset. The
author found the best-performing results with five to ten fine-
tuning epochs. Building on these findings, this work further
investigates different configurations of the fine-tuning process
of the DeepForest model. Specifically, we fine-tune the Deep-
Forest model for a small target dataset of a temperate mixed
forest located in Brandenburg, Germany. We use DeepForest’s
functionalities to implement a configurable fine-tuning pipeline
that allows one to fine-tune the DeepForest model on custom
datasets. Using this pipeline, we study the impact of four fine-
tuning parameters on model performance: (1) the method used
to label training data (manual labeling, manual correction of
DeepForest predictions, and automatic labeling using 3D point
cloud segmentation), (2) input image resolution, (3) the number
of fine-tuning epochs, and (4) the size of the training dataset.

2. Methodology

In an effort to improve the performance of the DeepForest model
for tree detection in high-resolution RGB UAV imagery of tem-
perate mixed forests, we fine-tune the model on our target data-
set using a small amount of labeled data. We compare different
labeling approaches and experiment with different input image
resolutions and numbers of fine-tuning epochs to identify a suit-
able fine-tuning approach.

2.1 Dataset

The target dataset for this study is a high-resolution UAV RGB
imagery dataset acquired in the Sauen forest, located in Branden-
burg, Germany. In the following, we will refer to this dataset as
the Sauen dataset. The Sauen forest consists of several sites
with different species composition and stand structure. The
Sauen dataset includes images from three different sites:

Site 1. Large parts of this site are covered by a mixed stand of
Scots pine (Pinus sylvestris), European beech (Fagus sylvatica),
and sweet chestnut (Castanea sativa), with 165-year-old Scots
pine as remnants in the overstory and a dense main canopy layer
consisting of beech and chestnut. In the central part of the site,
the closed stand is interrupted by a planted regeneration area
with a loose Scots pine overstory and a dense understory of
sweet chestnut trees. At the south-eastern edge of the site, a
coniferous stand of green Douglas fir (Pseudotsuga menziesii)
and coastal fir (Abies excelsior) is located, which is also partly
included in the investigation plots.

Site 2. This site is covered by a three-layered mixed stand.
The canopy layer is formed by a loose overstory of Scots pine
and coastal fir, and an intermediate layer dominated by sessile
oak (Quercus petraea) and cypress (Chamaecyparis spec.). The
crown closure is light to open. Under it, a rich understory
has established that contains northern red oak (Quercus rubra),
Douglas fir, sessile oak, Norway maple (Acer platanoides), and
Scots pine.

Site 3. This site is covered by a mixed stand of European
beech, sessile oak, and Scots pine, which form a dense can-
opy layer. The stand has a loose understory of European beech
which origins from natural rejuvenation.

UAV RGB imagery of all sites was collected in summer 2023
(July-August) using a DJI Phantom 4 RTK. A double-grid flight
pattern with a flight altitude of 70m to 80 m was used. The
images were taken with 85 % front and side overlap and a cam-
era inclination of —75°. From the UAV images, high-resolution
orthophotos (pixel size of 1.6 cm to 1.8 cm) and 3D point clouds
were reconstructed photogrammetrically using the software Agi-
soft Metashape.! In addition to the UAV-based survey, ter-
restrial LIDAR scans of some areas were collected using a Geo-
SLAM ZEB Horizon scanner, which is a handheld personal
laser scanner (PLS). The UAV-borne data and the PLS point
clouds were manually aligned using markers that were placed
in the field, and the manual alignment was further refined by
co-registering the point clouds using the iterative closest point
(ICP) algorithm (Arun et al., 1987).

2.2 Data Labeling

To create reference bounding boxes for fine-tuning the Deep-
Forest model, three labeling approaches are tested in this work:

Manual labeling. In this approach, the boundaries of the tree
crowns were manually annotated as polygons (Fig. 1a) in the
UAV orthophotos using the QGIS software.? Since the Deep-
Forest model works with bounding box labels, the axis-aligned
bounding boxes of the polygon labels were computed and used
as labels for model training and evaluation. Since, in the la-
beling of crown polygons, subdominant trees whose crowns
are only partially visible in aerial images were also included,
the resulting bounding boxes show a high degree of overlap
(Fig. 1b). For some of the manually annotated image areas,
reference data from field surveys (tree location, trunk diameter

1" Agisoft Metashape software: https://www.agisoft.com/
2 QGIS software: https://www.qgis.org

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIlI-4-W15-2025-39-2025 | © Author(s) 2025. CC BY 4.0 License. 40



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W15-2025
20th 3D Geolnfo Conference 2025, 2-5 September 2025, Kashiwa, Japan

Site Plot® Size (m?) Labeling Trees Usage
Site1  Plot 1.0 50 x 50 ML 98  train (small)
Site1  Plot 1.0 50 x 50 MC 108  train (small)
Site1  Plot 1.0 50 x 50 AL 90 train (small)
Site 1  Plot 1.1 100 x 100 ML 289  train (ext.)
Site1  Plot 1.2 120 x 80 MC 362  train (ext.)
Site1  Plot2 120 x 120 MC 377  train (ext.)
Site2  Plot 1 120 x 120 MC 435  train (ext.)
Site1  Plot 1.3 200 x 100 AL 624 train (ext.)
Site1  Plot2 150 x 100 AL 311  train (ext.)
Site1  Plot 3 100 x 100 AL 312 train (ext.)
Site3  Plot 1 50 x 50 ML 55 test

@ Plot 1.1, plot 1.2, and plot 1.3 partially overlap. Plot 1.0 is contained
within these plots.

Table 1. Overview of the data used in this study (ML = manual
labeling, MC = manual correction, AL = automatic labeling).

at breast height, and tree species) were available and used to
verify the labels.

Manual correction of DeepForest predictions. In order to
reduce the effort involved in fully manual labeling, this ap-
proach used the out-of-the-box DeepForest model (without fine-
tuning) to predict the initial tree bounding boxes. The predicted
bounding boxes were then manually inspected and corrected by
a human annotator using the RectLabel software.> As shown in
Fig. Ic, the labels from the manual correction of the DeepForest
predictions contain fewer and less overlapping bounding boxes
than the labels from the fully manual labeling. This can be at-
tributed to the fact that the out-of-the-box DeepForest model
mainly detects dominant trees, and the human annotator only
corrected clearly visible errors. The fully manual labeling and
manual correction of the DeepForest labels were performed by
different people. In the following, we refer to this approach as
‘manual correction’.

Automatic labeling using 3D point clouds. This approach
employs SegmentAnyTree (Wielgosz et al., 2024), a deep learn-
ing method for tree instance segmentation in 3D point clouds,
for fully automatic labeling of the aerial imagery. Specific-
ally, the PLS point clouds and the photogrammetric UAV point
clouds of the study sites were fused and processed using the
SegmentAnyTree model. The model segments 3D point clouds
into tree and non-tree points and outputs tree instance IDs for
each tree point (Fig. 2a). To project these per-point labels onto
the aerial imagery, the points were binned into a horizontal
2D grid with a grid size of 0.2 m based on their X Y-coordinates.
Each grid cell was assigned the tree instance ID of the highest
tree point within the grid cell. In this context, the height of a
point was defined as the distance from a digital terrain model,
which was reconstructed from the 3D point cloud using the
cloth simulation filtering algorithm (Zhang et al., 2016). Grid
cells that did not contain any tree point were marked as back-
ground. The result of this projection is a 1-channel label image
that contains the label of each pixel, i.e., the ID of the tree in-
stance or the background label (Fig. 2b). To remove noise from
the labels, the label image was post-processed by assigning grid
cells to the background if the height of the corresponding point
was less than 10 m above the ground. This threshold value was
chosen because all overstory trees in the study plots are lar-
ger than 10 m. Furthermore, a modal filter with a quadratic

3 RectLabel software: https://rectlabel.com/

3 x 3 kernel was applied to the label image to reduce noise res-
ulting from small gaps in the canopy. Finally, the pixel-wise
labels were converted into bounding-box labels by computing
the axis-aligned bounding box of the pixel mask of each tree
instance. Bounding boxes with a width or height of less than
2m were discarded, as these are typically false positive detec-
tions of the SegmentAnyTree model. As shown in Fig. 1d, the
bounding box labels obtained by this automatic approach ap-
pear to be visually similar to the labels obtained by manual la-
beling, although less accurate. In the following, we refer to this
approach as ‘automatic labeling’.

2.3 Data Partitioning

For our experiments, we divided the Sauen dataset into train-
ing and test sets. For each labeling approach, image regions
of different sizes and positions were annotated, since the la-
beling effort of the approaches differs, and for some regions, no
3D point clouds were available for automatic labeling. There-
fore, we experiment with different variants of the training set:

Small training set. To allow a fair comparison between the
labeling strategies, we use a small training set that contains the
same image region for all labeling approaches. This small train-
ing set consists of a 50 x 50 m plot from site 1 (plot 1.0 in
Table 1), for which labels from all three labeling approaches
are available (Fig. 1).

Extended training sets. To study the benefit of additional
training data, we perform additional fine-tuning runs with ex-
tended training datasets that contain all available data for the
respective labeling strategy from sites 1 and 2. The size of
these extended training sets differs for the different labeling
strategies, ranging from 1 ha for manual labeling to 4.5 ha for
automatic labeling (Table 1). There is some overlap between
the extended training sets (the data from the small training set
is included), but each extended training set also contains some
data that are not included in the extended training sets for the
other labeling approaches. For example, the extended training
sets for manual and automatic labeling contain only data from
site 1, while the extended training set for manual correction also
contains a 120 x 120m plot from site 2. Therefore, the ex-
tended training set variants should not be used to compare the
labeling methods against each other, but can be used to study
the benefit of additional data compared to the respective small
training set for the same labeling approach.

Test set. The same test set is used for all experiments, which
consists of a 50 x 50 m plot from site 3 (plot 1). To reduce
data leakage, no other data from site 3 is used in any of the
training set variants (the minimum distance between the plots
in the training and the test set is 350 m). Since we consider
manual labeling to be the most accurate labeling approach, the
test set was manually annotated, and the resulting labels were
used as a reference to evaluate the other labeling approaches.

2.4 Model Architecture and Training Settings

The base model for our fine-tuning experiments is the tree de-
tection model included in the DeepForest package (Weinstein
et al., 2020a), which uses the RetinaNet architecture (Lin et
al., 2017). The RetinaNet consists of two main components:
a backbone for feature extraction and a model head for object
detection. The backbone of the RetinaNet model in the Deep-
Forest package is based on the ResNet50 architecture (He et al.,
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(b) Label image obtained by
projecting the point-wise
labels to a 2D grid

(a) 3D point cloud segmented using
SegmentAnyTree

Figure 2. Examples of the intermediate data involved in the
automatic derivation of 2D bounding box labels from point-wise
tree instance segmentation labels of a 3D point cloud (different
colors represent different tree instance IDs and points or pixels
labeled as background are shown in gray).

2016). One of the key characteristics of the RetinaNet architec-
ture is that it constructs a multi-scale feature pyramid from the
input image, allowing it to detect objects at different image res-
olutions. The model head of the RetinaNet architecture com-
prises a classification network that predicts the probability of
object presence in a bounding box and a bounding-box regres-
sion network that refines the position and size of the detected
bounding boxes. The RetinaNet model of the DeepForest pack-
age was trained using a two-stage semi-supervised training pro-
cess (Weinstein et al., 2019, 2020a): In the first stage, the model
was pre-trained using a large-scale dataset with noisy labels that
were obtained by segmenting aerial point clouds using an unsu-
pervised algorithm (Silva et al., 2016). In the second stage, the
model was trained using a supervised learning approach, using
a smaller set of hand-annotated RGB images for some of the
sites it was fitted on in the previous stage. In total, the Deep-
Forest model was trained on a dataset of approximately 30 mil-
lion algorithmically annotated trees and 10 000 hand-annotated
trees (Weinstein et al., 2020a).

In our experiments, we fine-tune the DeepForest model on the
Sauen dataset using stochastic gradient descent with a learn-
ing rate of 0.0001. Following Weinstein et al. (2020a), we use
focal loss (Lin et al., 2017) as the loss function for the Retina-
Net classification head and /; -loss (mean absolute error) for the
regression head. When processing larger images, the Deep-
Forest package splits these images into fixed-size tiles. Since
our small training set variant and our test set each consist of a
single 50 x 50 m plot, we choose a tile width of 50 m, although
the DeepForest model was originally trained with a tile width
of 40 m (Weinstein et al., 2020b). We calculate the patch size
parameter of the DeepForest package (tile width in pixels) ac-
cording to the input resolution. Considering the dimensions of
the training plots (Table 1), the overlap between the tiles is set to
20 % to evenly distribute overlapping regions between the tiles.
Before evaluation, we post-process the model predictions by
applying non-maximum suppression with an Intersection over
Union (IoU) threshold of 0.5. We increase the IoU threshold
compared to the default value of 0.4 in the DeepForest pack-
age (Weinstein, 2025) because our dataset mainly covers dense
forest stands with a closed canopy, and we expect a higher de-
gree of overlap between the bounding boxes (Fig. 1b).

2.5 Evaluation

We evaluate the model performance using the standard met-
rics of precision, recall, and F;-score. We consider a predicted

bounding box to be a true positive if the IoU between the pre-
dicted and any reference bounding box is at least 0.4. For all
experiments, five fine-tuning runs with different seeds (0 - 4)
are performed, and the average and standard deviation of the
metrics across these runs are computed.

2.6 Experimental Design

In our evaluation, we study the impact of four fine-tuning para-
meters on the performance of the DeepForest model on the
Sauen dataset: (1) the labeling approach used to generate the
training data, (2) the input image resolution, (3) the number
of fine-tuning epochs, and (4) the size of the training set used
for fine-tuning. We consider the three labeling approaches de-
scribed in Section 2.2. We test four different input image resol-
utions, namely pixel sizes of 2.5 cm, 5cm, 7.5 cm, and 10 cm,
which are obtained by downsampling the original orthophotos
using bilinear interpolation. To identify an appropriate number
of fine-tuning epochs, we run each experiment for 20 epochs
and evaluate the model after each epoch.

Initially, we compare the different labeling approaches using
the small variant of the training set. Subsequently, we perform
additional fine-tuning runs using the extended training sets for
each labeling approach. We use a full factorial experimental
design, testing all combinations of the aforementioned para-
meter values with five different random seeds each (3 labeling
approaches x 4 input resolutions X 2 training set variants x
5 random seeds = 120 fine-tuning runs in total with 20 epochs
per run).

2.7 Implementation Details

All experiments were carried out on an ASUS workstation with
an AMD Ryzen Threadripper PRO 5955WX 16-core 4 GHz
CPU, 512 GB RAM, and a Nvidia GeForce RTX 4090 graphics
card. To include the latest updates to the DeepForest package, a
pre-release version of the package was retrieved from the main
branch of the Github repository (as of April 10, 2025).* Python
version 3.12, PyTorch version 2.4.1,° and torchvision version
0.19.1° were used.

3. Results and Discussion

The results of the fine-tuning runs for the small training set vari-
ants are shown in Fig. 3. Except for fine-tuning with manu-
ally corrected data, all tested fine-tuning scenarios with small
training sets lead to substantial improvements over the out-of-
the-box DeepForest model without fine-tuning (baseline). In
Fig. 4, the results of the fine-tuning runs on the small and ex-
tended training set variants are compared. For manually and
automatically labeled data, the inclusion of additional training
data leads to no or only minor improvements compared to the
small training sets. In contrast, the results of the fine-tuning
with manually corrected data improve when additional train-
ing data are used. As a result, for the extended training sets, all
fine-tuning scenarios produce an improvement over the baseline
model.

4 DeepForest GitHub repository: https://github.com/weecology/
DeepForest

3 PyTorch package: https://pytorch.org/docs/2.4/

% torchvision package: https://pytorch.org/vision/0.19/
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Figure 3. Performance of the fine-tuned DeepForest models after fine-tuning on the small variants of the training set. Results are
shown for different approaches to label the training data (individual lines), different input resolutions (columns), and different
numbers of fine-tuning epochs (x-axis).
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Figure 4. Comparison of the performance of the fine-tuned DeepForest models after fine-tuning on the small vs. the extended variants
of the training set. Results are shown for different approaches to label the training data (individual lines), different input resolutions
(columns), and different numbers of fine-tuning epochs (x-axis). The metrics shown are those for the test set of the Sauen dataset.
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(a) Model without fine-tuning
(baseline)

(b) Model trained w. manually
created labels (small training set)

(e) Reference labels (manual
labeling)

(f) Model trained w. manually
created labels (ext. training set)

corrected labels (small training set)

(c) Model trained w. manually (d) Model trained w. automatically

created labels (small training set)

(g) Model trained w. manually
corrected labels (ext. training set)

(h) Model trained w. automatically
created labels (ext. training set)

Figure 5. Predictions of the DeepForest models fine-tuned with different training set variants for the test set of the Sauen dataset. For
each training set variant, we show the predictions of the model corresponding to the epoch and random seed that achieved the highest
test F1-score, when training on the highest input resolution (2.5 cm pixel size).

Labeling approaches. Comparing the different labeling ap-
proaches on the small training set variant shows that manual
labeling and automatic labeling produce very similar results,
clearly outperforming manual correction in terms of the test
metrics (max. test Fq-score of 0.65 for manual labeling, 0.62
for automatic labeling, 0.27 for manual correction). In most
cases, fine-tuning on the manually corrected data even leads to a
performance degradation compared to the baseline. This can be
attributed to overfitting of the models, as fine-tuning with manu-
ally corrected data results in the highest training metrics (max.
train F;-score of 0.7 for manual correction, 0.65 for manual la-
beling, 0.41 for automatic labeling).

Visual inspection of the predictions shows that the models fine-
tuned with manually corrected data tend to predict too small
bounding boxes (Fig. 5c and Fig. 5g). This is most likely be-
cause the manual correction of the DeepForest predictions only
corrected clearly visible errors, so that the resulting labels con-
sist of smaller and less overlapping bounding boxes compared
to fully manual labeling (Fig. 1). The fine-tuning runs with
manually and automatically labeled data lead to very similar
test results, with manual labeling achieving only slightly higher
test metrics for image resolutions of 7.5cm and 10 cm. Visu-
ally, the results also appear similar (Fig. 5). This is surprising,
since the automatically generated labels contain visible seg-
mentation errors (Fig. 2a). However, the similar performance of
both approaches is probably due to the following factors: First,
the fine-tuning on the automatically generated labels is less af-
fected by overfitting, with the training metrics being even lower
than the test metrics. Second, the fine-tuning seems to mainly
fine-tune the general distribution (expected size and overlap) of
the bounding boxes, and these are similar in the manually and
automatically generated labels (Fig. 1).

Input resolution. We observe that the out-of-the-box Deep-
Forest model performs better at lower input resolutions. Spe-
cifically, the model tends to predict fewer and smaller bound-
ing boxes at lower resolutions (Fig. 6). This is consistent with
the fact that the DeepForest model was originally trained on
lower-resolution images with 10 cm pixel size (Weinstein et al.,
2020a). In our experiments, the best out-of-the-box perform-
ance is achieved for a pixel size of 7.5 cm (max. test F1-score of
0.17 for 2.5 cm, 0.2 for 5 cm, 0.27 for 7.5 cm, 0.24 for 10 cm).
After fine-tuning the model on the target resolution using the
small training sets, the trend that DeepForest performs better
at lower input resolutions is still recognizable (max. test Fi-
score of 0.59 for 2.5cm, 0.60 for 5cm, 0.61 for 7.5cm, 0.65
for 10 cm), but disappears when fine-tuning on the extended
training datasets (max. test Fi-score of 0.62 for 2.5 cm, 0.64
for 5cm, 0.62 for 7.5 cm, 0.59 for 10 cm). This indicates that
the RetinaNet model, despite using a multi-scale feature pyr-
amid, learns resolution-dependent features for the detection of
individual trees. Thus, its out-of-the-box generalizability to im-
age resolutions not included in the training set is limited. Given
these results, it is advisable to rescale the input images to a res-
olution similar to the original DeepForest training data if no
labeled data are available for fine-tuning. As we do not ob-
serve any clear advantage of a higher resolution, it seems reas-
onable to also use downsampled images for fine-tuning to in-
crease computational efficiency. Since similar performance is
achieved for all resolutions after fine-tuning, it remains unclear
from our results whether the model benefits from additional
contextual information that it can access at lower input resol-
ution or from a higher level of detail that is provided at higher
input resolution.

Number of fine-tuning epochs. When fine-tuning the Deep-
Forest model on the small training sets, the largest increase in
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Figure 6. Predictions of the out-of-the-box DeepForest model
for different resolutions of the test set of the Sauen dataset.

performance occurs in the first ten epochs of fine-tuning (Fig. 3).
In later epochs, test metrics increase more slowly or even deteri-
orate when fine-tuning with 7.5 cm and 10 cm resolution. For
the extended training set variants, an even smaller number of
fine-tuning epochs is sufficient to achieve a significant improve-
ment over the baseline (Fig. 4). This is most likely because
increasing the size of the training set results in more training
steps per epoch. Specifically, a significant increase in test met-
rics can be observed after a single training epoch when using
manually or automatically generated labels, and only small im-
provements occur in subsequent epochs. When fine-tuning on
the small training set, we observe a tendency for more epochs
to be beneficial when fine-tuning on low input resolutions than
on higher resolutions. This may be related to the fact that the
DeepForest model was originally trained on lower resolution
images, and a higher number of training steps is required to ad-
apt the model to higher input resolutions. However, when fine-
tuning on the extended datasets, this tendency is not visible.

Training set size. When comparing the results for the small
and the extended training set variants, it can be observed that in-
creasing the size of the training datasets accelerates the learning
process (Fi-score of 0.24 after one training epoch on the small
training set with manual labeling and 10 cm resolution, 0.58
after one training epoch on the corresponding extended train-
ing set) but does not significantly improve overall performance
(max. Fi-score of 0.65 on the small training set with manual
labeling and 10 cm resolution, 0.59 on the corresponding ex-
tended training set). This is surprising as the small training set
only covers a 50 x 50 m plot and contains a very limited num-
ber of training samples (Table 1). However, the plots included
in the small training set and the test set are very similar in terms
of the structure of the forest stand (both are stands with a dense,
closed canopy). Since some of the extended training sets cover
more diverse stand structures (e.g., regeneration sites with loose
canopy), their value may be reflected in the test metrics if these
stand types were also represented in the test set. Nevertheless,
our results demonstrate that the DeepForest model can be ad-
apted to fairly homogeneous target datasets with a very limited
amount of annotated data.

Precision vs. recall. Examining precision and recall for the
fine-tuning runs on the small training set reveals that the models
achieve considerably higher precision than recall on the training
set. On the test set, precision and recall are more balanced,
although precision remains slightly higher in most cases. This
indicates that the model is more prone to omission errors than
commission errors. One possible explanation is that the dataset
includes labeled trees whose crowns are only partially visible

in the orthophotos. The lower recall may also be due to the
post-processing of the model’s predictions with non-maximum
suppression, which may still be too conservative, as our dataset
includes highly overlapping bounding boxes.

Overall, our results demonstrate that the DeepForest model can
be adapted to new environments using a small amount of train-
ing data and with low computational effort. The performance of
our fine-tuned models is comparable to the results reported by
Weinstein et al. (2020b) for the Eastern Deciduous site (average
precision of 0.54 after cross-site training), which is character-
ized by a closed canopy similar to our dataset. However, the er-
ror rates of our fine-tuned models remain relatively high, indic-
ating that further improvements are necessary to obtain reliable
monitoring data. Errors are especially frequent in dense, homo-
geneous parts of the canopy, where identifying individual trees
is inherently difficult, even for humans. Future research should
focus on further enhancing accuracy in these challenging scen-
arios. Possible directions include exploring techniques that dir-
ectly predict tree crown polygons rather than bounding boxes,
as well as utilizing larger datasets for automatic training data
generation or unsupervised pretraining.

4. Known Limitations

The generalizability of our findings may be limited by the small
size and structural homogeneity of our test dataset (50 x 50 m,
55 trees). The test area closely resembles the forest structure of
the smaller version of our training set. As a consequence, our
results may underestimate the value of incorporating more di-
verse training data that represent a broader range of forest struc-
tures. Another limitation concerns inconsistencies in the an-
notation procedures: the fully manual labeling and the manual
correction of DeepForest predictions were performed by differ-
ent individuals and in different contexts. In the manual labeling
process, the crown polygons were annotated with the aim of
fully covering the crowns of all partially visible trees, using
field inventory data as a reference when available. In contrast,
the manual correction of DeepForest predictions focused only
on clearly visible errors, often omitting partially visible trees
and accepting tighter bounding boxes that excluded the outer-
most portions of the crowns. Therefore, our manual correction
approach reflects a low-budget scenario where only limited time
can be allocated to label correction. Unaffected by these differ-
ences, our comparison of manual and fully automated labeling
provides valuable insights into the potential of data fusion ap-
proaches for automated training data generation.

5. Conclusions

In this study, we fine-tuned the DeepForest model for forest tree
detection in high-resolution UAV imagery of temperate mixed
forests using a target dataset from Brandenburg, Germany. Our
results demonstrate that the model’s out-of-the-box perform-
ance is limited in this context, particularly when applied to
higher-resolution imagery than the model was originally trained
on. However, we show that its performance can be substantially
improved by fine-tuning it with a limited amount of labeled
data and only a few training epochs. By comparing different la-
beling strategies, we found that fully automated labeling based
on 3D point cloud segmentation achieves performance compar-
able to that of manual labeling. This suggests that, in scenarios
where dense 3D point clouds are available along with UAV im-
agery, a fully automatic labeling pipeline can potentially reduce
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or eliminate the need for manual labeling. However, the test
dataset used in our study is relatively small and structurally sim-
ilar to the training data, which may limit the generalizability of
our findings. Future research should therefore validate our res-
ults using larger and more diverse test datasets that better reflect
varying forest structures. Overall, our results confirm that the
DeepForest model can be successfully adapted to new environ-
ments through fine-tuning, but also highlight the need to further
improve accuracy in dense, homogeneous canopies.

6. Data and Code Availability

The Python source code of this study is available on GitHub:
https://github.com/aidtrees/deepforest-finetuning.
The data is available on request.
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