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Abstract

As urban environments become increasingly vertical, Land Administration Systems (LAS) must support complex 3D spatial repres-

entations. While Building Information Models (BIM) offer such capabilities, they are not always available. This paper investigates

an alternative approach using point clouds for 3D LAS, focusing on the integration of scanned cadastral floor plans and airborne

LiDAR from the Actueel Hoogtebestand Nederland (AHN). We present a semi-automated pipeline that extracts floorplan geo-

metries, segments and enhances AHN data, and synthesizes room-level point clouds. Results from a case study in Rotterdam

demonstrate the potential of this approach in the absence of BIM, supporting legal space definition and public visualization. How-

ever, challenges such as misalignment due to occlusion in AHN data and inconsistent quality in older floor plan drawings affect

the accuracy and automation of the process. The synthetic point clouds include room-level attributes, enabling a seamless integra-

tion with AHN, offering a representation of real-world features such as building facades, walls, and fences, which often delineate

cadastral boundaries.

1. Introduction

Rapid growth in urban areas has led to an increasing number

of apartment buildings. This growth requires a LAS capable of

optimally storing and visualizing the legal status of these struc-

tures, ideally with 3D representation. LAS is a system formed

by land administration and land registration, which maps the

land parcels and registers their Right, Restrictions, and/or Re-

sponsibilities (RRR). Building Information Modeling (BIM) has

been widely used in various studies as 3D representation in di-

gital twin (Nguyen and Adhikari, 2023; Alonso et al., 2019),

demonstrating great potential to represent LAS (Mao et al., 2024;

Meulmeester, 2019). However, since not all buildings have

BIM data available, it raises the question of how to address this

limitation.

Recent studies have used point clouds as the basis for creating

digital twins. Baauw (2021) studies that the AHN point cloud is

capable of fulfilling the basic requirements of a digital twin as it

provides a realistic 3D visual representation and, through seg-

mentation and classification, the semantic information can be

derived, allowing direct interaction. Using point cloud, histor-

ical or previous epoch data can be easily compared for change

detection and integrated with temporal attributes. However, as

the point cloud from ALS can only capture the exterior building

envelope, an additional method to model the walls and slabs for

property boundaries needs to be explored. In the Netherlands,

providing notarial deeds to the Cadastre government is obligat-

ory, including floor plans to register the apartment rights. As

the land administration system required a real-world presenta-

tion, this study attempted to visualize the 3D LAS by directly

using the point cloud, enriching its semantics, and representing

the 3D spatial unit derived from the floor plan.

2. Related Works

2.1 AHN Point Cloud

AHN is a Dutch national dataset acquired using ALS techno-

logy containing a point cloud, digital terrain model, and digital

elevation model. Point cloud is a set of 3D data points that can

be organized to capture geometric information of the entire 3D

object, and also can contain attributes like semantic information

(e.g. classification) and RGB color. Since its first measurement

in 1996, AHN has been updated for a period of time and pro-

duced 5 (five) data series. AHN has a height accuracy of no

more than 5 (five) cm with a point density between 6 and 10

points per square meter for AHN2 and AHN3 and between 10

and 14 points per square meter for AHN4. The planimetric ac-

curacy of AHN versions 2 to 4 is roughly 5 cm random error and

8 cm systematic error (AHN, 2020). Since AHN3, the classific-

ation has been provided, such as ground, vegetation, building,

and water (AHN, 2020); however, the current AHN5 still does

not have a sufficient classification for building class as it only

classifies the roof, not the entire building as done in AHN3 and

AHN4.

2.2 Point cloud for 3D Land Administration

Visualization in the Land Administration context focuses on the

representation of ownership boundaries and their related legal

information. With a 3D map, the visualization is upgraded to

more complex 3D structures with a sense of depth that is closer

to the real world representation (Pouliot et al., 2018). A 3D par-

cel is the fundamental spatial unit in a LAS to which a unique

and homogeneous set of rights, responsibilities, and restrictions

(RRRs) is assigned. Homogeneous means that the same com-

bination of RRRs applies uniformly to the entire 3D spatial unit.

The 3D parcel is the largest spatial extent where this homo-

geneity holds; extending the parcel would introduce different
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Figure 1. 2D Floor plan example in notarial deed (Meulmeester,

2019)

RRRs, while subdividing it would create neighboring parcels

with identical RRRs (Oosterom et al., 2011).

Various studies have explored the use of point clouds for 3D

Land Administration. Koeva et al. (2019) demonstrated the

ability to automatically detect changes in building geometry

over time by utilizing point clouds linked to the Land Admin-

istration Domain Model (LADM). The study showed prom-

ising results, as relevant changes for 3D Land Administration

(e.g., walls and rooms) could be differentiated from tempor-

ary changes (e.g., people and furniture) and were connected to

spatial subdivisions. This approach enables the Land Admin-

istration database to be updated based on the detected changes.

However, the study was conducted in a university building, which

does not fully represent the full range of real-world scenarios

involving private units.

Another study by Bydłosz et al. (2021), in Cracow Country,

Poland, proposed a 3D LAS using 3D BIM reconstructed from

TLS point clouds. While point clouds offer a more realistic rep-

resentation and can accommodate differences from the original

architectural design, preparing a 3D model using TLS involves

significant costs in terms of both time and money, which is not

always possible, especially for large-scale.

2.3 Floor Plan

When registering land, the boundaries of a parcel must be clearly

drawn to represent the exact division between it and neighbor-

ing properties. In the case of apartment buildings, the bound-

aries become more complex, as they must be represented not

only on horizontal planes but also on vertical planes. There-

fore, as stated in Articles 5 and 6 of the Implementation Regu-

lation of the Land Registry Act 1994, a detailed drawing must

be included when registering an apartment unit in a notarial

deed. This drawing should depict the boundaries of the land, as

well as a floor plan that clearly illustrates the division of private

and common areas on both the ground floor and upper floors of

the building (Koninkrijksrelaties, n.d.). Figure 1 illustrates that

property boundaries are outlined with thick black lines (Meul-

meester, 2019), which are more prominent compared to normal

walls.

2.4 Parsing Floor Plan

Yin et al. (2009) describes that to decipher layout information,

parsing the floor plan is required, which involves four steps:

(1) Noise removal: A scanned image often contains noise and

irrelevant details that need to be removed through image clean-

ing in order to enhance the quality of graphics recognition; (2)

Text extraction: The system identifies and separates text from

other graphical elements to facilitate further analysis; (3) Vec-

torization: To transform image pixels to the geometric primit-

ive traditionally includes two steps. First, the raster bitmap is

converted to a set of pixel chains with algorithms like paramet-

ric model fitting (HT), contouring, and skeletonization. After

that, by implementing polygonal approximation or estimating

curvature to determine key point segments, point chains can be

segmented into sets of lines, polylines, and circular arcs; (4)

Symbol recognition: After vectorization, it identifies and or-

ganizes architectural symbols or elements by using predefined

constraints, thereby creating a structured representation of the

building layout.

Thus, the floor plan would be preprocessed first, including clean-

ing the scanned image file, increasing the quality, and adjust-

ing its scale and orientation for easier further processing. After

georeferencing the raster file using QGIS, the information must

be extracted for vectorization. Nottrot et al. (2023) utilized

OpenCV to generate building outlines for each floor by identi-

fying shape contours and drawing a convex hull from floor plans

that contain multiple floors on a single page. The corresponding

floor can be identified from the text using ACV. The resulting

outline is then compared to the BAG polygons to match their

scale and orientation, ensuring consistency with real-world rep-

resentations.

3. Methodology

Three cadastral apartment drawings from Kadaster are used as

samples for this research, drawn in different years: 1999, 2002,

and 2019, located in the Rotterdam municipality. To reconstruct

building point clouds from the apartment drawings for 3D LAS

web visualization, five main steps are conducted. The follow-

ing subsection will address the following challenges: (1) What

is the suitable method to parse the cadastral floor plan? (2) How

can the AHN data sets (time series, multiple versions) be integ-

rated and pre-processed to best represent building outer envel-

opes? (3) What approach can be used to represent apartment

spatial units and their boundaries using point cloud?

3.1 Parsing Floor Plan

Parsing the floor plan starts by preprocessing a single PDF (scan)

of the cadastral apartment that contains multiple floor plans of

one building. Please note there are two type of boundaries on

the floorplan: the thick boundaries represent property boundar-

ies (with a identifying label) and the thin boundaries represent

the spaces inside of them. The Python package easyOCR is

used to detect floor keywords and cadastral id. The OpenCV

library is then applied to detect contours in the drawing near

the label. If a matching contour was found above the label, it

crops the image using the bounding box of the contour and ex-

ports it into a PNG image. depicts the vectorization process.

Initially, each PNG image must first be converted into gray-

scale. Using OpenCV, it applies thresholding to create an inver-

ted binary image, where pixel values greater than the threshold

become 0 (black), while pixels with lower values (darker) be-

come 255 (white), with the threshold determined automatically

from the image histogram. Followed by morphological opera-

tions with their corresponding kernels; morphological opening,

remove white pixels near edges first (erosion) then add white
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pixels around edges (dilation) to remove noise, and morpholo-

gical closing, add white pixels near edges first (dilation) then

remove pixels around edges (erosion) to fill small gaps to en-

sure full contours of walls are formed. Afterwards, it retrieves

all contours and simplifies them to ensure the contour shape

without redundant vertices. The tiny areas, less than 500 pixels,

are removed. This minimum area, however, also relied on the

resolution of input image. Before the remaining contours are

converted into a polygon using Shapely, their Y coordinates are

flipped to conform to the standard Cartesian coordinate system

used in GIS platforms and in mathematics, and any wiggles in

the remaining contours are cleared through contour approxim-

ation with a certain epsilon. The polygons are simplified again

with the simplify and buffer method from Shapely and rectan-

gularized, ensuring the symmetric shape of the polygons and

removing redundant vertices. The parameters used in these

Shapely functions have a similar effect to the epsilon parameter

in contour approximation, controlling the balance between sim-

plification and shape fidelity. OCR reads the room numbers in

the image and assigns the room number if it is inside the room

polygon. All room polygons in the same image or floor are

extracted into each layer of a geopackage file per building.

3.2 Georeferencing Floor Plan

Coordinate transformation typically involves three fundamental

steps: scaling, rotation, and translation (Wolf et al., 2014). Geor-

eferencing is initialized by matching the CRS, then computing

the orientation of the floor plan and parcel polygon using their

respective MBR. The computation involves creating a convex

hull to simplify geometry, where each pair of consecutive ver-

tices is extracted from its exterior coordinates to form an edge.

For each edge, its x and y differences (dx,dy) between the pair

of vertices and their arc-tangent are calculated to determine its

angle or direction towards the horizontal line (x-axis). The ori-

ginal polygon is virtually rotated by the negative of that angle to

align that particular edge horizontally. After each rotation, the

area of the bounding box is calculated, which varies depending

on the angle of rotation. The angle with the smallest bounding

box area is chosen, representing the most compact and efficient

rectangular representation of the shape. The difference between

the MBR angle of the cadastral and the floor plan reveals how

much the floor plan must be rotated to align with the cadastral.

After the floor plan is rotated at this angle, the bounding box of

the rotated floor plan and the parcel polygon are recalculated to

measure the x and y scale factor by comparing their width and

height extent. Following this, translation offsets are computed

by aligning the lower-left corners of the latest bounding boxes

to shift the floor plan exactly at the cadastral footprint. The

polygons are then georeferenced based on the cadastral polygon

downloaded from PDOK.nl using minimum bounding rectangle

(MBR) calculation.

3.3 Combining Multiversion AHN Point Cloud

Combining multiple versions of AHN can overcome the oc-

clusion of the latest version of AHN data as demonstrated in

Figure 2. In this example, missing sections of a building in

one version are completed by corresponding parts from another

version. This improvement is due to the variations in the flight

path during AHN laser scanning, resulting in different parts of

the building being scanned. Therefore, the AHN from multiple

versions, from AHN 1 to AHN 5, would be combined together

and cropped with 1-meter buffer towards the building footprint

(a) AHN5 (b) AHN 1–5

Figure 2. Comparison of AHN datasets: (a) AHN5 and (b) AHN

1–5

obtained from pdok.nl to retrieve the building points. A seg-

mentation process should be implemented to distinguish outside

walls and roofs of building points.

3.4 Ground Classification using Cloth Simulation Filter

(CSF)

Ground points are filtered using the CSF through filters.csf fea-

ture in PDAL. CSF is based on simulating a simple physical

process to extract ground points from LiDAR points. It inver-

ted the original point cloud, and then a rigid grid called cloth

was dropped onto the inverted surface from above. The inter-

actions between the nodes of the cloth and the corresponding

point clouds can determine the final shape of the cloth to distin-

guish point clouds into ground and non-ground points. There

are user-defined parameters: resolution, which represents grid

resolution or cell size; step or time step, which adjusts the trans-

lation of points due to gravity during each iteration; and rigid-

ness, which determines the stiffness of the cloth, where a higher

value is preferred for flat terrain while a lower value is sugges-

ted for steep slopes (Zhang et al., 2016).

3.5 Segmenting AHN Point Cloud

Segmentation is grouping several homogeneous points based on

their common features. RANdom SAmple Consensus (RANSAC)

is a model-fitting method that uses a mathematical representa-

tion. It defines a model parameter from a minimum sample of

random points. Iteratively checking their neighboring points,

then a consensus set is formed if they are a match. The non-

ground points identified by the CSF filter are iteratively seg-

mented into individual planar patches using RANSAC, imple-

mented via the segment plane function from Open3D, with a

distance threshold of 0.3 meters and a minimum of 3 points.

Normal for each point in the plane is estimated through Open3D’s

estimate normal function and converted as a numpy array with

Numpy’s asarray to compute the angle between the normal vec-

tor and the vertical Z-axis using the inverse cosine (arccos). By

calculating the angle of arccos degree, the points can be classi-

fied into Flat Roof if the angle of normal is below 25°, Sloped

Roof if the angle is between 25 and 60°, and Wall if the normal

is more than 60 °.

3.6 Generating Synthetic Point Cloud

To construct a synthetic building point cloud, it initially load

a floor plan layer from a Geopackage input file and iterates

through each room polygon, searching the boundary using poly-

gon.exterior and calculate its boundary to estimate how many

points are needed to be created based on the user-defined point

density, where 20 points per square meter as point density means

0.05 m spacing between points. Following that, it iterates over

the number of points and, by using linestring.interpolate on the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W15-2025 
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W15-2025-9-2025 | © Author(s) 2025. CC BY 4.0 License.

 
11



boundary line, it returns a point with 0.05 spacing, generating

points with even spacing on the boundary line of every room

polygon. Each point is then iterated and numpy.arrange(start,

stop, step) is implemented to generate points along the z-axis

from the floor to the ceiling with the height of the floor as start,

the height of the ceiling plus the spacing as stop, and the spacing

as step. The 3D coordinates along their attributes are stored as

well inside this loop, creating the wall points that are generated

vertically along the boundaries of the polygon from the floor to

the ceiling. The height for the ground floor is calculated based

on the ground point from AHN, while the height for the ceiling

is computed based on the average height of the roof point in

AHN divided by the total number of floors above the ground.

The bounding box for every room polygon is computed to gen-

erate a grid of points within the interior of the polygons, creat-

ing a floor and a ceiling with different z coordinates. After it

iterates through all floor layers, all the points are combined into

a new pandas.DataFrame along their attributes, then exported

into a LAZ 1.4 point cloud file with the same CRS as the AHN

file. Each point is assigned a unique ID along their detected ca-

dasral ID which is also used as classification for the LAZ file.

The entire process of this step is outlined in

3.7 Point Cloud Alignment

After the synthetic point cloud is generated, it will be aligned

to AHN using ICP. ICP is a popular spatial registration-based

method to align two point cloud datasets. The algorithm oper-

ates over two main steps: first, it initially finds correspondences

between the target point cloud and the source point cloud by

finding the nearest neighbor in Euclidean space; second, given

these correspondences, it iteratively estimates the optimal ri-

gid transformation that best aligns the source to the target by

minimizing cost function (the sum of squared distance between

matched pairs) until convergence or the value is less than the

threshold. This algorithm is known as point-to-point ICP with

equation as follow:

E(T) =
∑

(p,q)∈K

((p−Tq) · np)
2

(1)

The other ICP variant, point-to-plane ICP, uses the intersec-

tion of the normal point in both datasets to determine the cor-

responding points. To increase convergence speed, the cost

function is improved by replacing point-to-point distances with

point-to-plane distances, which minimizes the distance between

the source point and the tangent plane of the corresponding tar-

get point (Wang and Zhao, 2017). The formula for this method:

E(T) =
∑

(p,q)∈K

∥p−Tq∥2 (2)

After the alignment, both point cloud, AHN and synthetic floor

plan point cloud will be combined into one LAS file with the

same header as the latter to preserve the generated attributes.

Since AHN is the envelope of the building, the kadaster ID for

AHN would be the same as the outer wall in synthetic points,

which is the name plus 0, as there is no cadastral number.

4. Results and Discussion

(a) Sample 2 (b) Sample 3

Figure 3. Noises in Image that needed to be cleaned manually

During the preprocessing of the image, OCR can read the floor

label that is associated with keywords such as ”begane” and

”verdieping”; as a result, the contour block for each floor is

able to be generated. The interior of the apartment can be de-

tected and vectorized into geometric polygons. Cadastral apart-

ment drawings depict cadastral boundaries with thicker lines

and room segmentation with thinner lines. The algorithm is

able to differentiate the thicker and thinner lines in the newest

cadastral drawing, thus generating cadastral boundaries without

room segmentation; on the contrary, for old cadastral drawings,

Sample 1 and Sample 3, the polygons are generated from all

room segmentation, not cadastral boundaries, as the thick lines

are hard to distinguish even by eyesight. Some input images

need to be cleaned manually using an image editor due to in-

consistent lines or stair areas that cannot be detected during

the automatic cleaning process. As Sample 1 does not require

any manual cleaning, Sample 2 in Figure 3 shows that stairs

and annotations in the drawing create noises, and inconsistent

width boundaries lead to lines not being generated, while stairs

in Sample 3 prevent room segmentation. The parameters must

also be tuned for different drawing files, as each file may vary

in resolution, style, and quality. The kernel size affects the res-

ult, where a higher kernel size in the open kernel removes more

and larger noise. In contrast, in the close kernel, it connects

larger gaps, which also influences thicker lines to be generated

instead of thinner ones. A higher epsilon results in simpler con-

tours with fewer vertices, while a lower epsilon retains more

detail but may introduce jagged or overly complex geometries.

This effect also applies to the parameters in simplify and buffer.

The specific parameter values used are listed in Table 1 below.

Parameter

Process Sample 1 Sample 2 Sample 3

open kernel 3x3 2x2 2x2

open iteration 3 2 1

close kernel 20x20 10x10 5x5

close iteration 1 2 1

epsilon 0.013 0.001 0.005

simplify 10 1 9

buffer 8 5 5

Table 1. Parameter during Vectorization

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W15-2025 
20th 3D GeoInfo Conference 2025, 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W15-2025-9-2025 | © Author(s) 2025. CC BY 4.0 License.

 
12



(a) Vectorization Result in

Sample 1

(b) Vectorization Result in

Sample 2

(c) Vectorization Result in Sample 3

Figure 4. Vectorization Result in All Samples

As described in previous section, the georeferencing algorithm

estimates transformation parameters, including rotation, scal-

ing, and translation. Although the georefencing algorithm uses

a simple calculation, it presents an adequate result where the

polygon is located in the same place as the cadastral boundary,

as illustrated in Figure 5. The RMSE is also below half a meter,

as shown in the Table 2. However, for certain cases, one must

add additional rotations in the code input parameter, where the

value of the input degree is tuned manually based on the orient-

ation and shape of the vectorized polygon. For instance, since

Sample 1 has a rectangular shape, which has rotational sym-

metry, it may need to be flipped.

RMSE (cm)

Sample 1 32.18

Sample 2 18.25

Sample 3 25.71

Table 2. RMSE of Georeferencing

Combining multiple AHN versions can overcome occlusion in

the AHN as it provides more points for the building, as can be

seen in Figure 6; however, wall points are still sparse, and some

parts are still missing. Another problem is that the buildings

are row houses, and they were located between other units as

depicted in Figure 7; therefore, the surrounding walls, particu-

larly the shared or common wall, were impossible to acquire by

LiDAR scanning.

Ground points are effectively extracted from the complete build-

ing point clouds using the CSF algorithm, configured with de-

fault parameter values suitable for moderately flat terrain. The

resulting ground points are visualized as blue-colored points

in Figure 8. However, during subsequent segmentation, dis-

tinguishing non-ground points, specifically separating wall and

roof components (shown in red and white, respectively), re-

mains challenging. This is particularly evident in cases in-

volving sparse wall points and sloped roofs, such as in Sample

3 (Figure 8c). Additionally, some outliers and vegetation points

(a) All Georeferenced Floor plan

in Sample 1

(b) All Georeferenced Floor plan

in Sample 2

(c) All Georeferenced Floor plan in

Sample 3

Figure 5. Overview of Georeferencing Results

(a) AHN 5

(b) Combination of All Versions

of AHN

Figure 6. Comparison of AHN 5 and Combination in Sample 3

(a) Building location for Sample 1

(b) Building location for Sample 2

(c) Building location for Sample 3

Figure 7. Building location for All Samples
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(a) Segmentation in Sample 1 (b) Segmentation in Sample 2

(c) Segmentation in Sample 3

Figure 8. Result of Segmentation in All Samples

persist after classification, as seen in Sample 1 (Figure 8a), in-

dicating limitations in the accuracy of the AHN-based classific-

ation.

The height of the ground floor fits the AHN as it uses the z

value of ground points. However, the floor height does not seem

to correctly conform to AHN, due to some misclassified roof

points, as mentioned before in the previous step.

Sample 1 Sample 2 Sample 3

Initial

Fitness 3.7e-05 6.92e-05 1.31e-04

RMSE 1.406 1.478 1.418

Correspondences 44 249 141

Point-to-

Point ICP

Fitness 5.22e-05 8.73e-05 1.89e-04

RMSE 1.480 1.480 1.459

Correspondences 62 314 141

Point-to-

Plane ICP

Fitness 0 7.43e-05 0

RMSE 0 1.537 0

Correspondences 0 267 0

Table 3. RMSE of ICP in cm

Although the floor plan polygons have been georeferenced based

on the parcel polygon, and the generated point clouds from the

floor plan are aligned with AHN through ICP, the highly accur-

ate position is still hard to acquire, with an RMSE between 1.3

and 1.6 cm as can be seen in Table 3. This is due to sparse

points in AHN that affect the performance of ICP. Point-to-

point needs to find the corresponding point between the data-

sets; thus, it would be challenging if no matching points are

available. Meanwhile, point-to-plane exploits normal calcula-

tion, which also becomes problematic if the surrounding neigh-

bour points are not adequate to correctly calculate the normal

for each point. For that reason, Point-to-Plane ICP only per-

forms better for Sample 2 (Figure 9b), which has more cor-

respondence points, while it fails completely for Sample 1 and

Sample 3 (Figure 9a and 9c), which have fewer correspondence

points. The algorithm will automatically use the ICP method

that has lower RMSE and higher number of correspondences

points. Point-to-Point ICP is preferred for Sample 1 and Sample

3, and Point-to-Plane ICP is opted for Sample 2. Although all

the resulting RMSEs are slightly higher or worse than the ini-

tial for the three cases, the values for correspondences increase,

depicting a greater number of matched point pairs between the

source and target after alignment. This also leads to a slightly

higher fitness value, which means the proportion of total source

points that matched within a threshold of 2 cm.

(a) ICP Result in Sample 1 (b) ICP Result in Sample 2

(c) ICP Result in Sample 3

Figure 9. Comparison of ICP results in three samples.

After aligning the synthetic point cloud to AHN, both datasets

are combined into one LAS file for each sample and uploaded

into Cesium Ion. To deliver a real-world representation, integ-

rating other datasets, including reference objects and a topo-

graphy map, can offer a reference to interpret the parcel in terms

of location and size (Cemellini, 2018; Kalogianni, 2016). Since

the 3D parcel is represented as a point cloud, the AHN dataset

can serve as a reference object, enabling seamless integration

of spatial data, as illustrated in Figure 10.

Overall, the proposed pipeline requires approximately between

44 and 97 seconds per sample from processing the floor plan

to generating the synthetic building point cloud, as detailed in

Table 4. However, this estimate does not account for manual

interventions that may be necessary in certain cases, such as

image noise cleaning, parameter tuning, and missing cadas-

tral number assignment. Despite these exceptions, the pipeline

demonstrates sufficient efficiency for large-scale or nationwide

implementation, provided that some manual input is accom-

modated when necessary.

Process Sample 1 Sample 2 Sample 3
Preprocessing 7 7 8
Vectorize 8 22 10
Georeference 1 2 1
Crop AHN 13 15 14
Segment AHN 5 6 6
Construct PC 9 31 4
Align & combine AHN 2 14 1
Total 45 97 44

Table 4. Processing times across samples (in seconds).

5. Conclusion

Instead of using a BIM model, this project presents an altern-

ative using point clouds as 3D spatial units in a LAS. By com-
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(a) Visualization of Sample 1

(b) Visualization of Sample 2

(c) Visualization of Sample 3

Figure 10. Visualization of all three samples.

bining cadastral drawings and a point cloud nationwide dataset,

AHN, the apartment complexes with their own spatial units can

be generated in this framework without additional survey or an

existing BIM model. The floor plan parsing algorithm success-

fully detects and vectorizes the interior layouts of all three ca-

dastral apartment samples into geometric polygons. The pipeline

manages to align the vectorized polygons to the cadastral poly-

gons with RMSEs of 18-32 cm and aligns the generated syn-

thetic point cloud to the combined version of AHN using ICP,

achieving RMSEs between 1.48 and 1.51 cm with 62-298 match-

ing points due to the sparse AHN points on building facades.

These error measurements are close to the current cadastral map

in the Netherlands that has a graphic quality accuracy where the

standard deviation of boundaries is 20 cm for urban areas and

40 cm for rural areas (Hagemans, 2024).

Although point clouds are widely used as input data, compared

to mesh building, they can enable the seamless integration of

real-world features provided from AHN such as building facades,

walls, and fences, which often delineate cadastral boundaries.

Another advantage is their ability to preserve geometric rep-

resentation that can be directly compared to cadastral refer-

ence points measured with GNSS. Moreover, the system is cap-

able of generating a synthetic building point cloud in under two

minutes per sample, indicating the feasibility of future nation-

wide implementation. However, some limitations are found in

this study that require further improvement, particularly some

manual intervention (e.g. the removal of stairs, OCR not recog-

nizing all labels, etc.).

6. Future Work

Future research directions include the following:

1. Scaling and Algorithmic Robustness: Expand to large-

scale pilot areas and more diverse floor plans to improve

robustness. Develop deep learning methods for floor plan

parsing and enhance point cloud segmentation to recon-

struct more complex and realistic building geometries.

2. International Applicability: Explore applicability in other

countries by addressing differences in cadastral drawing

formats and assessing the availability or alternatives to na-

tionwide point cloud datasets.

3. Accuracy Evaluation for 3D LAS: Conduct ground-truth

validation using GNSS-based cadastral reference points.

Improve accuracy through occlusion correction (e.g., (Bal-

ado et al., 2019), alternative alignment methods, and integ-

ration of higher-resolution LiDAR (e.g., drone ALS, TLS,

MLS).
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