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Abstract 

 

This study presents a data-driven framework for transforming high-density urban districts toward carbon neutrality through the 

integration of Generative Design (GD), Multi-Objective Optimization (MOO), and interactive Urban Digital Twins. Using Tokyo’s 

Nihonbashi District as a case study, the research addresses the challenge of retrofitting 154 existing buildings under spatial and 

regulatory constraints. Buildings are categorized into three retrofit strategies—Reconstruction, Renovation, and Maintenance—

based on structural condition, building age, and energy performance. The proposed methodology consists of a three-stage process: 

(1) baseline performance assessment using Urban Building Energy Modeling (UBEM), (2) design generation and evaluation of 

alternative design scenarios via parametric modeling and optimization across four key criteria (Resilience, Energy Performance, 

Financial Feasibility, and Social Impact), and (3) real-time scenario exploration through an interactive digital twin’s interface. 

Additional modeling layers include occupancy analytics and renewable energy simulations. Results indicate that coordinated 

redevelopment and hybrid energy strategies could achieve significant reductions in energy use intensity (up to 99 kWh/m²/year) 

and support on-site generation (up to 42.5 kWh/m²/year). The framework provides a scalable approach for carbon-neutral urban 

regeneration that balances technical, environmental, and human-centered goals. 

 

 

1. Introduction 

As cities worldwide commit to ambitious decarbonization 

targets, high-density urban districts face unique challenges in 

achieving carbon neutrality due to complex land ownership, 

aging infrastructure, and intense spatial constraints. Japan’s 

pledge to reach net‑zero greenhouse‑gas emissions by 2050, 

reinforced by the Tokyo Metropolitan Government’s “Zero 

Emission Tokyo” roadmap, places unprecedented 

decarbonization pressure on the capital’s high‑density inner 

districts. Nihonbashi as Tokyo’s historical mercantile nucleus 

and a contemporary hub for finance, retail, and tourism 

epitomizes this challenge (Ramnarine et al., 2025). This area 

faces compounded challenges from aging buildings, outdated 

energy infrastructures, and inefficient urban layouts, which 

exacerbate energy consumption and vulnerability during 

extreme climate events (Shen et al., 2024). Nihonbashi’s urban 

form is a palimpsest of Edo‑period street grids containing 

post‑war mid‑rise concrete stock and fragmented land ownership, 

in which critical energy, water and highway infrastructure date 

largely back to the 1960s–1980s urban renewal wave 

(Ramnarine et al., 2025). These conditions, coupled with rising 

heat‑island intensities, pluvial flood hazards along the Sumida 

watershed, and seismic exposure, create a complex context in 

which carbon‑neutral retrofits must simultaneously deliver 

climate‑adaptation and heritage‑conservation benefits.  

In Tokyo, where bottom-up stakeholder-driven redevelopment 

dominates, there is a need to explore design decisions of diverse 

urban form scenarios while accounting for multiple, often 

competing, performance goals to facilitate comprehensive, data-
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driven assessments and proactive urban decision-making for 

enhancing energy resilience and sustainability. This research 

introduces a framework of integrating Generative Design (GD) 

and Multi-Objective Optimization (MOO) that aims for 

transforming Nihonbashi toward a net-zero smart urban district. 

This framework will build upon systems architecting principles 

and an urban digital twin platform previously demonstrated by 

this research team (Ramnarine et al., 2025). 

1.1 Literature Review 

 

1.1.1 Data-driven Smart Urban Districts  

Smart cities are becoming a new global movement that uses 

technologies to drive urban development. Test beds are 

sprouting up in cities and their strategic areas like Sidewalk 

Toronto, smart city-nation initiative in Singapore, and 

Kashiwanoha in Tokyo. There are increasing literatures on smart 

urban districts to explore impacts of emerging technologies 

including artificial intelligence (AI), urban automation, Internet 

of Things (IoT), pervasive computing, and data science to cities, 

urban infra-structures, public spaces, and our daily life spaces 

for live, work, and play (Yang and Yamagata., 2020; Yang et al., 

2020). The concept of urban digital twins is also emerging as a 

new field of study in urban planning, systems engineering and 

geospatial information science, with a focus on high-fidelity 

computational models of cities or ‘replicas’ of urban systems 

over 4D space and time (Bettencourt, 2024, Batty, 2018). 

1.1.2 Generative Design (GD) 

Generative design methods offer an algorithmic approach to 

exploring a wide array of spatial configurations and building 

typologies. Within urban design, generative systems define and 

manipulate parameters such as building density (FAR), height, 

orientation, land-use distribution, and façade characteristics like 

window-to-wall ratio. Rather than relying on singular 

masterplans or fixed interventions, generative design methods 

allow for rapid production of hundreds of spatial variants, 

enabling comparative assessment of form-based performance 

outcomes (Saha et al., 2020; Zhang et al., 2024). These 

techniques are essential for revealing unexpected synergies 

between urban form and performance goals, especially under 

high uncertainty (Mao et al., 2020; Franch-Pardo et al., 2023). 

1.1.3 Multi-Objective Optimization (MOO) Framework for 

Performance Evaluation 

The Urban Building Energy Modeling (UBEM) approach is a 

key component of this study. UBEM is a method for evaluating 

the energy and environmental performance of urban districts. 

This bottom-up, physics-based methodology simulates energy 

use intensity (EUI), carbon emissions, and operational dynamics 

across multiple buildings and scenarios (El Kontar et al., 2020). 

Integrated with the broader framework, UBEM supports 

performance modeling and impact assessments linked to 

generative design options (Zhang et al., 2024). 

The framework employs simulation-driven performance 

evaluation and multi-objective optimization to guide retrofit 

decision-making across four key criteria: Resilience, Energy 

Performance, Financial Feasibility, and Social Impact (Figure 1). 

Optimization objectives include minimizing energy 

consumption, carbon emissions, and peak energy load, while 

maximizing on-site renewable energy generation (e.g., solar PV, 

kinetic floor systems), energy storage, occupant thermal comfort, 

and daylight and view quality (Mao et al., 2020; Franch-Pardo et 

al., 2023). The framework also considers structural and aging 

conditions (resilience), retrofit costs and potential savings 

(financial feasibility), and incentive structures (Shen et al., 2024). 

These interdependent and sometimes conflicting goals require a 

robust optimization engine capable of handling 

multidimensional trade-offs and visualizing scenario outcomes 

across performance domains. 

 
Figure 1. Four evaluation criteria in the multi-objective 

optimization framework. 

1.1.4 From Planning Support Systems (PSS), Geodesign to 

Urban Digital Twins 

The proposed methodology builds on decades of planning 

support tools and geodesign practices that emphasize scenario-

based decision making. However, it advances conversation by 

embedding these capabilities into a live and interactive urban 

digital twin. Urban digital twins are dynamic representations of 

the built environment that synchronize real-time data with 

predictive modeling (Yang et al., 2020a). These platforms 

extend beyond visualization to support creation, negotiation, and 

iterative refinement with stakeholders transforming design from 

a static outcome into a collaborative and informed process 
(Bettencourt, 2024). 

1.2 Problem Formulation 

Tokyo’s commitment to becoming a carbon-neutral metropolis 

by 2050 includes sustainable urban regeneration policies and an 

emphasis on bottom-up participation. Yet, the fine-grained urban 
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form of districts like Nihonbashi poses major challenges to 

large-scale retrofitting or conventional urban redevelopment 
(Ramnarine et al., 2025). The current revitalization efforts often 

follow fixed retrofit pathways such as reconstruction, façade 

renovation, or operational upgrades, but do not explore the 

broader design space nor adequately support complex multi-

criteria optimization. 

Moreover, the current energy simulation methods such as 

UBEM provides a strong technical foundation for energy 

performance of the built environment (El Kontar et al., 2020), it 

remains disconnected from generative design and lacks tools to 

meaningfully engage stakeholders in evaluating and selecting 

among alternatives.  

To address these gaps, we propose a data-driven smart district 

systems design framework that fuses GD with MOO on a 

high‑resolution urban digital twins of Nihonbashi. Building 

upon the systems‑architecting principles, the framework will 

algorithmically generate data-driven redevelopment scenarios, 

evaluate their performance across carbon‑neutrality and 

resilience metrics, and visualize solutions for stakeholder 

deliberation (Figure 2). By embedding rigorous analytics within 

an exploratory design environment, the framework seeks to 

operationalize Tokyo’s carbon‑neutral agenda at the district 

scale while safeguarding Nihonbashi’s cultural identity and 

economic vitality. 

 
Figure 2. Data-driven urban regeneration workflow integrating 

GD, MOO, and Digital Twins. 

1.3 Research Questions 

This study investigates how computational design and decision-

support tools can inform the carbon-neutral transformation of 

existing urban districts. Specifically, it addresses the overarching 

question: What are urban regeneration pathways toward carbon 

neutrality by 2050 in Nihonbashi through retrofitting existing 

buildings? To answer this, the research explores the following 

sub-questions: 

1. How can generative design methods systematically 

broaden the urban design space by altering form 

variables such as building density, orientation, height, 

mixed uses, and façade characteristics to enhance 

resilience and energy performance? 

2. What trade-offs and synergies emerge when 

optimizing redevelopment scenarios across the four 

evaluation domains—resilience, energy performance, 

financial feasibility, and social impact? 

3. How can interactive urban digital twins be utilized as 

decision-support tools to guide stakeholders in 

evaluating retrofit strategies and selecting optimal 

pathways toward carbon neutrality? 

 

2. A Methodology on Urban Digital Twins for a Net Zero 

Smart District 

This study adopts a three-stage methodology to support carbon-

neutral retrofitting of Nihonbashi. The Descriptive Stage 

establishes baseline energy and emissions through UBEM 

analysis of 154 existing buildings. The Predictive Stage 

generates and simulates hundreds of design scenarios using 

generative design and multi-objective optimization (MOO) 

across key criteria: resilience, energy performance, financial 

feasibility, and social impact. The Prescriptive Stage leverages 

an interactive urban digital twin to visualize optimal scenarios, 

enable real-time adjustments, and support stakeholder-informed 

decision-making (Figure 3). 

 
Figure 3. Three-stage methodological framework for carbon-

neutral retrofitting: Descriptive, Predictive, and Prescriptive. 

3. Case Study and Findings 

3.1. Stage One – Descriptive and Evaluative Model: 

Analysis of Existing Conditions  

The first stage of the methodology involves a comprehensive 

descriptive and evaluative analysis of the existing conditions in 

the Nihonbashi district. This analysis focuses on three primary 

aspects: urban form, building characteristics (including building 

use, geometry, height, and age), and pedestrian flows throughout 

the district and hourly occupancy rates within each building in a 

neighborhood of Nihonbashi of Tokyo (Figure 4). 

 
Figure 4. Location of the study area within Tokyo highlighting 

Chuo Ward, Nihonbashi, and District Two. 
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A detailed Urban Building Energy Modeling (UBEM) 

assessment was conducted for 154 buildings within Nihonbashi 

District, providing simulation-based insights into energy use 

intensity (EUI) and carbon emissions. These performance 

metrics reveal spatial patterns of inefficiency and identify high-

emission hotspots, establishing a baseline for future 

interventions (Figure 5). 

 
Figure 5. 3D model of 154 buildings in Nihonbashi District used 

for UBEM baseline analysis. 

By understanding the current energy and carbon performance at 

the building scale, this analysis informs district-wide retrofit 

strategies aimed at achieving carbon neutrality by 2050. The 

evaluation leverages data provided by the University of Tokyo, 

ensuring contextual accuracy aligned with the city's unique 

urban and climatic conditions. To structure these retrofit 

strategies, buildings in Nihonbashi are classified into three 

categories as Reconstruct, Renovate, and Maintenance (Table 1, 

Figures 6). The classification strategy is based on Tokyo’s 2020s 

redevelopment standards and seismic codes. This classification 

considers structural safety, age, and retrofit potential. Buildings 

constructed before 1980 fall under the Reconstruct category due 

to non-compliance with post-1981 seismic codes, requiring 

demolition and rebuild, often incentivized by FAR bonuses. 

Buildings from 1981 to 2000 are categorized as Renovate, being 

structurally sound but aging, and thus eligible for system 

upgrades. Buildings constructed after 2000 are classified under 

Maintenance, requiring only operational improvements, as they 

already comply with modern building standards. This typology 

enables targeted, performance-driven interventions to support 

carbon-neutral urban transformation. 

 
Table 1. Building classification criteria for retrofit strategy based 

on construction years, required action, and typical age 

 

Figure 6. 3D visualization of building classification in 

Nihonbashi District showing the distribution of 68 buildings for 

reconstruction, 45 for renovation, and 43 for maintenance under 

the urban regeneration strategy. 

3.2. Stage Two – Predictive Model: Generative Design 

(GD), Design of Experiment (DOE) and Multi-Objective 

Optimization (MOO)  

3.2.1  Generative Design 

Following the classification of buildings into Reconstruction, 

Renovation, and Maintenance categories, we first focus on the 

Reconstruction group. Two key redevelopment assumptions 

were tested. The first assumption takes each building as to be 

reconstructed individually by its owner, without coordination 

with adjacent properties. However, this approach has limitations, 

particularly for narrow plots where individual redevelopment 

may be inefficient or infeasible. The second assumption explores 

a more integrated strategy, where neighboring building owners 

collaborate on a joint redevelopment vision or where a single 

developer acquires multiple adjacent parcels, merging them into 

larger blocks for holistic redevelopment. 

Based on this integrated assumption, three potential 

redevelopment blocks were identified to illustrate complex 

decisions for are construction project that could be supported by 

generative design. These blocks serve as the basis for generative 

design exploration. The generative design process begins by 

defining the boundary of each redevelopment block, which is 

then subdivided into parcels and structured by a circulation 

network. Building masses are procedurally generated and 

refined with floor-level definitions, resulting in 3D volumetric 

typologies that reflect parametric variations in urban form 

(Figure 7). Developed using Rhino/Grasshopper (with DOTS), 

this process enables the rapid generation of hundreds of design 

alternatives by systematically adjusting parameters such as 

floor-area ratio (FAR), building height, orientation, land-use 

distribution, and window-to-wall ratio (WWR) (Saha et al., 

2020). Each scenario represents a spatial configuration that can 

be computationally evaluated for performance. 
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Figure 7. Generative design workflow for creating parametric 

redevelopment scenarios in Nihonbashi. 

The next step focuses on the Renovation category. All buildings 

within this group were analyzed to develop tailored renovation 

strategies aimed at improving operational performance and 

reducing carbon emissions. The strategies include enhancing the 

thermal performance of the building envelope, specifically by 

increasing the R-values of walls and roofs, and improving the U-

values of windows. In addition, proposed interventions address 

HVAC system upgrades, programmatic changes in building use, 

and parametric variations in window-to-wall ratio (WWR) and 

floor-area ratio (FAR). These modifications aim to optimize 

energy efficiency while preserving the structural integrity of the 

existing buildings. 

Finally, the Maintenance category includes relatively newer 

buildings that already meet modern standards and require no 

major structural interventions. For these buildings, the strategy 

focuses on operational improvements to further enhance energy 

performance. This includes minor envelope upgrades, lighting 

retrofits, and HVAC system tuning to reduce energy use 

intensity (EUI). Where feasible, on-site renewable energy 

systems such as rooftop photovoltaics (PV) are also considered. 

These low-impact interventions are cost-effective and aimed at 

maximizing performance within the constraints of already-

efficient, long-life buildings. 

3.2.2  Design of Experiment and MOO 

A Python-based multi-objective optimization engine is then 

applied to identify optimal design configurations that minimize 

energy use, peak load, and emissions, while maximizing solar 

generation, energy storage, comfort, daylight access, 

connectivity, and walkability. This integrated workflow 

transforms traditional urban planning into a high-resolution, 

data-driven design exploration that balances sustainability, 

resilience, and livability objectives. 

The MOO process includes a surrogate model to enable 

optimization analysis and to identify interactions between four 

retrofit key criteria. In the case study, 10 input variables are 

identified among key criteria (Table 2). Out of the ten variables, 

4 are considered in the UBEM step to generate energy 

consumption, carbon emissions, and peak energy load, while the 

other 6 are considered in the renewable energy generation (e.g., 

solar PV, kinetic floor systems), energy storage and optimization 

step to find the most optimal design combination. To build the 

surrogate model, 100 cases configurated from 10 variables were 

run in a space filling Design of Experiment (DOE). The use of 

surrogate model and decision-making methods enables rapid 

assessment of unsimulated design alternatives, streamlining the 

decision-making process by quickly identifying optimal 

solutions based on various criteria and stakeholder preferences. 

This surrogate model served as a simplified representation of the 

complex relationships within the dataset, allowing for more 

efficient analysis and visualization. 

The four input variables in the UBEM and six variables related 

to renewable energy are displayed in Error! Reference source 

not found.. The optimization process yielded four key outputs 

for further analysis including annual CO2 emission in tons, 

energy use intensity, total renewable energy generation, and total 

retrofit cost.  

Input Variables in DOE 

floor area ratio (FAR) 

window-to-wall ratio 

occupancy schedule 

building type distribution (office/residential percentage) 

PV efficiency 

PV surface percentage 

PV install cost per kW 

PV Operation & Maintenance Cost per kW 

Kinetic energy floor percentage 

Kinetic energy tiles efficiency 

Table 2 Input Variables in DOE 

 

 

Define Development blocks Subdivided into parcels 

Building masses  Add a circulation network 

Define Floor-level 3D volumetric typologies that 
reflect parametric variations in 

urban form 

Generative Design Process 
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3.3.  Urban Building Energy Modeling (UBEM) 

To evaluate the performance of these generated scenarios, Urban 

Building Energy Modeling (UBEM) is conducted using 

URBANopt (El Kontar et al., 2020). URBANopt is an open-

source simulation platform developed by the National 

Renewable Energy Laboratory (NREL) for modeling and 

analyzing energy performance at the building, block, and district 

scales. It builds upon OpenStudio and EnergyPlus engines to 

perform detailed energy simulations across multiple buildings 

within an urban context. 

URBANopt operates by defining building archetypes and 

aggregating inputs such as geometry, climate data, construction 

systems (R-values), typologies, window-to-wall ratios (WWR), 

HVAC configurations, and renewable energy systems such as 

solar panels. The tool then runs energy simulations to calculate 

energy use intensity (EUI), carbon emissions, and related 

performance indicators. Outputs include annual EUI broken 

down by end-use categories such as heating, cooling, lighting, 

equipment, and water systems, as well as hourly and seasonal 

load profiles. These results enable comparison across generative 

design scenarios to identify optimal configurations for carbon-

neutral urban redevelopment. 

3.3.1. Occupancy analytics and agent-based modeling  

To support design decisions in real human–space interactions, an 

integrated occupancy-analytics and agent-based modeling 

workflow are developed. This framework delivers three essential 

capabilities: 

• Real-time density visualization facilitates decision-making 

for block selection and classification. 

• Occupants’ activity pattern reveals how different zones are 

used over time. It reflects actual building uses based on 

high-frequency data that would inform retrofitting planning 

through building use transition. It provides policy 

implications for the land use regulation adjustments. 

• Scenario-driven occupancy simulation is for testing any 

future urban design, in which occupancy is a key criterion 

of urban building performance. 

The workflow imports 3D building data from OpenStreetMap 

into Rhino/Grasshopper, links it to hourly device count logs, and 

uses a Python script to compute and normalize occupancy 

densities. A real-time heatmap visualizes these densities from 

low (blue) to high (red), adjustable by day and hour sliders. 

An agent-based simulation layer assigns virtual occupants to 

buildings with hourly schedules based on real data. It tracks 

entries and dwell times, visualized alongside the occupancy 

heatmap, ensuring design scenarios align with actual human 

behavior (Figure 8). 

 
Figure 8. Occupancy mapping for the selected block, based on 

GPS data, Seven-day period 10:00 - 11:00 PM 

An integrated occupancy-analytics and agent-based modeling 

(ABM) module serves as a diagnostic tool to assess space 

utilization and as a predictive tool to simulate human movement 

in design scenarios, guiding generative design toward improved 

spatial efficiency and comfort. 

3.2.3  Renewable Energy: Solar PV and Kinetic Flooring  

A hybrid renewable energy system combining piezoelectric floor 

tiles (Bairagi et al., 2023) and rooftop solar PV panels were 

proposed to optimize clean energy in urban environments. This 

approach addresses the temporal mismatch between energy 

generation and demand by leveraging different peak periods for 

sunlight and foot traffic. Solar panels are placed on rooftops, 

while kinetic tiles are installed on ground floor interiors (Figure 

9). 

 
Figure 9. Temporal spread of the solar and kinetic energy 

potential across 24 hours. Solar peaks midday and kinetic peaks 

during rush hour. 

Sunday 

Wednesday Thursday 

Friday Saturday 
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Spatial analysis of the kinetic energy generation potential within 

the Nihonbashi District boundary was performed using GPS data 

and ArcGIS Pro, revealing significant variation of kilo-watt 

hours potential across the different building types. A custom 

Python-based tool was created in ArcGIS, so the analysis logic 

can be re-applied to different urban areas based on different input 

data. 

Considering 90% floor area coverage of the tiles, office 

buildings demonstrate the highest kinetic energy generation 

potential across the study area, representing 79.1% total 

harvesting capacity. Commercial buildings represent the lowest 

energy potential of the designated building types 0.2457% of the 

total energy production (in kWh) in the scenario. The hospital 

footprint accounts for 11.83% of the total energy production, 

residential 8.37%, hotel 0.447%, and all other building types 

0.02404% (Table 3). 

 Kinetic Floor Coverage (% of GFA) 

10% 25% 50% 75% 90% 

T
o
ta

l 
k

W
h

 p
er

 b
u

il
d

in
g
 t

y
p

e 

(y
ea

rl
y
) 

 

Office 41.59 

 

103.97 207.94 311.90 374.29 

Hospital 6.22 

 

15.55 31.10 46.65 55.98 

Residential 4.40 

 

10.99 21.99 32.99 39.59 

Hotel 0.24 

 

0.59 1.18 1.76 2.12 

Commercial 0.13 

 

0.32 0.65 0.97 1.16 

Others 0.01 

 

0.03 0.06 0.095 0.11 

Table 3. The yearly kinetic kWh potential per building type in 

Nihonbashi District; based on the percentage of the ground 

floor area covered with kinetic tile. 

The distribution closely aligns with commuter density from GPS 

visitor data, indicating potential to boost ROI by increasing foot 

traffic in the commercial area. The kinetic energy payback 

analysis applies realistic market parameters to evaluate the 

economic viability of piezoelectric floor tile installations across 

154 buildings. The calculation uses pricing (¥56,700 per 0.25 m² 

tile) with ¥30,000/m² installation costs and 2% annual 

maintenance rates, while modeling energy generation at 5 joules 

per footstep converted to kWh and valued at building-specific 

electricity rates for Tokyo metropolitan area (¥30.18/kWh 

commercial, ¥36.70/kWh residential). The methodology 

calculates total installation costs, projects annual energy output 

based on daily footstep counts, determines revenue potential, 

and computes payback periods by dividing installation costs by 

net annual benefits (revenue minus maintenance). Due to the 

absence of major transit hubs, foot traffic is too low to justify 

installation costs. Even with high-density traffic simulations, no 

buildings achieve a break-even point within the tiles’ lifespan. 

Despite cost reductions by manufacturers like Pavegen—

offering tiles at ¥4,275.15 per 0.25 m² (Stein & Oputa, n.d.)—

kinetic energy systems remain economically unviable on their 

own. However, their integration into hybrid renewable setups 

(e.g., with solar PV or UBEM-based strategies) may offset costs. 

Future research should focus on reducing hardware and 

installation expenses through technological advances and batch 

manufacturing to enhance ROI and feasibility in smart urban 

environments. 

3.4. Stage Three – Prescriptive and Interactive Model: A 

Web-based Digital Twin as an Interactive Platform 

Finally, the optimized scenarios are integrated into an interactive 

dashboard inspired by the CANVAS urban digital twins 

(Ramnarine et al., 2025). This interface allows users, planners, 

architects, and community members to manipulate variables 

(e.g., WWR, FAR, PV efficiency) and immediately view the 

impacts on performance. The enabled interactivity and dynamic 

performance modeling provides each user benefits (Figure 10). 

The dashboard enables urban designers to visualize future 

impacts and align design preferences with environmental targets, 

real estate developers to easily identify opportunities for 

redevelopment, and for community members to engage with and 

see the resource impacts of their community. 

This web-based digital twin requires a rearchitecting of the 

traditional energy performance analysis pipeline used by 

Rhino/Grasshopper which performs interactive visualization and 

energy analysis on the same system. The web-based platform 

instead separates the interactive elements requiring high 

responsiveness from the computational complexity of the 

detailed energy analysis. It achieves this by running two 

independent servers – one for each task. 

 
Figure 10 Web-based digital twin showing building-level data 

and performance metrics 

4. Concluding Remarks 

This study presents a comprehensive, data-driven framework 

that integrates generative design, multi-objective optimization 

(MOO), and urban digital twins to support carbon-neutral urban 

regeneration at the district scale. Applied to Tokyo’s Nihonbashi 

District, the framework offers a novel methodology for 

evaluating and prioritizing retrofit strategies across a diverse 
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building stock, classified into Reconstruction, Renovation, and 

Maintenance categories. By embedding high-resolution energy 

modeling, real-time occupancy analytics, and hybrid renewable 

energy simulations within a generative workflow, the study 

enables stakeholders to explore design trade-offs across four key 

domains: resilience, energy performance, financial feasibility, 

and social impact. 

Quantitative findings from the case study demonstrate the 

framework’s potential impact. Prior research estimates suggest 

that combining reconstruction with operational upgrades could 

reduce energy use intensity (EUI) by 99 kWh/m²/year, while 

rooftop solar PV systems alone could generate up to 42.5 

kWh/m²/year. These results highlight the benefits of coordinated 

redevelopment and integrated clean energy systems. Moreover, 

the proposed interactive digital twins platform facilitates 

informed, real-time decision-making by allowing users to 

manipulate variables and visualize performance outcomes 

dynamically. 

Overall, this research contributes to a scalable and transferable 

methodology for achieving carbon neutrality in dense urban 

districts while preserving cultural identity and promoting 

stakeholder collaboration. Future work will focus on expanding 

the surrogate modeling capability, refining economic modeling 

of renewable energy systems, and testing broader applications of 

the framework in other urban contexts. 
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