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Abstract 

CityGML has been extensively studied due to its widespread use across various domains. However, its complex hierarchical structure 

still presents challenges for non-expert users. Recently, large language models (LLMs) have demonstrated significant capabilities in 

natural language processing (NLP) and chatbot systems. Nevertheless, LLMs heavily rely on pre-trained data, which can lead to 

hallucination issues and limitations in context length. To address these challenges, we first propose a novel automatic method for 

transforming CityGML data into knowledge graphs by leveraging a graph database and a transformation plugin. This approach 

effectively addresses the difficulties of storing and representing the complex structure of CityGML and can serve as an external 

knowledge base for chatbot systems. Second, we develop a collaborative multi-agent framework that enables natural language queries 

over CityGML data in a user-friendly manner. By integrating the constructed knowledge graphs with several knowledge augmentation 

strategies, the chatbot system implements a complete pipeline from natural language input to structured query generation, external 

knowledge retrieval, and optimized response generation. We conduct experiments on both the city knowledge graphs and the chatbot 

system to evaluate the accuracy of the knowledge graphs and the interpretability of the system’s outputs. The experimental results 

demonstrate that the generated knowledge graph is accurate, and the chatbot system performs well in terms of answer accuracy, 

relevance, and contextual coherence. These findings highlight the potential of the proposed chatbot system to lower the barrier for non-

professionals interacting with CityGML data, offering both theoretical insights and practical implications for advancing CityGML 

applications in the era of LLMs and promoting smart city development. 

1. Introduction

CityGML (City Geography Markup Language) is one important 

3D city model standard supporting the creation of comprehensive 

digital twin of cities. It has been extensively applied in GIS 

(Geographic Information System), BIM (Building Information 

Model) and other domains (Tan et al., 2023). However, despite 

its importance and utility, working with CityGML still remains a 

challenging task for users, especially those without a technical 

background (Nguyen et al., 2020). The format is complex, 

containing intricate hierarchical relationships between entities 

such as buildings, roads, and infrastructure. The size of these 

datasets, often spanning entire cities, further exacerbates the 

problem, making them difficult to query, analyse, and interpret 

without specialized knowledge, tools, and expertise.  

Current methods for interacting with CityGML involve GIS 

platforms or customized software tools. These tools typically rely 

on relational spatial databases like PostGIS along with querying 

languages like SQL (Chadzynski et al., 2023). They often 

demand significant time and expertise to master. Consequently, 

users who are not GIS professionals, such as urban planners, 

architects, or local government officials, may find it difficult to 

extract meaningful insights from large-scale CityGML datasets. 

To address these challenges, we propose a novel solution named 

KCitychatBot: a knowledge graph-based chatbot system that 

leverages Large Language Models (LLMs) and multi-agents to 

provide an intuitive, conversational natural language interface for 

querying and analysing large-scale CityGML data. KCitychatBot 

enables users to interact with complex CityGML urban models 

using ordinary natural languages as interface. The test 

demonstrated the usability of the proposed solution. This system 

not only simplifies querying but also encourages CityGML users 

without a technical background to ask questions, which can be 

particularly valuable in urban planning and decision-making 

processes with large-scale CityGML dataset. 

2. Related Work

The steep learning curve of traditional GIS platforms has driven 

research into developing new interaction methods, such as 

graphic workflows (Nguyen et al., 2020) or chatbots (Saka et al., 

2023), to lower the barrier for interacting with geospatial data. 

Among these methods, geospatial chatbots are often considered 

the most intuitive. However, early solutions (Tsai et al., 2019) 

had limited abilities to handle large, complex geospatial datasets 

due to their reliance on simple keyword-based queries. Recent 

developments of LLMs offer opportunities for advancing the 

capabilities of geospatial chatbots. The use of LLMs for 

geospatial tasks has already demonstrated promising results with 

2D geospatial data (Wang et al., 2024). However, LLMs come 

with limitations that need to be addressed for large-scale 

geospatial applications. One key issue is the token input limit. 

LLMs like GPT-4.5 have a restricted number of tokens that can 

be processed in a single query. Another key issue is hallucination 

in LLMs, which refers to the model's tendency to generate 

plausible-sounding but incorrect or fabricated information. 

Aiming at these limitations, some knowledge augmentation 

strategies in geospatial chatbots have shown promising results 

but also highlight the complexity of synchronizing LLMs with 

large-scale geospatial datasets through RAG (Yu et al., 2025) and 

knowledge graph (Dang et al., 2025). In this context, many 

researchers have emphasized the critical role of knowledge 

graphs in enhancing the interpretability and factual accuracy of 

chatbot systems (Luo et al., 2022). Knowledge graphs could not 

only enhance the chatbot's ability to interpret and process 
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complex queries but also allow for more advanced reasoning 

capabilities (Agrawal et al., 2023). They may help mitigate the 

LLM chatbot hallucination issue by providing a structured and 

accurate reference for the model. Recently, the integration of 

multi-agent systems with knowledge augmentation methods 

(Guo et al., 2024; Xu et al., 2024) has emerged as a promising 

research trend, it has the potential to enhance the chatbot system 

robustness in handling complex situations and offer new 

opportunities for processing and interacting with CityGML data. 

 

CityGML incorporates hybrid semantic and spatial information, 

facilitating a comprehensive representation of city features. 

However, this multi-dimensional data has not yet been 

effectively integrated with powerful LLMs in chatbot systems for 

data exploration and decision making. To bridge the research gap 

and considering the possibilities provided by knowledge 

augmented multi-agent system, this paper proposes a knowledge 

graph-based chatbot system, hoping to provide a practical 

CityGML chatbot and acquiring theoretical insights for 

CityGML applications in the era of LLMs. 

 

3. Methodology 

This section elaborates the overall construction and testing 

workflow of the proposed KCitychatBot. As shown in Figure 1. 

We divide all the methodology into two modules: (1) the 

construction of knowledge graphs and (2) the design of 

collaborative multi-agent chatbot. Both modules adopt the 

‘design and evaluation’ methodology to ensure systematic 

development and rigorous validation.  

 

 
Figure 1. The construction and testing workflow of the 

proposed knowledge graph-based chatbot system 

3.1 City Knowledge Graph Construction 

3.1.1 Structure of CityGML: As an extension of XML 

(Extensible Markup Language), CityGML inherits its 

hierarchical labels, which represents data in a tree structure. 

However, CityGML also uses identifiers (such as XLinks) to 

build cross-references between objects, resulting in an overall 

cyclic graph data structure (Nguyen et al., 2020). Figure 2 

illustrates the ‘bldg’ theme's hierarchical structure, expanding 

from building objects through LOD 0 and LOD 1 levels to 

geometric and material attributes, forming a cyclic graph with 

over six hierarchical levels. This cyclic graph structure is 

incompatible with the tabular model of traditional relational 

databases, which requires complex table decomposition and 

relationship design during storage. In contrast, the native graph 

structure of graph databases not only align closely with the 

CityGML but also provide a more efficient retrieval method.  

 

 
Figure 2. An example of CityGML and its corresponding graph 

 

3.1.2 City Knowledge Graph Construction Method: Based 

on the structural characteristics of cyclic graphs in CityGML 

(Nguyen et al., 2020), we propose a hierarchical knowledge 

graph construction method tailored for CityGML, as illustrated 

in Figure 3. The proposed method is implemented with a graph 

database plugin that can convert a given input CityGML dataset  

into a hierarchical JSON object, where all entities and attributes 

are encapsulated within a container. Specifically, each level’s 

label is mapped to the ‘_type’ attribute, and corresponding 

attribute values are stored in the ‘_text’ attribute, while nested 

child structures are embedded within the ‘_children’ attribute. 

For the entities and attributes have transformed, this method 

performs the following three steps: (1) it separates the container 

into two parts: basic entities, which only contain ‘_type’ and 

‘_text’ attributes, and subset containers, including the nested 

structures. (2) the method instantiates basic entities as graph 

nodes, with their ‘_type’ and ‘_text’ mapped to node labels and 

properties, respectively. For subset containers, we recursively 

processes their ‘_children’ attribute until all leaf nodes are 

reached. This process gradually unfolds the nested structure and 

generates new basic entities and subset containers along the way.  

(3) Depending on the labels of each child node, the method 

automatically establishes the relationships between parent and 

child nodes. At each recursive step, all nodes at the same 

hierarchical level are instantiated and linked to their respective 

parent nodes. Once all leaf nodes have been processed and 

instantiated, the city knowledge graph is complete. 
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Figure 3. City knowledge graph creation workflow 

 

3.2 Multi-agent Chatbot System 

The design of a multi-agent chatbot system faces two key 

challenges: (1) how to adapt pre-trained LLM without fine-tuning 

to CityGML Knowledge base and CityGML-related natural 

language queries, and (2) how to organize multiple LLM agents, 

each with unique roles, to function collaboratively within the 

chatbot system. Due to the heterogeneity of different CityGML 

datasets, the constructed knowledge graphs have unique labels, 

properties and relationships. However, LLMs without fine-

tuning often lack sufficient understanding of the knowledge 

graph schema, resulting in unreliable response. To address this 

issue and improve query precision, we incorporate knowledge 

augmentation methods, saying embedding model and few-shot 

learning into the design. These methods not only improve the 

accuracy of generated queries but also offer acceptable output for 

subsequent tasks. 

 

3.2.1 Embedding Model: Embedding models are widely used 

in deep learning and question answering systems. They can also 

be applied to knowledge graphs for link prediction and other 

downstream tasks (Ge et al., 2024). We employ embedding 

models to extract user intents, labels, and properties as shown in 

Figure 4. Firstly, we collect some external knowledge from the 

CityGML datasets, they may originate from various sources such 

as CSV files, JSON documents, plain text, or other structured and 

unstructured formats. Combined with user input (typically in text 

form), all content is segmented into smaller chunks for further 

processing. Secondly, each chunk is mapped into a high-

dimensional vector through neural network models depending on 

data types. Finally, all the vectors are compared using cosine 

similarity to identify the most relevant match. Based on the most 

similar vector, the system retrieves relevant information from the 

external knowledge, thereby enabling a better understanding of 

user input. 

 

 
Figure 4. Embedding workflow 

 

3.2.2 Few-shot Learning: Few-shot learning strategy is a 

commonly adopted training paradigm when large-scale training 

data is unavailable (Brown et al., 2020). It enables the model to 

infer class membership based on only a few examples, without 

requiring comprehensive prior knowledge of the target classes. 

We utilize this strategy to convertnatural language input 

intostructured graph database queries. Figure 5 shown the 

conversion of natural language input to a structured Cypher query 

(a query language for graph databases). Guided by the extract 

prompt, the user input is first converted into a standardized 

schema that captures the user's intent, entity labels, and attribute-

value pairs.  Then this schema serves as the input for the next step, 

with the query prompt generating an appropriate query. 

 

 
Figure 5. An example of few-shot learning for graph query  

 

3.2.3 Multi-agent Framework: We design a three-crew 

framework for the CityGML chatbot. The functionalities of each 

intelligent agent are as follows. 

 

Input2Cypher Crew: This agent handles conversations with users 

and automatically constructs Cypher queries based on the 

dialogue. It manages two sub-tasks: Extract_Task and 

Query_Task. The Extract_Task receives domain knowledge from 

the CityGML knowledge graph and analyses user input, 

processing it through an embedding model to extract user intent, 

relevantlabels, and attribute information. Based on the results of 

Extract_Task, the Query_Task uses multiple preset template 

cases to automatically construct appropriate Cypher queries 

tailored to the city knowledge graph. 

 

Execute Crew: This agent executes the Cypher queries generated 

by the Input2Cypher Crew and validates the query results from 

the knowledge graph. The system incorporates a three-iteration 

mechanism to mitigate the inherent randomness of LLMs. If the 

query result is empty or contains a syntax error, the process 

returns to the Input2Cypher Crew for further refinement. 

 

Generate Crew: This agent processes the query results provided 

by the Execute Crew and converts them into natural language 

expressions aligned with human communication conventions. 
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Figure 6. The structure of the multi-agent framework 

When users interact with the system, the Input2Cypher Crew 

transforms the conversation input into a structured Cypher query, 

which is passed to the Execute Crew. The Execute Crew retrieves 

results from the knowledge graph. If valid results are returned, 

they are forwarded to the Generate Crew to produce natural 

language responses; otherwise, the results are sent back to the 

Input2Cypher Crew to iterate and refine the query generation 

process. Additionally, if users engage in multi-round 

conversations, the Generate Crew concatenates user inputs and 

system outputs into a contextual list to maintain coherence for 

subsequent interactions. 

 

4. Implementation 

4.1 City Knowledge Graph 

We utilize the PLATEAU dataset from Japan (Seto et al., 2023) 

to construct city knowledge graphs. Considering the limited 

computing resources, we arbitrarily select 14 regions within 

Tokyo, covering 12 different CityGML themes (such as “bldg”, 

“brid”, and “dem”, etc). The total size of the dataset is 

approximately 124 GB, and additional information about the 

constructed knowledge graph can be found in Table 1. 

 

Name CityGML dataset 

Dataset size 124GB 

Region [“Toshima City”, “Minato City”, “Tokyo 

Metropolis”, “Chiyoda City”, “Chuo City”, 

“Bunkyo City”, “Taito City”, “Sumida City”, 

“Koto City”, “Shinagawa City”, “Meguro 

City”, “Ota City”, “Setagaya City”, “Shibuya 

City”] 

Theme [“bldg”, “brid”, “dem”, “fld”, “frn”, “htd”, 

“lsld”, “luse”, “tran”, “ubld”, “urf”, “veg”] 

Knowledge 

graph size 

 

 

281.75GB 

Nodes count 

 

1,420,375,552 

Construction 

time 

10,915.218s 

Table 1. Research data and knowledge graph information 

 

Based on the Neo4j graph database plugin (APOC) and Python 

language, we develop two automatic knowledge graph 

construction modes: (1) Single-file parsing (incremental update) 

and (2) Batch-processing (full construction). In the single-file 

mode, the system first evaluates the file size; if exceeding a pre-

defined threshold (300 MB under a 32 GB memory condition), 

the file is partitioned according to a splitting criterion set to one-

tenth of the number of file elements, and then the segmented files 

are read sequentially. For the folder batch-processing mode, the 

system obtains the absolute paths of all GML files within the 

current folder, stores them in a list, and processes them 

sequentially using the single-file mode. To test scalability, we 

conducted knowledge graph construction experiments under 

consistent conditions (32 GB memory, 24-core processor). Table 

2 presents average results from five repeated experiments, 

indicating that our hierarchical method effectively handles 

datasets of varying scales with acceptable construction time and 

storage consumption. 

 

Dataset 

size 

(MB) 

Knowledge 

graph size 

(MB)  

Nodes count Construction 

time (s) 

0.42 2.12 4,343 0.731 

5.71 17.08 65,080 3.219 

51.2 154.98 601,170 9.321 

291 972.88 4,440,942 43.776 

1,689.6 5,120 19,947,887 196.124 

126,976 288,512 1,420,375,552 10,915.218 

Table 2. Knowledge graph construction experiment results 

 

4.2 Chatbot Prototype System 

This paper leverages the CrewAI framework, Deepseek API, 

Neo4j graph database to develop a collaborative multi-agent 

chatbot prototype system. Specifically, we employ the Deepseek-

R1 model within the Input2Cypher Crew to construct structured 

queries, leveraging its strong reasoning capabilities. Meanwhile, 

the Generate Crew utilizes the Deepseek-V3 model, which 

demonstrates stronger capabilities in handling daily 

conversations. The backend is primarily developed in Python, 

while the frontend is implemented using JavaScript. Besides, 

FastAPI is employed as the interface framework to connect the 

frontend and backend, enabling efficient information exchange 

between the two components. Figure 7 illustrates the layout of 

chatbot system, it mainly consists of two buttons and a dialogue 

box. The ‘Connection’ button enables this system to establish a 

link with an external graph database. Users are required to 

provide the URL (Uniform Resource Locator), username, 

database name, and password. The ‘Loading’ button allows users 

to import CityGML data into the graph database and construct 

city knowledge graphs. Users can enter questions into the input 

box, and the system’s response will be promptly displayed in the 

dialog box. 

 

 
Figure 7. The layout of the proposed chatbot system 

 

As shown in Figure 8, a user can directly request all available 

information regarding the road ‘首都高速 5 号池袋線 ’ 

(Metropolitan Expressway Route 5 Ikebukuro Line). The process 

begins with the Extract_Task, which identifies the user’s intent, 

extracts the ‘Road’ label, and infers that the road name may be 

stored under the ‘_text’ property of the ‘Road’ label. Under few-

shot prompting, the Query_Task generates a Cypher query by 

first locating the root node labelled as ‘Road’, then traversing its 

child nodes, and finally returning both the root and selected child 

nodes that contain relevant road information. Next, the 
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Execute_Task receives the Cypher query from the Query_Task, 

executes it in the graph database, and returns the results in JSON 

format. Subsequently, the Generate_Task interprets the returned 

data and formulates a response in fluent natural language. The 

system promptly identifies the road’s location as ‘Toshima City’, 

classifies its usage as a ‘Primary Emergency Transport Road’, 

and provides additional contextual information. 

 
Figure 8. A dialogue example 

 

5. Evaluation  

5.1 Knowledge Graph Evaluation 

To assess the accuracy of the knowledge graph, we compare 

query results obtained from both the 3D CityDB (SQL) and 

Neo4j (Cypher) that correspond to the same testqueries. Inspired 

by the comparison between SQL and NoSQL databases (Khan et 

al., 2019), we categorize the evaluation into five dimensions, 

with their names and descriptions provided in Table 3. The 

comparison demonstrates identical outcomes from both querying 

approaches, thereby confirming the validity of the constructed 

city knowledge graph and indirectly validating the effectiveness 

of our graph construction method. 

 

Name Description 

Attribute 

Consistency 

Consistency of attribute values across 

different databases, reflects potential data 

loss during converting 

 

Semantic 

Integrity 

Preservation of semantic information 

during converting, indicates structural and 

meaning completeness 

 

Statistical 

Reliability 

Accuracy of aggregate query results, 

reflects stability and trustworthiness in 

statistical tasks 

 

Geometric 

Accuracy 

Precision of geometric objects, such as 

coordinates, area, and topological 

relationships 

 

Classification 

Consistency 

Correct retention and identification of 

feature categories and codes after 

converting 

Table 3. Knowledge graph evaluation criteria and descriptions 

 

Figure 9 gives an example to present the comparison before and 

after knowledge graph construction. The structure of CityGML 

is fully preserved during the conversion process, and hierarchical 

labels and intra-label attributes accurately recorded as node labels 

and properties. 

 

 
Figure 9. Comparison before and after CityGML to knowledge 

graph conversion 

 

5.2 Chatbot Performance Evaluation 

To evaluate chatbot performance, we built a test set with 180 

cases covering diverse question types, and utilized the Ragas 

evaluation tool (Es et al., 2024). This tool proposes three metrics 

to evaluate the performance of RAG-based systems. First is the 

Answer Faithfulness (AF), which measures the consistency 

between the generated answer and the retrieved context. 

Specifically, the generated answer is segmented into short 

sentences, |S| denote the total number of sentences, |V| represent 

the number of sentences that are relevant to the retrieved context. 

The value of AF is calculated as the ratio of relevant sentences to 

the total number of sentences, as defined in Equation (1): 

𝐴𝐹 =
|𝑉|

|𝑆|
(1) 

 

Second is the Answer Relevance (AR), evaluating the degree to 

which the generated answer is directly related to the original 

question. A large language model is used to generate n potential 

questions based on the answer, and the cosine similarity between 

each generated question and the original question is computed 

using an embedding model. The AR score is obtained by 

averaging these cosine similarities, as defined in Equation (2): 

 

𝐴𝑅 =
1

𝑛
∑𝑠𝑖𝑚(𝑞, 𝑞𝑖)

𝑛

𝑖=1

(2) 

 

Last is the Context Relevance (CR), which assesses the alignment 

between the retrieved context and the original question. It is 

calculated as the ratio between the number of extracted sentences 

relevant to the answer and the total number of sentences in the 

context, as defined in Equation (3): 

 

𝐶𝑅 =
number of extracted sentences

total number of sentences in 𝑐(𝑞)
(3) 

 

Adopting the classification from RAGEval (Zhu et al., 2024), we 

divide the questions into six types, with their names and 

descriptions shown in Table 4. For each question type, we 

develop 30 questions, each accompanied by a chatbot response 
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and corresponding context (i.e., the Execute Crew output, which 

also serves as the retrieved answer from the city knowledge 

graph). It is worth noting that current chatbot design and 

evaluation have not cover spatial analysis, which requires more 

than dataset understanding and chatbot conversation. Finally, we 

construct a test set comprising 180 cases, covering a diverse 

range of question types. 

 

Name Description 

Attribute Query Questions focus on semantic attributes 

stored in the knowledge graph and do 

not involve spatial analysis 

 

Data Statistics Questions involve statistical 

aggregation, such as counting or 

averaging objects or attributes 

 

Multilingual User inputs presented in English or 

Chinese, used to evaluate multilingual 

capabilities 

 

Comprehensive 

Analysis 

Questions require either detailed 

analysis of a single object or a 

combination of multiple query types 

 

System Capability Questions related to the chatbot's 

underlying capacity, including data 

coverage, scalability, and response 

range 

 

Fuzzy Query Questions contain vague or imprecise 

expressions, excludes highly subjective 

or uncertain queries 

Table 4. Chatbot performance evaluation criteria and 

descriptions 

 

Metric Attribute 

Query 

Data 

Statistics 

Multilin

gual 

Compre

-hensive 

Analysis 

Answer 

Faithfulness 

0.7320 0.9802 0.8532 0.9167 

Answer 

Relevance 

0.8060 0.8923 0.9726 0.7778 

Context 

Relevance 

0.8230 0.9538 0.8964 0.8622 

Table 5. Chatbot performance evaluation results 

 

With three evaluation metrics and a multi-dimensional test set, 

we successfully conduct the automatic evaluation experiments  

using  the “text-embedding-3-small” embedding model (from 

OpenAI), and some results provided in Table 5. Across the four 

question types: Attribute Query, Data Statistics, Multilingual, 

and Comprehensive Analysis, the system attained strong 

performance on all three evaluation metrics (each above 0.7), 

demonstrating its robustness and adaptability to a wide range of 

dialogue scenarios. Specifically, in the case of Data Statistics, the 

structured query statements exhibit a significant advantage, with 

each metric approaching or exceeding 0.9. Moreover, we design 

two types of language prompts: (1) Chinese, the primary 

language spoken at our research institution, and (2) English, the 

predominant language in academic communication. 

Experimental results show that when the system prompt and user 

input are in the same language (e.g., English), the system 

achieves the highest score in Answer Relevance. This 

demonstrates that our chatbot system can effectively interact in 

multiple languages, provided that appropriate prompts in the 

corresponding language are supplied in advance. 

5.3 Discussion 

The developed KCitychatBot system integrates knowledge 

graphs with a multi-agent framework to interpret CityGML data 

and respond to user queries through natural language 

conversations. Evaluation experiments demonstrate that the 

system provides effective support for tasks such as data statistics 

and comprehensive analysis. In addition, it helps mitigate large 

language model (LLM) hallucinations and address limitations 

related to dialogue context. 

 

Although the system has shown success in specific scenarios, the 

evaluation results indicate suboptimal performance in areas such 

as System Capability and Fuzzy Query, as well as other scenarios 

not explicitly covered during development. These shortcomings 

are primarily due to the limitations of structured queries. The 

chatbot's interoperability decreases significantly when dealing 

with complex questions involving diverse qualifiers. 

Furthermore, we observed inconsistencies in responses to 

identical user queries—a common issue in chatbot systems—

which may cause confusion. 

 

To enhance the system’s robustness, we plan to introduce a 

parallel processing mechanism, such as GraphRAG (Han et al., 

2025). Additionally, the current design and implementation lack 

spatial analysis capabilities, which limits the system's broader 

applicability. We aim to address this limitation by integrating 

knowledge graphs, LLMs, and existing geospatial processing 

tools such as the GDAL library and PostGIS database. Despite its 

current limitations, we believe this work represents a valuable 

step toward intelligent, user-friendly interaction with large-scale 

CityGML datasets. 

 

6. Conclusion 

This manuscript presents a novel chatbot system using multi-

LLM agents and a knowledge graph for large-scale CityGML 

datasets, aiming to lower the interaction barrier for ordinary users. 

The main innovations are a hierarchical knowledge graph 

construction method tailored for CityGML and a knowledge 

graph -based multi-agent framework for the chatbot. Extensive 

evaluation with the PLATEAU dataset affirms the usability of the 

proposed method and its corresponding prototype system. This 

work is one of the latest attempts in knowledge graph-supported 

city digital twin applications and establishes a new 

methodological contribution in bridging CityGML, knowledge 

graphs, and LLMs. The resulting chatbot system can significantly 

alleviate the burden for ordinary users’ querying information 

from large-scale CityGML datasets, thus bearing broad practical 

implications. It also has the potential to be embedded into other 

spatial natural language-driven multi-agent systems. In the future, 

we plan to strengthen the system’s capability for complex spatial 

analysis and robustness in handling user input. It would also be 

valuable to explicitly define the value gained by using a city 

knowledge graph in the proposed chatbot system and its 

capability boundaries. 
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