
On-sensor Stream Cipher Encryption for Protecting Smart City Sensor Data directly on
Resource-Constrained IoT-Sensors

Jan Seedorf 1, Darshana Rawal1, Matthias Hamann1, Sebastian Seid1, Kai Schneider1, Vu Danh Anh1,

Maximilian Haag1, Fabian Milla1, Yunus Emre Altun1
1 HFT Stuttgart, Schellingstraße 24, 70174 Stuttgart, Germany

jan.seedorf@hft-stuttgart.de, darshana.rawal@hft-stuttgart.de, matthias.hamann@hft-stuttgart.de, 12sese1bif@hft-stuttgart.de,
12scka1bif@hft-stuttgart.de, 22davu1bif@hft-stuttgart.de, maximilian.haag@hft-stuttgart.de, 92mifa1bif@hft-stuttgart.de,

22alyu1bif@hft-stuttgart.de

Keywords: Smart City Sensor Data, Cryptography, Stream Cipher Encryption

Abstract

This paper presents a comparative analysis of the DRACO stream cipher implemented in both C++ and Rust across three
microcontroller platforms: ESP32, ESP8266, and Raspberry Pi Pico. DRACO, a lightweight cipher designed for constrained
environments, was evaluated in terms of performance, memory efficiency, and initialization behavior. To ensure reliable and
repeatable results, a standardized benchmarking framework was developed, including automated testing, key/IV configuration
variants, and statistical analysis of execution times. In addition to synthetic benchmarks, the evaluation incorporated representative
smart city data sets, simulating real-world sensor inputs to reflect practical encryption workloads. Performance metrics—including
keystream generation, encryption, and algorithm initialization—were collected via serial output and processed using Python and
visualization tools.

Results show that both implementations perform consistently across varying keystream lengths, with Rust demonstrating faster
execution at very short lengths, and C++ slightly outperforming Rust at longer lengths. The study also discusses the implementation
challenges and trade-offs between security, compiler support, and platform compatibility. Findings highlight that both languages are
suitable for embedded cryptographic applications, with Rust offering stronger language safety guarantees and C++ providing broader
microcontroller support. This work further emphasizes the importance of lightweight encryption in smart city sensor networks, where
securing real-time, sensitive data is critical to privacy, reliability, and urban infrastructure resilience.

1. Introduction and Motivation

1.1 The Need for Protecting Smart City Data

Encryption is a critical component in safeguarding the vast
amounts of data generated by smart city sensors. These sensors
are embedded throughout urban environments to monitor
everything from traffic flow and air quality to utility usage and
public safety conditions. The data they collect plays a vital role
in improving city services, enabling real-time decision-making,
and enhancing the quality of life for residents. However, much
of this data is sensitive in nature—potentially revealing personal
movement patterns, household behavior, or critical
infrastructure status—which makes it a prime target for cyber
threats. (Zhang et al., 2017) (Al‐Turjman et al., 2022)

By encrypting this data, cities can ensure that only authorized
parties can access or interpret the information, thereby
protecting confidentiality and reducing the risk of privacy
breaches or espionage. Furthermore, encryption helps maintain
data integrity, preventing attackers from altering sensor outputs
in ways that could mislead city systems or decision-makers.
This is especially important in applications where false data
could lead to dangerous outcomes—such as misrouting traffic
during emergencies, disrupting public transportation schedules,
causing failures in water or power distribution, or delaying first
responders.

Thus, encryption not only builds public trust in smart city
technologies but also acts as a frontline defense against
cyberattacks that could disrupt essential services or endanger
public safety. As smart cities continue to evolve and expand,
robust encryption practices will remain a cornerstone of secure
and reliable urban infrastructure.

1.2 The Advantages of on-sensor Encryption

In principle, sensor data can either a) be encrypted directly on
the sensor and then be forwarded over a potentially unsecured
communication channel or b) be send over an encrypted
communication channel where encryption between
communication parties has been established before sending
payload data (e.g. by some sort of a communication handshake).
On-sensor encryption provides security at the data source,
ensuring protection from the moment data is collected.

In contrast to channel encryption like TLS, which secures data
only while in transit between two endpoints, on-sensor
encryption maintains data confidentiality even if an attacker
gains access to the sensor network. By encrypting data directly
on the sensor, the data remains protected until it reaches a
trusted processing point, reducing potential vulnerabilities at
intermediary stages.

Moreover, on-sensor encryption offers an independent security
layer that is protocol-agnostic, providing consistent data
protection regardless of the network or communication
protocols used. This scalability is particularly beneficial in the
complex and dynamic networks typical of smart cities, where
data may travel through multiple paths and connections.

2. Objectives and Contribution

The overall objective of our work is to study IoT on-sensor
encryption with stream ciphers on resource-contrained
hardware. In particular, our goals are to i) implement a concrete
research prototype of a stream cipher algorithm, ii) evaluate the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W16-2025
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-105-2025 | © Author(s) 2025. CC BY 4.0 License.

105

general performance of this implementation on resource-
contrained hardware with various benchmarking experiments,
and iii) produce detailed performance results obtained on actual
real-world smart city sensor data.

Our contributions in this work towards the aforementioned
goals are:

• We realised software-implementations of the recently
published Lightweight Stream Cipher DRACO
(Hamann et al., 2022) in two different programing
languages (C++ and Rust), targeted at
microcontrollers.

• Based on these implementations we conducted
experiments on different types of resource-
constrained Arduino/Raspberry nodes with random as
well as real-word smart city sensor data, yielding
numerous results.

To the best of our knowledge, our work presents the first
performance analysis of the DRACO stream cipher
implemented in Rust and C++ on microcontrollers.

3. Stream Ciphers

3.1 Introduction to Stream Ciphers

Stream ciphers are encryption algorithms designed to encrypt
data one bit at a time, ideal for applications requiring real-time
data processing. This is in contrast to block ciphers, which
encrypt data in fixed-size blocks. Stream ciphers are designed to
process a continuous stream of data, making them suitable for
scenarios where data arrives in varying sizes or needs real-time
encryption.

Notable examples for Stream Ciphers include RC4 (now
considered insecure due to vulnerabilities), ChaCha20 (Nir and
Langley, 2018), Salsa20 (Bernstein, 2008), SNOW (for high-
speed encryption in mobile communications), and lightweight
ciphers like Grain (Hell et al., 2007) and Trivium (Cannière and
Preneel, 2008).

Stream ciphers are ideal for encrypting smart city sensor data
due to their ability to efficiently handle real-time data
processing with minimal latency and computational overhead.
These ciphers encrypt data on-the-fly, making them perfect for
the continuous data streams generated by smart city sensors.
Unlike block ciphers, stream ciphers do not require fixed-size
blocks or data padding, allowing them to seamlessly handle
diverse data sizes and formats typical in a smart city
environment. Another often underestimated advantage of stream
ciphers is that they – unlike block ciphers – do not require a
mode of operation (which entails additional computational
overhead and may introduce its own security issues). This
flexibility enables security across a network of heterogeneous
devices, safeguarding the confidentiality and integrity of
information vital for applications ranging from traffic
management to environmental monitoring.

3.2 Technical Overview of Stream Cipher Operation

At a technical level, a stream cipher starts with a secret key and
often an initialization vector (IV) to set up its internal state.
Using this input, it generates a keystream, which is a long,
pseudorandom sequence of bits. Encryption is typically
performed by applying the bitwise XOR operation between the
plaintext and the keystream. The same process is used for

decryption: the ciphertext is XORed with the same keystream,
which reverses the encryption due to the mathematical property
of XOR (i.e., A ⊕ B ⊕ B = A).

Internally, the keystream is produced by a generator mechanism
such as a linear feedback shift register (LFSR) or nonlinear
feedback shift register (NFSR), sometimes combined with
complex Boolean functions or internal permutations. The cipher
must be designed so that the keystream appears random and
cannot be predicted or reproduced without the key and IV.

A key advantage of stream ciphers is their ability to start
encrypting data immediately without waiting for a full block of
input, making them ideal for applications with low power,
limited bandwidth, or real-time requirements. However, reusing
the same keystream (i.e., same key and IV combination) is a
critical security risk, as it can allow attackers to recover
plaintext through simple XOR operations. Therefore, secure key
and IV management is essential in any stream cipher
application.

3.3 The DRACO Stream Cipher

DRACO (Hamann et al., 2022) is a lightweight encryption
algorithm designed for small, low-power devices like RFID tags
and embedded sensors. Its main goal is to provide strong data
security while using very little hardware, energy, or memory.
This makes it ideal for environments where resources are
extremely limited.

DRACO is built to be both efficient and secure. It uses a
compact internal system to create a stream of encrypted data,
based on a secret key and an initialization value (IV). Unlike
many traditional ciphers that require large internal memory to
stay secure, DRACO achieves strong protection with a much
smaller design—helping save cost and power.

One of DRACO’s key strengths is that it has been
mathematically proven to resist a broad class of generic attacks
when used properly. For instance, it achieves 128-bit resistance
against generic time-memory-data tradeoff (TMDTO) attacks
and distinguishing attacks within the random oracle model—
assuming a single-user or single-session setting. This proof
makes DRACO notable among stream ciphers, especially those
targeting lightweight applications.

DRACO is well suited for IoT applications because it delivers
strong security while using very little power, memory, and
hardware resources—key requirements for small, battery-
powered or passive devices like sensors, RFID tags, and
wearables. Its compact design allows it to run efficiently on
low-cost microcontrollers, and its energy efficiency helps
extend device lifespan. Additionally, DRACO performs well in
simple, one-time communication scenarios typical in IoT,
offering robust protection without the complexity or overhead
of larger encryption systems.

4. Implementation

4.1 Software Implementations of the DRACO Stream
Cipher

We implemented the DRACO Stream Cipher in software in two
different programming languages: C++ and Rust. DRACO was
originally designed for hardware implementations. However,
implementing DRACO in software makes sense for generic

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W16-2025
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-105-2025 | © Author(s) 2025. CC BY 4.0 License.

106

resource-constrained devices that lack dedicated cryptographic
hardware, such as off-the-shelf IoT sensors and embedded
systems. Its lightweight design, with a small internal state and
simple operations, allows it to run efficiently on low-power
processors without draining battery life. Software
implementations are also more flexible and easier to update than
hardware, making them ideal for evolving or remotely managed
systems. Additionally, DRACO’s security model is well-suited
for single-session or short-lived communications, which are
common in IoT applications, offering strong protection with
minimal performance impact.

C++ is widely used in low-level IoT programming because it
offers the performance and hardware-level control needed for
resource-constrained devices, while also supporting modular
and maintainable code through object-oriented features. It
allows direct interaction with memory and peripherals, making
it ideal for real-time operations. Additionally, C++ is
compatible with existing C libraries and toolchains commonly
used in embedded systems, ensuring broad support across IoT
platforms and development environments.

Rust, on the other hand, offers several advantages over C++,
particularly in memory safety, concurrency, and developer
productivity. Its unique ownership system enforces strict
compile-time checks that prevent common bugs like null
pointers and data races, all without needing a garbage collector.
Rust also promotes safe concurrency, has cleaner syntax, more
consistent language features, and excellent tooling through its
“cargo” build system. Unlike C++, Rust avoids undefined
behavior by default and provides clearer error messages,
making it easier to write reliable, maintainable code—especially
for security-critical or low-level applications.

We choose to implement DRACO in both C++ as well as in
Rust to be able to evaluate and compare their suitability in terms
of performance on microcontrollers in a real-world, resource-
constrained setting. By developing parallel implementations, we
aimed to gain insight into how each language handles low-level
cryptographic operations in terms of execution speed and
memory usage. In addition, comparing both implementations
also allows to assess not only raw performance but also trade-
offs in developer experience, code safety, maintainability, and
integration effort—informing decisions about language choice
for future IoT and embedded security projects.

4.2 Validation Framework

To ensure the correctness and efficiency of our
implementations, we designed a comprehensive test framework.
This framework covered a wide range of test cases and edge
conditions:

• Validation of core bit manipulation functions: The

fundamental operations of DRACO were thoroughly
tested to ensure all bitwise operations were implemented
accurately and efficiently.

• Consistency tests: Identical inputs were required to
always produce identical outputs, guaranteeing the
deterministic behavior of the implementation.

• Comparison with predefined test vectors: By precisely
matching the generated keystreams against the expected
values, we were able to reliably validate the
implementation against the reference.

Once we successfully reproduced the exact keystreams for all
test vectors, it was clear that the implementation had passed all

tests. This confirmed that the core computations functioned
correctly and that DRACO operated exactly as intended.

4.3 Optimization and Memory Management in
Performance Comparison

Another key objective of our work was optimizing memory
management and conducting a comparative performance
analysis. For this purpose, we compared our C++
implementation with Rust version of DRACO. It became
apparent that the C++ version relied on dynamic memory
allocations in certain areas, which were not required in the Rust
implementation. As a result, the memory management in the
original implementation had to be optimized.

To achieve the most efficient implementation possible, we
replaced dynamic memory allocations with statically managed
arrays and precisely controlled pointers. These measures
reduced memory usage and simultaneously improved execution
speed. After these optimizations, we achieved a highly
performant and stable C++ implementation of DRACO.

5. Testing Environment, Testing Methodology, and
Experimental Setup

5.1 Evaluation Environment

We conducted a multitude of experiments on three
microcontrollers: ESP32, ESP8266, and Raspberry Pi Pico. The
ESP32 and ESP8266 are Wi-Fi-enabled microcontrollers often
used in smart cities for applications like smart street lighting, air
quality monitoring, and smart parking, while the Raspberry Pi
Pico is usually used for local control tasks and sensor data
acquisition, often in combination with other devices like the
ESP32 for IoT solutions.

Our experiments measure the runtime performance of our two
DRACO implementations (one implemented in C++, one
implemented in Rust) on these resource-constrained devices.
We benchmarked the performance of these implementations on
the different microcontrollers for random data of various sizes
as well as for more than 700 real-world smart city sensor
measurements of various types (e.g. temperature, power units,
volume flow rate) from cooling systems (valves, pumps,
refrigeration units).

To compare the Rust and C++ versions, it was necessary to
record measurement data for later visualization. Specifically, we
captured the execution times for keystream generation and
initialization in order to conduct a well-founded performance
analysis. These measurements enabled a detailed comparison
with the Rust implementation. For this purpose, we used
CoolTerm (Meier, 2025), a specialized macOS application that
allows serial interfaces to be read and their output saved to a
text file. Various performance metrics were recorded, including
the time required to generate keystreams and the initialization
durations. These text files served as raw data for further
processing and analysis.

To make the collected measurements usable for future
comparisons and visualizations, we developed a Python script
that used the Pandas library (Pandas Development Team, 2020)
to convert the text files into structured CSV files.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W16-2025
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-105-2025 | © Author(s) 2025. CC BY 4.0 License.

107

5.2 Testing Methodology

After implementing DRACO in Rust and C++ on three
microcontrollers—ESP32, ESP8266, and Raspberry Pi Pico—a
standardized testing procedure was developed to enable a
comparable analysis of performance across both programming
languages.

To ensure consistent data collection, specific test scenarios were
defined and executed identically on all platforms. The results of
the individual measurements were automatically saved in CSV
files to allow for subsequent statistical evaluation.

For data analysis, Python with the Matplotlib library (Hunter,
2007) was used to generate box plots and other visualizations.
Additionally, detailed evaluations were carried out in Excel to
examine the measurement results in terms of mean values,
standard deviation, and other statistical parameters.

This approach ensured a sound basis for comparing the
implementations by analyzing not only overall runtime
differences but also potential variations and patterns within the
measurement data.

5.3 Experimental Setup and Benchmarks Definition

To ensure a statistically sound analysis, each test case used
various combinations of random and static keys as well as
random and static initialization vectors. This allowed us to
examine whether and to what extent these parameters
influenced the performance of the implementation.

Each test series was repeated 100 times to minimize the impact
of outlier measurements and to create a reliable data set. Tests
were conducted with keystream lengths of 1, 8, 128, and 1024
bits to analyze how different output lengths affected the
performance of the implementation.

To further improve the validity of the results, the initial test runs
were excluded from the analysis, as they were identified as
potential outliers that could be distorted by initialization
processes or other system-related effects.

The benchmarks were conducted in three categories:

• Full: This benchmark measures the time required for
complete keystream generation followed by data
encryption. In this process, the generated keystream is
combined with the original message using an XOR
operation and stored. This simulates a typical use case
of DRACO for encryption.

• Keystream_gen: This test only measures the time taken
to generate the keystream, without performing any
subsequent encryption. It helps analyze the raw
performance of keystream generation and identify speed
differences across various microcontrollers and
programming languages.

• Struct_init: This benchmark measures the initialization
time of the DRACO algorithm—that is, the time needed
to set up the internal registers and structures before any
keystream generation or encryption can occur.

However, the keystream_gen benchmark was ultimately
used only to validate the results of the full benchmark. A
detailed evaluation of the keystream_gen data was not
performed, as the results were nearly identical to those of the

full benchmark. Thus, a separate analysis of keystream_gen
would not have provided any additional insights.

6. Results

In the following section, we present and analyze the results of
our benchmarking experiments. These results provide insights
into the performance of our DRACO implementations across
different configurations, platforms, and programming
languages. By comparing execution times for initialization and
keystream generation, we aim to highlight performance trends,
identify bottlenecks, and draw conclusions about the efficiency
and suitability of each implementation for resource-constrained
environments.

For interpreting the graphs, the following structure should be
noted: the labels always follow the format <Key, IV>. The
number on the X-axis indicates the keystream length in bits. For
example, the label <r, s | 8> represents a random key with
a static IV and a keystream length of 8 bits1. The Y-axis always
shows the time in microseconds, allowing for a performance
comparison between the different configurations. If not
specifically noted, the graphs present the results of the “Full”
benchmark, i.e. the time required for complete keystream
generation followed by data encryption. For all our experiments,
a very low standard-deviation was observed (i.e. less than 1%,
not displayed in the figures).

6.1 Experimental Results on the ESP32 Microcontroller

Figure 1 shows the runtime performance (in µs) of the DRACO
stream cipher on an ESP32 microcontroller for various input
data sizes and different combinations of random/static key and
random/static initialization vector (IV), comparing our two
implementations (C++, Rust).

With respect to keystream length, C++ and Rust exhibit similar
behavior. A direct comparison of the two languages shows that
Rust is approximately twice as fast as C++ when generating a
keystream of 1 bit. At 4 bits, the execution times begin to
converge, and from 128 bits onward, C++ becomes
insignificantly faster than Rust.

Figure 1: Runtime performance of the DRACO stream cipher
on an ESP32 microcontroller for various input data sizes (in

bits) and different combinations of random/static key and
random/static initialization vector (µs)

1 In other words, the numbers on the x-axis display the number

of input bits to the stream cipher, where the [r/s],[r/s]
notation above the input bit size indicates whether the key
and/or the IV are random (r) or static (s) for these results.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W16-2025
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-105-2025 | © Author(s) 2025. CC BY 4.0 License.

108

Figure 2 shows the time need to inizialize the DRACO
algorithm (benchmark “Struct_init”) on an ESP32
microcontroller. When comparing the four variants of
random/static key and random/static IV for initialization on the
ESP32, it becomes clear that the execution times remain
consistent within the same programming language—regardless
of the chosen configuration. The C++ implementation is
consistently slightly faster than the Rust version throughout.

Figure 2: Initialization performance of the DRACO stream

cipher on an ESP32 microcontroller for different combinations
of random/static key and random/static initialization vector (µs)

6.2 Experimental Results on the ESP8266 Microcontroller

Figure 3 shows the runtime performance (in µs) of the DRACO
stream cipher on an ESP8266 microcontroller for various input
data sizes and different combinations of random/static key and
random/static initialization vector (IV), comparing our two
implementations (C++, Rust).

For the execution time of the full benchmark on the ESP8266,
we observe that the differences between the two
implementations are minimal across the entire range of
keystream lengths. However, outliers appear in the Rust
implementation at 1-bit keystream length, particularly in the
configurations with a random key & static IV and static key &
random IV. The exact cause of this behavior could not be
clearly determined, but it is likely related to the limited
compiler support for the ESP8266 in the Rust ecosystem.

Figure 3: Runtime performance of the DRACO stream cipher
on an ESP8266 microcontroller for various input data sizes (in

bits) and different combinations of random/static key and
random/static initialization vector (µs)

Figure 4 shows the time need to inizialize the DRACO
algorithm (benchmark “Struct_init”) on an ESP32
microcontroller. Initialization on the ESP8266 also shows that

the different combinations of key and IV result in the same
execution time within each respective implementation.
However, the difference between C++ and Rust is more
pronounced in this case. Compared to the ESP32, the overall
execution times are significantly higher, reflecting the lower
performance capabilities of the ESP8266.

Figure 4: Initialization performance of the DRACO stream

cipher on an ESP8266 microcontroller for different
combinations of random/static key and random/static

initialization vector (µs)

6.3 Experimental Results on the Raspberry Pi Pico
Microcontroller

Figure 5 shows the runtime performance (in µs) of the DRACO
stream cipher on an Raspberry Pi Pico microcontroller for
various input data sizes and different combinations of
random/static key and random/static initialization vector (IV),
comparing our two implementations (C++, Rust). A similar
pattern in execution times can also be observed on the
Raspberry Pi Pico. Rust is slightly faster than C++ up to a
keystream length of 8 bits. After that, the two implementations
begin to converge, and at 1024 bits, C++ ultimately becomes
faster.

Figure 5: Runtime performance of the DRACO stream cipher
on an Raspberry Pi Pico microcontroller for various input data
sizes (in bits) and different combinations of random/static key

and random/static initialization vector (µs)

6.4 Benchmarks with Smart City Data Sets from the iCity
Project

The iCity: Intelligent City initiative by HFT Stuttgart2, launched
in 2017, is a multidisciplinary research partnership aimed at
developing holistic solutions for a livable, intelligent, and
sustainable urban future. It brings together over 50 researchers
and 45 industry, municipal, and SME partners to create

2 https://www.hft-stuttgart.com/research/projects/i-city

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W16-2025
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-105-2025 | © Author(s) 2025. CC BY 4.0 License.

109

innovative methods, services, and products across domains such
as energy management, mobility, data platforms, and urban
infrastructure. The project places a strong emphasis on systemic
integration—not only technologically, but also socially and
ecologically—ensuring citizen well-being remains central to
smart city development. Current work focuses on advancing
digital urban twins, open urban data platforms, and 5G-
supported IoT infrastructure, aiming to bridge academic
research and practical deployment while supporting open-source
adoption and data-driven decision-making.

In addition to the experiments using randomly generated
payload data (see sections 6.1, 6.2, 6.3), we also conducted tests
with real sensor data sourced from HFT Stuttgart’s iCity
project, specifically from building cooling systems. This dataset
includes measurements from valves, pumps, and refrigeration
units, capturing parameters such as temperature, power
consumption, and volume flow rate. By incorporating this
operational data into our benchmarking framework, we were
able to evaluate the performance and reliability of the DRACO
cipher in a realistic context, emulating the encryption demands
of smart city infrastructure systems and ensuring its practical
suitability for securing critical sensor communications.

The benchmarks in this experiment were executed on the
ESP8266 microcontroller, operating at a clock frequency of 80
MHz. For this test, the Rust implementation of the DRACO
cipher was used. A keystream of 22,464 bits was generated,
corresponding to 702 individual raw sensor measurement data
values of 32 bits each, reflecting the size of the real-world
sensor dataset. The full benchmark was performed, meaning
that both the keystream generation and the encryption of the
dataset using a bitwise XOR operation were included in the
measurement.

This setup was chosen to simulate a realistic encryption
workload based on actual sensor data from smart city cooling
systems. In a typical deployment scenario, a sink node—such as
a building controller or edge gateway—would collect these
individual measurements from distributed cooling system
sensors and perform on-device encryption before forwarding the
data to a central server, ensuring confidentiality from the
moment of acquisition.

A total of 400 benchmark runs were conducted for each
dataset—iCity sensor data and random payloads—using the
Rust implementation of DRACO on the ESP8266 at 80 MHz.
Both benchmarks were run under identical conditions, with the
only difference being the type of payload: real sensor data from
iCity cooling systems vs. randomly generated data. These runs
were evenly distributed across four key/IV configurations:
random key & random IV (r, r), random key & static IV (r, s),
static key & random IV (s, r), static key & static IV (s, s). In
other words, each configuration was tested 100 times, ensuring
consistent and comprehensive coverage across different
initialization scenarios. This setup allowed us to evaluate
whether key and IV variability influenced encryption
performance under realistic and synthetic conditions.

Table 1 summarizes the overall execution time statistics based
on all 400 benchmark runs for each dataset (i.e. for encrypting
iCity sensor data versus random data) using the DRACO cipher,
regardless of the specific key/IV configuration (i.e., whether
random or static keys and IVs were used). By aggregating
results across all four combinations (r,r; r,s; s,r; s,s), the table
provides a global performance comparison between the two data
types. This approach offers a broad view of how the nature of

the payload—real-world sensor data vs. synthetic random
data—affects execution time, independent of initialization
settings.

Metric iCity Data Random Data
Mean (µs) 282,891.4 282,871.5

Median (µs) 282,897.0 282,870.0
Standard Deviation 31.82 25.60

Min (µs) 282,820 282,790
Max (µs) 283,287 282,977

Table 1: Average execution times (µs) and standard deviation
for the DRACO full benchmark, comparing iCity sensor data
and random payloads on an ESP8266 microcontroller

Both datasets yield nearly identical mean and median execution
times—around 282,890 µs for iCity data and 282,870 µs for
random data—indicating that the type of data has negligible
impact on performance. The standard deviation is slightly
(albeit insignificantly) higher for the iCity data, suggesting
marginally more variability, possibly due to subtle differences
in memory access patterns. Overall, the data confirms that
DRACO delivers consistent and stable performance regardless
of whether the payload is synthetic or from a real-world smart
city source.

Table 2 presents in more detail the average execution times (in
microseconds) for the DRACO full benchmark with respect to
the four different key/IV configurations, using both iCity sensor
data and random payloads on the ESP8266 (80 MHz) with the
Rust implementation.

randomKey
YesNo

randomIV
YesNo

iCity Mean
(¬µs)

Random
Mean
(¬µs)

False False 282908.82 282870.31
False True 282887.76 282883.78
True False 282885.3 282881.53
True True 282883.72 282850.21

Table 2: Average execution times (µs) for the DRACO full
benchmark across four different key/IV configurations,
comparing iCity sensor data and random payloads on an

ESP8266 microcontroller

It can be observed that across all configurations, the execution
time differences between iCity sensor data and random payloads
are consistently small. This implies that the type of data being
encrypted—whether real-world sensor data (iCity) or randomly
generated payloads—has little to no impact on DRACO’s
performance, affirming its reliability for real-world smart city
workloads.

Also, note that across all four key and IV configurations the
execution times for the iCity and random datasets are very
close, with differences ranging from ~4 to ~39 microseconds.
This implies that DRACO's performance is largely unaffected
by whether the key or IV is static or randomly generated.

6.5 Summary of Results and Discussion

In summary, our C++ Implementation is slightly faster than our
Rust implementation, starting at 128-bit keystream lengths.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W16-2025
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-105-2025 | © Author(s) 2025. CC BY 4.0 License.

110

Also, C++ has good compiler optimizations, resulting in stable
performance.

The Rust implementation, on the other hand, was faster in our
experiments for short keystream lengths (1 and 8 bits), except
on the ESP8266. However, Rust requires platform-specific code
for each microcontroller. Also, there was less programming
language support for Rust for microcontrollers, especially for
the ESP8266. But Rust offers stronger safety guarantees
through the Rust compiler.

Overall, both languages are well-suited for implementing the
cipher. While there are some small performance differences,
these are generally minor and unlikely to be significant in
practice. The biggest distinction is that implementing Rust
across different microcontrollers is more complex than C++, but
this added complexity may be worthwhile due to the additional
safety guarantees Rust provides.

7. Conclusion and Future Work

In this work, we implemented and evaluated the DRACO
stream cipher in both C++ and Rust on three widely used
microcontroller platforms: ESP32, ESP8266, and Raspberry Pi
Pico. Our goal was to analyze the correctness, efficiency, and
resource usage of both implementations, particularly in the
context of lightweight and resource-constrained IoT
environments.

Through a standardized testing framework and a carefully
designed benchmarking setup, we measured the performance of
keystream generation, encryption, and initialization under
various key and IV configurations. Our results demonstrate that
both implementations perform reliably and efficiently, with
minor variations depending on the target platform and language.

In addition to experiments conducted with randomly generated
payload data, we also performed tests using real-world sensor
data obtained from HFT Stuttgart’s iCity project. This data,
collected from deployed urban sensors monitoring cooling
systems allowed us to evaluate the performance and behavior of
the DRACO cipher with raw measurement data from real
sensors. By integrating actual smart city data into our test
framework, we ensured that the encryption performance
measurements reflect practical usage scenarios, helping to
validate the suitability of DRACO for real-time data protection
in urban IoT deployments.

Overall, our study highlights the feasibility of DRACO as a
lightweight encryption solution for smart cities. The results
demonstrate that the technology is mature and efficient enough
for immediate, affordable deployment at city scale, enabling
secure sensor data transmission in smart urban infrastructures
without significant cost or performance trade-offs.

The on-sensor stream-cipher encryption approach demonstrated
in this work is well-suited for low- to mid-power sensors and
edge devices with processing capabilities comparable to the
ESP8266 or ESP32 microcontroller. This includes a wide range
of sensors commonly found in smart city environments, such as
those used for measuring temperature, humidity, air quality,
pressure, and flow within infrastructure systems like HVAC and
utility networks. It is also applicable to building automation
devices, smart meters, traffic sensors, and environmental
monitoring units deployed across urban infrastructure. These
devices typically operate on constrained hardware with limited

memory and compute resources, yet the results show that
efficient, on-device encryption with DRACO is feasible and
practical even under these conditions. This confirms the
suitability of the approach for scalable, secure data transmission
in real-world smart city applications.

Further, our work provides practical insights into the trade-offs
between C++ and Rust for cryptographic applications in
embedded systems. Our results show that both C++ and Rust
are well-suited for implementing the DRACO stream cipher on
microcontrollers. Although some minor performance
differences were observed, they are generally negligible and
unlikely to impact practical applications. The most notable
distinction lies in the implementation effort: while Rust
introduces greater complexity when targeting different
microcontroller platforms, it also offers stronger safety
guarantees through its strict compile-time checks. This trade-off
may justify the added development effort, particularly in
security-critical or safety-sensitive environments.

While this study provides a strong foundation for evaluating the
DRACO stream cipher on embedded platforms using both C++
and Rust, several directions remain open for future exploration.
One key area is extending the benchmarks to a broader range of
microcontrollers and hardware architectures, such as ARM
Cortex-M0+ or RISC-V, to further assess performance and
portability. Additionally, future work could involve integrating
DRACO into real-world applications—particularly within the
context of smart cities, where lightweight encryption is crucial
for protecting sensitive, distributed data streams.

Smart city infrastructures rely heavily on sensor data for
decision-making in areas like traffic management, public safety,
environmental monitoring, and utility control. This data is often
real-time, continuous, and privacy-sensitive, making efficient
and secure encryption essential. Evaluating DRACO’s
performance in such settings could reveal its strengths and
limitations under real-world constraints, including network
latency, packet loss, and power consumption.

From a software engineering perspective, further investigation
into compiler optimizations and memory usage in both
languages could help fine-tune the cipher for deployment in
ultra-constrained devices. Exploring hardware-accelerated
implementations, or embedding DRACO into existing
cryptographic libraries for IoT ecosystems, could also improve
integration and adoption. Finally, analyzing long-term
reliability, security resilience in multi-session or multi-user
environments, and the maintainability of the C++ and Rust
codebases will be important for ensuring the cipher’s viability
in large-scale, mission-critical smart city deployments.

Acknowledgment

This work is an outcome of the project "Datasecurity4iCity", a
subproject of "iCity: Intelligent City" (https://www.hft-
stuttgart.com/research/projects/i-city). We extend our gratitude
for the funding received through the FHImpuls program under
the number 13FH9E04IA by the German Federal Ministry of
Education and Research (BMBF).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W16-2025
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-105-2025 | © Author(s) 2025. CC BY 4.0 License.

111

References

Al-Turjman, F., Zahmatkesh, H. and Shahroze, R., 2022. An
overview of security and privacy in smart cities' IoT
communications. Trans. on Emerging Telecommunications
Technologies, 33(3). https://doi.org/10.1002/ett.3677

Bernstein, D.J., 2008. The Salsa20 family of stream ciphers. In:
Biryukov, A. and Wagner, D. (eds), New Stream Cipher
Designs: The eSTREAM Finalists. Springer, Berlin,
Heidelberg, pp. 84–97. https://doi.org/10.1007/978-3-540-
68351-3_8

Cannière, C. and Preneel, B., 2008. Trivium. In: Biryukov, A.
and Wagner, D. (eds), New Stream Cipher Designs: The
eSTREAM Finalists. Springer, Berlin, Heidelberg, pp. 244–266.
https://doi.org/10.1007/978-3-540-68351-3_18

Hamann, M., Moch, A., Krause, M., & Mikhalev, V. 2022: The
DRACO Stream Cipher: A Power-efficient Small-state Stream
Cipher with Full Provable Security against TMDTO Attacks.
IACR Transactions on Symmetric Cryptology, 2022(2), 1-42.
https://doi.org/10.46586/tosc.v2022.i2.1-42

Hell, M., Johansson, T. and Meier, W., 2007. Grain: A stream
cipher for constrained environments. International Journal of
Wireless and Mobile Computing, 2(1), pp.86–93.
https://doi.org/10.1504/IJWMC.2007.013798

Hunter, J.D., 2007. Matplotlib: A 2D graphics environment.
Computing in Science & Engineering, 9(3), pp.90–95.
https://doi.org/10.1109/MCSE.2007.55

Meier, R., CoolTerm Help – Roger Meier's Freeware. Available
at: https://freeware.the-meiers.org/CoolTermHelp/ (Accessed:
30 June 2025).

Nir, Y. and Langley, A., 2018. ChaCha20 and Poly1305 for
IETF Protocols. RFC 8439. https://doi.org/10.17487/RFC8439

Pandas Development Team, T., 2020. pandas-dev/pandas:
Pandas (latest) [Computer software]. Zenodo.
https://doi.org/10.5281/zenodo.3509134

Zhang, K., Ni, J., Yang, K., Liang, X., Ren, J. and Shen, X.S.,
2017. Security and privacy in smart city applications:
Challenges and solutions. IEEE Comm. Magazine, 55(1),
pp.122–129. https://doi.org/10.1109/MCOM.2017.1600267CM

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W16-2025
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-105-2025 | © Author(s) 2025. CC BY 4.0 License.

112

