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Abstract 
Low-cost sensor solutions such as smartphones provide a great opportunity for democratization of mapping among different 
communities including those working in digital twin application areas. Smartphone acquired imagery and/or built-in LiDAR sensors 
provide relatively dense point clouds with limited accuracy especially in the absence of GNSS. This type of scanning tool can provide 
linear measurements in an inexpensive way and can be used with minimal operator training. In this study, we provide two solutions 
for improving the accuracy of the final point clouds produced by iPhone-based LiDAR and images. One solution utilizes length 
observations as constraints in the network. The other solution incorporates loosely coupled perspective centre (PC) positions obtained 
by ultrasonic ranging into a photogrammetric bundle adjustment. The test results show that inclusion of the length observations in the 
solution improves the relative accuracy of the point cloud for applications such as culvert mapping where absolute accuracy is not of 
high necessity. In the indoor mapping case, the relative point cloud accuracy for the solutions without and with the PC observations is 
approximately the same. However, image alignment success and computation time are significantly improved by including the PC 
observations. Moreover, the inclusion of PC observations provided better compensation of systematic image point errors. 

1. Introduction

The growing importance of new mobile devices with LiDAR 
sensors for reality capture data collection has been documented 
(Tavani et al., 2022). The use of these low-cost and ubiquitous 
devices lowers entry barriers to the ever-growing reality capture 
market (Vogt et al., 2021). However, it is well-studied in the 
literature that such mapping solutions have limited accuracy. 
There are other studies in the literature that address improving 
spatial accuracy of such sensors for different mapping 
applications. In one of our early studies, Chase et. al. (2022) 
tested the iPhone-13 Pro LiDAR using Modelar's scanning 
application with a network of GCPs. The study was conducted in 
a surveying lab at the University of New Brunswick, which 
contains a high-precision control network. Checkerboard targets 
were established at different heights and positions to ensure 
varied depths and exclude correlated errors. The performance 
was compared to a Trimble TX5 Terrestrial Laser Scanner (TLS) 
in a controlled environment. The absolute and relative accuracies 
were assessed by comparing test point coordinates and distances 
measured respectively, using a Trimble S9 total station as a 
reference. Results indicate that the iPhone-13 Pro achieved 
absolute accuracies of ±3 cm horizontally and ±7 mm vertically, 
and relative accuracies of ±3 cm.  

Other studies constrain the network with auxiliary observations. 
There exist several recent reports on the performance testing of 
these devices’ LiDAR sensors in support of various capture 
applications such as earth sciences (Vogt et al., 2021), forestry 
(Gollob et al., 2021), forensics (Kottner et al., 2023), indoor 
mapping (Teo, 2015) and cultural heritage recording (Teppati 
Losè et al., 2022; Vacca, 2023). Data quality is reported to be 
greatly influenced by the choice of the software app used to 
create the point cloud and many artefacts (Lichti et al., 2005) 
contaminate the data. The need for rigorous geometric modelling 
of the interior geometry of these devices and development of 
geometric calibration procedures has been identified has a high 
priority for high-quality metric reality capture. Moreover, the use 
of independent observations to improve the quality of point 
clouds produced from mobile devices requires additional 
investigation. 

In this submission, we introduce two studies relevant to iPhone-
based mapping solutions from two research labs in Canada: 
Advanced Spatial Intelligence Lab (ASIL) at University of New 
Brunswick (UNB) and Geospatial Vision Meteorology (GVM) 
Lab at University of Calgary (UC). One study focuses on 
constrained bundle adjustment using length observations in an 
indoor environment. The other study utilizes ultrasonic position 
observations as auxiliary data. 

2. Mapping Solutions

2.1 Length-based Constrained Network 

The accuracy of mobile LiDAR scans is compromised by 
tracking loss and positional drift, especially in indoor 
environments with minimal features, such as culverts. This part 
of the solution, tested in ASIL at UNB, aims to develop a 
methodology that mitigates these errors, enhancing the utility of 
mobile Camera and LiDAR for culvert assessments. In this study, 
while the absolute accuracy of the final 3D model is not the 
primary focus, ensuring high relative accuracy is crucial for 
effective culvert maintenance. For data collection using the 
iPhone LiDAR and RGB images the Modelar app was used.  

Linear constraints are independent distance measurements 
collected in the field. When implemented into bundle adjustment 
as constraints, they prevent the network from bending, twisting 
or scaling and, thus, improve the accuracy of the final 3D model. 
Figure 1 (right) represents one of the constrained networks tested. 
Pix4D was chosen as the software for processing due to its ability 
to implement constraints into its bundle adjustment. Different 
configurations of these constraints were tested, which will be 
discussed in a later section. The model created in this part of the 
study is called the Length-based Constrained Bundle Adjustment 
(LCBA).  
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Figure 1: left: the culvert scanned in this study; right: Config. 3 

for constrained lengths. 

2.2 Perspective Centre Position Aided Mapping Network 
 
Generating 3D indoor models can pose challenges due to the 
difficulty of accurately orienting photogrammetry sensors in the 
absence of GNSS signals, which are essential for precise 
positioning in outdoor environments. Traditional 
photogrammetric methods rely on ground control points 
established through conventional survey methods, which, while 
effective, are costly, labour-intensive, and limit scalability. 
Simultaneous localisation and mapping (SLAM) solutions offer 
an alternative by integrating sensor data to build 3D maps while 
tracking the sensor’s position in real time. However, SLAM 
approaches often struggle in feature-poor or highly similar 
environments, where a lack of distinct visual or geometric 
landmarks can lead to localization errors (Xiang et al., 2024). 
Additionally, SLAM is widely used in real-time applications, but 
its effectiveness is often limited by its high computational 
demands, which can introduce latency and reduce performance 
in systems with constrained processing power and memory 
(Semenova et al., 2024). Addressing these challenges is essential 
for facilitating the widespread adoption of indoor digital twin 
technology, especially in applications that demand frequent 
updates and high adaptability. 
  
ZeroKey’s Quantum RTLS (real-time location system) presents 
a potential solution for providing real-time position and estimates 
for photogrammetry sensors. This system employs a hybrid 
approach that combines ultrasonic time-of-flight (TOF) ranging 
with electromagnetic wave synchronization to achieve sub-
millimetre positioning precision (Leskiw et al., 2020). Unlike 
radio frequency-based indoor positioning systems such as ultra-
wideband and Bluetooth, which suffer from limited accuracy due 
to signal interference and multipath effects (Singh et al., 2024), 
ZeroKey’s system utilizes ultrasonic waves for its range 
measurements. Because sound waves travel significantly slower 
than radio waves, the Quantum RTLS can achieve finer distance 
resolution, contributing to high-quality range measurements. To 
ensure synchronization, the system leverages electromagnetic 
signals as a precise time reference, mitigating clock drift and 
latency issues that typically affect TOF-based methods. The 
ZeroKey system comprises a set of synchronized anchor nodes 
mounted throughout measurement volume site and a mobile 
node. 
  
The high-accuracy positioning provided by the Quantum RTLS 
system has the potential to eliminate the need for traditional 
ground control points—much like GPS did for aerotriangulation 
in the early 1990s. GPS-assisted photogrammetry revolutionized 
aerial mapping by reducing the number of ground control points 
(GCPs) required to control error propagation in a block. The 
inclusion of perspective centre (PC) observations in the block 
served to control error propagation. Thus, instead of a dense 

network of GCPs, as little as four were needed, provided certain 
conditions were met (Ackermann, 1992). Moreover, the 
inclusion of the PC position observations will accurately scale the 
photogrammetrically produced point cloud. Point clouds 
generated from structure from motion processing pipelines are 
often arbitrarily scaled. External information is needed to provide 
metric scale for the bundle network, which can be provided by 
accurate PC observations. Our vision is to integrate Quantum 
RTLS observations of the mobile device into the bundle 
adjustment framework. This paper investigates the implications 
of this integration for image-based networks. Future research will 
explore its impact on LIDAR-based networks. 
 

3. Experiment Descriptions 

3.1 Length-based Constrained Network 
 
The first solution was implemented at a culvert site in New 
Brunswick, Canada (named L458) and was chosen for its 
challenging scanning conditions. The length of the culvert is 
around 60m with the diameter of around 5m. Data collection 
involved three main stages: target placement, mobile LiDAR 
scanning using the Modelar application (which uses a SLAM 
solution for 3D mapping), and ground truth data collection using 
a Trimble TX5 TLS and a total station. Reflective targets were 
placed at ~2.5 m intervals within the culvert, and their 
coordinates were recorded using the total station. Mobile LiDAR 
scans were performed in sections to limit error accumulation; 
and, as constraints, distance measurements between targets were 
taken using a Leica Disto D2 laser distance measurement tool. 
Three distinct datasets were processed: the ground truth TLS 
data, the Modelar scan data, and the LCBA model. The TLS data 
were processed using Faro Scene, while the Modelar data was 
processed using its proprietary software. The LCBA model was 
processed in Pix4D Mapper, incorporating linear constraints 
derived from the distance measurements. This approach aimed to 
correct positional drift and improve the overall accuracy of the 
mobile LiDAR scans. 
 
Modelar uses Apple's SLAM framework to estimate the device 
positions relative to a starting position. For this experiment no 
additional corrections were performed to improve these 
estimates; the results are therefore determined entirely by the 
quality of the underlying SLAM system. The accuracy of the 
Modelar scans was evaluated by comparing them to the ground 
truth TLS data using CloudCompare software. The analysis 
focused on the mean distance and deviations in the X, Y, and Z 
directions. For the ease in data collection the culvert was divided 
into 3 sections and the resulting point clouds were registered 
together to make the full culvert 3D model. For testing the 
configuration of the length-based constrained, three 
configurations of Across_diagonal (Config. 1), Across_short-
length (Config. 2), and Across_diagnal_short-length (Config. 3), 
were tested to determine the optimal setup for improving scan 
accuracy (Figure 2).  
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Figure 2: Different configuration of the linear constrained tested 

3.2 Perspective Centre Position Aided Mapping Network 

The second solution investigated was mobile phone imagery 
loosely coupled with an external positioning system tested in an 
indoor environment at the University of Calgary. A recently 
renovated and furnished kitchen and dining area (approximate 
dimensions of 8 m x 6 m x 3 m; Figure 3) was mapped with 
several sensors. An Apple iPhone 12 Pro mobile device was used 
to collect both images and LIDAR data. The primary (wide) 
camera of the phone, which has a sensor format is 4032 x 3024 
pix, was used. The nominal physical focal length 4.2 mm, with a 
35mm equivalent focal length of 26 mm. The aperture was set to 
f/1.6 for data capture. LiDAR data were captured with the 
Record3D app at 6 fps using the highest available resolution. Ten 
ZeroKey anchors were installed throughout the measurement 
volume, most of which (eight) were on the ceiling.  
  
To tightly control the experiment conditions, the iPhone and the 
mobile ZeroKey were mounted in a smartphone rig (Figure 4) 
and set up on a tripod at a height of 1.5 m above the floor. Data 
were captured in two laps round the periphery of the room. The 
tripod stations were spaced to achieve 60-80% overlap between 
adjacent images. For the first lap, the camera faced the direction 
of travel, while for the second lap it faced inward. A total of 181 
images stations were captured. A landscape format image and 
LiDAR data along with 30 s of ZeroKey position data were 
collected at each station. Terrestrial laser scanner data were 
collected as reference data to quantify the quality of point clouds 
derived from the iPhone sensor data. Six scans were captured 
from around the room with a Faro Focus 3D scanner. These data 
were finely registered in CloudCompare following coarse, 
manual registration. 
 

 
Figure 3. University of Calgary indoor environment.  

 
Photogrammetric data processing was performed using Agisoft 
MetaShape. Two processing cases were preformed: one that 
incorporated the Quantum RTLS camera PC positions as 
observations into the self-calibrating bundle adjustment; and one 
that did not. The self-calibration model included the principal 
distance, principal point, three radial lens distortion terms and 
two decentring lens distortion terms. Rolling shutter 
compensation was also included. 
 
Recent quality assessment findings for the ZeroKey system 
(Nayko and Lichti, 2025) indicated sub-centimetre positional 
accuracy can be achieved. However, a more pessimistic value of 
0.05 m for the PC positions’ a priori standard deviation was 
required for the bundle adjustment. Some of the pertinent 
software settings common to both processing cases were 
exclusion of stationary tie points and moderate depth filtering for 
point cloud densification. The generated dense point clouds were 
registered by ICP to the laser scanner point cloud in 
CloudCompare using the same procedure of coarse manual 
alignment followed by fine registration. 
 

 
Figure 4. Smartphone rig with Apple iPhone 12 Pro and 
ZeroKey Quantum RTLS mobile node (at upper left). 

 
4. Experiment Results 

This section reports the results of the two solutions that were 
compared against ground truth. Table 1 lists the accuracy metrics 
used in this study.  
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Metric  Description  

Mean Distance (MD)  
The average absolute 
deviation between the test 
and reference (TLS) data.   

Error in X, Y, Z Directions  
The standard deviation 
(STD) between nearest 
points in certain direction  

Confidence Interval (CI) 99% considering normal 
distribution 

Root mean square (RMS) 
The square root of the mean 
squared distance between 
point clouds. 

 
Table 1: Accuracy assessment metrics used. 

4.1 Length-based Constrained Network 
A comprehensive evaluation using CloudCompare’s analysis 
tools was conducted to assess the absolute accuracy of the 
Modelar point cloud and the effectiveness of the applied 
constraints in improving positional accuracy.  
 
The analysis incorporated a quantitative comparison between the 
reference point cloud and the test point clouds, presented in 
histograms for the original Modelar scan (Figure 5) and the tested 
configurations (Figure 6). In these visualizations, blue tones 
indicate minimal deviations, while red tones highlight maximum 
discrepancies, providing a clear and intuitive representation of 
the data’s reliability and the scanning method’s overall 
performance. The horizontal axis shows the deviation between 
the two-point clouds (i.e., cloud-to-cloud distance: C2C), while 
the vertical axis represents the number of points. 
The C2C error graph was generated by comparing the scan data 
to a full culvert model, which was assembled by visually aligning 
the three sections from the worst of the two available passes. This 
approach was intentional, designed to provide the team with a 
suboptimal reference model to highlight areas requiring 
correction. As a result, some of the observed errors likely reflect 
this intentionally degraded alignment and may not be 
representative of typical performance. Therefore, the error 
distribution should be interpreted with this context in mind. The 
intention was not to compare the individual sections to the full 
registered culvert model, but rather to demonstrate that, after 
registration, the sections achieved results comparable in accuracy 
and quality to the complete model. 

 
Figure 5: C2C distance of the Modelar raw point clouds with 

the reference point cloud 

 

 
Figure 6: C2C distance of the test point clouds with the 

reference point cloud 

Tables 2 and 3 compare the accuracy of different configurations 
to the original (Modelar SLAM) and registered point clouds. The 
LCBA Config.3 model showed significant improvements, with a 
mean distance error reduced to 5.8 cm, compared to 17.4 cm for 
the unconstrained Modelar scans. The integration of linear 
constraints into the mobile LiDAR scanning workflow resulted 
in an improvement in relative scan accuracy. 
 

Model MD 
(m) 

STD (m) 

X Y Z 

S 
L 
A 
M 

Full Modelar 

0.065 0.185 0.099 0.168 

L 
C 
B 
A 

Sec. 3 

Config 1 0.064 0.147 0.113 0.165 

Config 2 0.058 0.089 0.099 0.149 

Config 3 0.028 0.047 0.046 0.072 

Full Registered 0.031 0.059 0.053 0.08 

 
Table 3: The MD and STD results of the first solution in this 

study.  
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Model CI (m) 

X Y Z 

S 
L 
A 
M 

Full Modelar 0.168 0.478 0.255 

L 
C 
B 
A 

Sec. 3 

Config 1 0.165 0.379 0.291 

Config 2 0.149 0.229 0.255 

Config 3 0.072 0.121 0.118 

Full Registered 0.08 0.153 0.136 

 
Table 4: The CI results of the first solution in this study. 

4.2 Perspective Centre Position Aided Mapping Network 
 
Pertinent results from the bundle adjustments are first analysed. 
The image point residuals indicate the quality of the 
observations’ fit to the collinearity model. The overall root mean 
square (RMS) of the residuals (reprojection error) for the cases 
without PC observations and with the ZeroKey PC observations 
were 0.71 pix and 1.21 pix, respectively. The inflation of the 
latter case can be expected due to the introduction of another set 
of observations. However, the compensation of systematic errors 
appears to be superior for the case with PC observations. Figure 
7 shows the residual vectors for the adjustment without positions. 
Evidence of unmodelled radial distortion is visible, whereas the 
residuals from the case with PC observations (Figure 8) exhibit 
random behaviour.  

 
Figure 7: Image point residuals from the self-calibration without 

PC position observations. 

The RMS of differences between the photogrammetrically 
generated point clouds and the laser scanner data were 0.039 m 
and 0.040 m, respectively. Thus, based on model fit and overall 
3D reconstruction accuracy, the introduction of PC observations 
is effectively the same as the case without any prior positional 
information. 
 
 

 
Figure 8: Image point residuals from the self-calibration with 

PC position observations.  

With PC 
obs? 

With guided 
image 

matching? 

# of images 
aligned (out 

of 181) 

Processing 
time to align 
images (s) 

No No 181 124 

No Yes 115 11 

Yes Yes 181 55 

 
Table 4. Photogrammetric alignment and processing time. 

 
Reduction in photogrammetric processing time and improved 
alignment success were found to be advantages of incorporating 
the PC observations. Table 4 provides a summary for three 
different cases: with PC observations and guided image 
matching; and two cases without PC observations, with and 
without guided image matching. Guided image matching can 
increase the number of key points extracted from each image 
without significantly increasing processing time (Agisoft LLC, 
2024). Without PC positions, image alignment is successful but 
takes much longer without the guided image matching option. 
Although processing time for image alignment is reduced by an 
order of magnitude, 36% of the images could not be aligned. 
Inclusion of the a priori PC positions allows all images in the 
network to be aligned, although the processing time compared to 
the case without the extra observations increases by 5x. However, 
this is an improvement in processing time over the base case by 
more than 2x. Thus, including PC observations is beneficial to 
the success of image alignment and can improve alignment time. 
 

4. Conclusions 

The solution regarding the optimized constraint configuration 
across the full culvert demonstrated a marked improvement in the 
accuracy of the LCBA model. The final mean error of Modelar 
SLAM was reduced to 5.8cm, with the X direction showing the 
least deviation and the Y and Z directions exhibiting slightly 
higher errors, likely due to the alignment of targets along a single 
plane. Among the tested configurations, Config. 3 proved to be 
the most effective, achieving an average distance of 5.3 cm and 
confirming the importance of incorporating measurements along 
the culvert’s length in both cross and alongside directions.  
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In the indoor mapping case, the relative point cloud accuracy for 
the solutions without and with the PC observations was 
approximately the same, 3.9 cm and 4.0 cm, respectively. 
However, image alignment success and computation time are 
significantly improved by including the PC observations. 
Moreover, the inclusion of PC observations provided better 
compensation of systematic image point errors. 
 
In this study, we proposed two solutions for 3D mapping, which 
serves as the foundation for digital twin applications. The overall 
conclusion is that if lightweight SLAM algorithms, such as the 
Modelar iPhone app, are supplemented with external auxiliary 
observations for Exterior Orientation Parameters (EOP) from 
systems like ZeroKey, the accuracy can be significantly 
improved. In cases where the EOP auxiliary measurements are 
not available, length constraints can still be valuable for 
generating scaled 3D models. When absolute positioning is 
required, georeferencing becomes essential. 
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