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Abstract 
 
This paper presents a comparative analysis of the DRACO stream cipher implemented in both C++ and Rust across three 
microcontroller platforms: ESP32, ESP8266, and Raspberry Pi Pico. DRACO, a lightweight cipher designed for constrained 
environments, was evaluated in terms of performance, memory efficiency, and initialization behavior. To ensure reliable and 
repeatable results, a standardized benchmarking framework was developed, including automated testing, key/IV configuration 
variants, and statistical analysis of execution times. In addition to synthetic benchmarks, the evaluation incorporated representative 
smart city data sets, simulating real-world sensor inputs to reflect practical encryption workloads. Performance metrics—including 
keystream generation, encryption, and algorithm initialization—were collected via serial output and processed using Python and 
visualization tools. 
 
Results show that both implementations perform consistently across varying keystream lengths, with Rust demonstrating faster 
execution at very short lengths, and C++ slightly outperforming Rust at longer lengths. The study also discusses the implementation 
challenges and trade-offs between security, compiler support, and platform compatibility. Findings highlight that both languages are 
suitable for embedded cryptographic applications, with Rust offering stronger language safety guarantees and C++ providing broader 
microcontroller support. This work further emphasizes the importance of lightweight encryption in smart city sensor networks, where 
securing real-time, sensitive data is critical to privacy, reliability, and urban infrastructure resilience. 
 
 

1. Introduction and Motivation 

1.1 The Need for Protecting Smart City Data 

Encryption is a critical component in safeguarding the vast 
amounts of data generated by smart city sensors. These sensors 
are embedded throughout urban environments to monitor 
everything from traffic flow and air quality to utility usage and 
public safety conditions. The data they collect plays a vital role 
in improving city services, enabling real-time decision-making, 
and enhancing the quality of life for residents. However, much 
of this data is sensitive in nature—potentially revealing personal 
movement patterns, household behavior, or critical 
infrastructure status—which makes it a prime target for cyber 
threats. (Zhang et al., 2017) (Al‐Turjman et al., 2022) 
 
By encrypting this data, cities can ensure that only authorized 
parties can access or interpret the information, thereby 
protecting confidentiality and reducing the risk of privacy 
breaches or espionage. Furthermore, encryption helps maintain 
data integrity, preventing attackers from altering sensor outputs 
in ways that could mislead city systems or decision-makers. 
This is especially important in applications where false data 
could lead to dangerous outcomes—such as misrouting traffic 
during emergencies, disrupting public transportation schedules, 
causing failures in water or power distribution, or delaying first 
responders. 
 
Thus, encryption not only builds public trust in smart city 
technologies but also acts as a frontline defense against 
cyberattacks that could disrupt essential services or endanger 
public safety. As smart cities continue to evolve and expand, 
robust encryption practices will remain a cornerstone of secure 
and reliable urban infrastructure. 

 
1.2 The Advantages of on-sensor Encryption 

In principle, sensor data can either a) be encrypted directly on 
the sensor and then be forwarded over a potentially unsecured 
communication channel or b) be send over an encrypted 
communication channel where encryption between 
communication parties has been established before sending 
payload data (e.g. by some sort of a communication handshake). 
On-sensor encryption provides security at the data source, 
ensuring protection from the moment data is collected.  
 
In contrast to channel encryption like TLS, which secures data 
only while in transit between two endpoints, on-sensor 
encryption maintains data confidentiality even if an attacker 
gains access to the sensor network. By encrypting data directly 
on the sensor, the data remains protected until it reaches a 
trusted processing point, reducing potential vulnerabilities at 
intermediary stages. 
 
Moreover, on-sensor encryption offers an independent security 
layer that is protocol-agnostic, providing consistent data 
protection regardless of the network or communication 
protocols used. This scalability is particularly beneficial in the 
complex and dynamic networks typical of smart cities, where 
data may travel through multiple paths and connections.  
 
 

2. Objectives and Contribution 

The overall objective of our work is to study IoT on-sensor 
encryption with stream ciphers on resource-contrained 
hardware. In particular, our goals are to i) implement a concrete 
research prototype of a stream cipher algorithm, ii) evaluate the 
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general performance of this implementation on resource-
contrained hardware with various benchmarking experiments, 
and iii) produce detailed performance results obtained on actual 
real-world smart city sensor data. 
 
Our contributions in this work towards the aforementioned 
goals are: 

• We realised software-implementations of the recently 
published Lightweight Stream Cipher DRACO 
(Hamann et al., 2022) in two different programing 
languages (C++ and Rust), targeted at 
microcontrollers. 

• Based on these implementations we conducted 
experiments on different types of resource-
constrained Arduino/Raspberry nodes with random as 
well as real-word smart city sensor data, yielding 
numerous results. 

 
To the best of our knowledge, our work presents the first 
performance analysis of the DRACO stream cipher 
implemented in Rust and C++ on microcontrollers. 
 
 

3. Stream Ciphers 

3.1 Introduction to Stream Ciphers 

Stream ciphers are encryption algorithms designed to encrypt 
data one bit at a time, ideal for applications requiring real-time 
data processing. This is in contrast to block ciphers, which 
encrypt data in fixed-size blocks. Stream ciphers are designed to 
process a continuous stream of data, making them suitable for 
scenarios where data arrives in varying sizes or needs real-time 
encryption. 
 
Notable examples for Stream Ciphers include RC4 (now 
considered insecure due to vulnerabilities), ChaCha20 (Nir and 
Langley, 2018), Salsa20 (Bernstein, 2008), SNOW (for high-
speed encryption in mobile communications), and lightweight 
ciphers like Grain (Hell et al., 2007) and Trivium (Cannière and 
Preneel, 2008). 
 
Stream ciphers are ideal for encrypting smart city sensor data 
due to their ability to efficiently handle real-time data 
processing with minimal latency and computational overhead. 
These ciphers encrypt data on-the-fly, making them perfect for 
the continuous data streams generated by smart city sensors. 
Unlike block ciphers, stream ciphers do not require fixed-size 
blocks or data padding, allowing them to seamlessly handle 
diverse data sizes and formats typical in a smart city 
environment. Another often underestimated advantage of stream 
ciphers is that they – unlike block ciphers – do not require a 
mode of operation (which entails additional computational 
overhead and may introduce its own security issues). This 
flexibility enables security across a network of heterogeneous 
devices, safeguarding the confidentiality and integrity of 
information vital for applications ranging from traffic 
management to environmental monitoring. 
 
3.2 Technical Overview of Stream Cipher Operation 

At a technical level, a stream cipher starts with a secret key and 
often an initialization vector (IV) to set up its internal state. 
Using this input, it generates a keystream, which is a long, 
pseudorandom sequence of bits. Encryption is typically 
performed by applying the bitwise XOR operation between the 
plaintext and the keystream. The same process is used for 

decryption: the ciphertext is XORed with the same keystream, 
which reverses the encryption due to the mathematical property 
of XOR (i.e., A ⊕ B ⊕ B = A). 
 
Internally, the keystream is produced by a generator mechanism 
such as a linear feedback shift register (LFSR) or nonlinear 
feedback shift register (NFSR), sometimes combined with 
complex Boolean functions or internal permutations. The cipher 
must be designed so that the keystream appears random and 
cannot be predicted or reproduced without the key and IV. 
 
A key advantage of stream ciphers is their ability to start 
encrypting data immediately without waiting for a full block of 
input, making them ideal for applications with low power, 
limited bandwidth, or real-time requirements. However, reusing 
the same keystream (i.e., same key and IV combination) is a 
critical security risk, as it can allow attackers to recover 
plaintext through simple XOR operations. Therefore, secure key 
and IV management is essential in any stream cipher 
application. 
 
3.3 The DRACO Stream Cipher 

DRACO (Hamann et al., 2022) is a lightweight encryption 
algorithm designed for small, low-power devices like RFID tags 
and embedded sensors. Its main goal is to provide strong data 
security while using very little hardware, energy, or memory. 
This makes it ideal for environments where resources are 
extremely limited. 
 
DRACO is built to be both efficient and secure. It uses a 
compact internal system to create a stream of encrypted data, 
based on a secret key and an initialization value (IV). Unlike 
many traditional ciphers that require large internal memory to 
stay secure, DRACO achieves strong protection with a much 
smaller design—helping save cost and power. 
 
One of DRACO’s key strengths is that it has been 
mathematically proven to resist a broad class of generic attacks 
when used properly. For instance, it achieves 128-bit resistance 
against generic time-memory-data tradeoff (TMDTO) attacks 
and distinguishing attacks within the random oracle model—
assuming a single-user or single-session setting. This proof 
makes DRACO notable among stream ciphers, especially those 
targeting lightweight applications. 
 
DRACO is well suited for IoT applications because it delivers 
strong security while using very little power, memory, and 
hardware resources—key requirements for small, battery-
powered or passive devices like sensors, RFID tags, and 
wearables. Its compact design allows it to run efficiently on 
low-cost microcontrollers, and its energy efficiency helps 
extend device lifespan. Additionally, DRACO performs well in 
simple, one-time communication scenarios typical in IoT, 
offering robust protection without the complexity or overhead 
of larger encryption systems. 
 

 
4. Implementation  

4.1 Software Implementations of the DRACO Stream 
Cipher 

We implemented the DRACO Stream Cipher in software in two 
different programming languages: C++ and Rust. DRACO was 
originally designed for hardware implementations. However, 
implementing DRACO in software makes sense for generic 
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resource-constrained devices that lack dedicated cryptographic 
hardware, such as off-the-shelf IoT sensors and embedded 
systems. Its lightweight design, with a small internal state and 
simple operations, allows it to run efficiently on low-power 
processors without draining battery life. Software 
implementations are also more flexible and easier to update than 
hardware, making them ideal for evolving or remotely managed 
systems. Additionally, DRACO’s security model is well-suited 
for single-session or short-lived communications, which are 
common in IoT applications, offering strong protection with 
minimal performance impact. 
 
C++ is widely used in low-level IoT programming because it 
offers the performance and hardware-level control needed for 
resource-constrained devices, while also supporting modular 
and maintainable code through object-oriented features. It 
allows direct interaction with memory and peripherals, making 
it ideal for real-time operations. Additionally, C++ is 
compatible with existing C libraries and toolchains commonly 
used in embedded systems, ensuring broad support across IoT 
platforms and development environments. 
 
Rust, on the other hand, offers several advantages over C++, 
particularly in memory safety, concurrency, and developer 
productivity. Its unique ownership system enforces strict 
compile-time checks that prevent common bugs like null 
pointers and data races, all without needing a garbage collector. 
Rust also promotes safe concurrency, has cleaner syntax, more 
consistent language features, and excellent tooling through its 
“cargo” build system. Unlike C++, Rust avoids undefined 
behavior by default and provides clearer error messages, 
making it easier to write reliable, maintainable code—especially 
for security-critical or low-level applications. 
 
We choose to implement DRACO in both C++ as well as in 
Rust to be able to evaluate and compare their suitability in terms 
of performance on microcontrollers in a real-world, resource-
constrained setting. By developing parallel implementations, we 
aimed to gain insight into how each language handles low-level 
cryptographic operations in terms of execution speed and 
memory usage. In addition, comparing both implementations 
also allows to assess not only raw performance but also trade-
offs in developer experience, code safety, maintainability, and 
integration effort—informing decisions about language choice 
for future IoT and embedded security projects. 
 
4.2 Validation Framework 

To ensure the correctness and efficiency of our 
implementations, we designed a comprehensive test framework. 
This framework covered a wide range of test cases and edge 
conditions: 
 
• Validation of core bit manipulation functions: The 

fundamental operations of DRACO were thoroughly 
tested to ensure all bitwise operations were implemented 
accurately and efficiently. 

• Consistency tests: Identical inputs were required to 
always produce identical outputs, guaranteeing the 
deterministic behavior of the implementation. 

• Comparison with predefined test vectors: By precisely 
matching the generated keystreams against the expected 
values, we were able to reliably validate the 
implementation against the reference. 
 

Once we successfully reproduced the exact keystreams for all 
test vectors, it was clear that the implementation had passed all 

tests. This confirmed that the core computations functioned 
correctly and that DRACO operated exactly as intended. 
 
4.3 Optimization and Memory Management in 
Performance Comparison 

Another key objective of our work was optimizing memory 
management and conducting a comparative performance 
analysis. For this purpose, we compared our C++ 
implementation with Rust version of DRACO. It became 
apparent that the C++ version relied on dynamic memory 
allocations in certain areas, which were not required in the Rust 
implementation. As a result, the memory management in the 
original implementation had to be optimized. 
 
To achieve the most efficient implementation possible, we 
replaced dynamic memory allocations with statically managed 
arrays and precisely controlled pointers. These measures 
reduced memory usage and simultaneously improved execution 
speed. After these optimizations, we achieved a highly 
performant and stable C++ implementation of DRACO. 
 
 

5. Testing Environment, Testing Methodology, and 
Experimental Setup 

5.1 Evaluation Environment 

We conducted a multitude of experiments on three 
microcontrollers: ESP32, ESP8266, and Raspberry Pi Pico. The 
ESP32 and ESP8266 are Wi-Fi-enabled microcontrollers often 
used in smart cities for applications like smart street lighting, air 
quality monitoring, and smart parking, while the Raspberry Pi 
Pico is usually used for local control tasks and sensor data 
acquisition, often in combination with other devices like the 
ESP32 for IoT solutions. 

 
Our experiments measure the runtime performance of our two 
DRACO implementations (one implemented in C++, one 
implemented in Rust) on these resource-constrained devices. 
We benchmarked the performance of these implementations on 
the different microcontrollers for random data of various sizes 
as well as for more than 700 real-world smart city sensor 
measurements of various types (e.g. temperature, power units, 
volume flow rate) from cooling systems (valves, pumps, 
refrigeration units).  
 
To compare the Rust and C++ versions, it was necessary to 
record measurement data for later visualization. Specifically, we 
captured the execution times for keystream generation and 
initialization in order to conduct a well-founded performance 
analysis. These measurements enabled a detailed comparison 
with the Rust implementation. For this purpose, we used 
CoolTerm (Meier, 2025), a specialized macOS application that 
allows serial interfaces to be read and their output saved to a 
text file. Various performance metrics were recorded, including 
the time required to generate keystreams and the initialization 
durations. These text files served as raw data for further 
processing and analysis. 
 
To make the collected measurements usable for future 
comparisons and visualizations, we developed a Python script 
that used the Pandas library (Pandas Development Team, 2020) 
to convert the text files into structured CSV files. 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W16-2025 
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-105-2025 | © Author(s) 2025. CC BY 4.0 License.

 
107



 

5.2 Testing Methodology 

After implementing DRACO in Rust and C++ on three 
microcontrollers—ESP32, ESP8266, and Raspberry Pi Pico—a 
standardized testing procedure was developed to enable a 
comparable analysis of performance across both programming 
languages. 
 
To ensure consistent data collection, specific test scenarios were 
defined and executed identically on all platforms. The results of 
the individual measurements were automatically saved in CSV 
files to allow for subsequent statistical evaluation. 
 
For data analysis, Python with the Matplotlib library (Hunter, 
2007) was used to generate box plots and other visualizations. 
Additionally, detailed evaluations were carried out in Excel to 
examine the measurement results in terms of mean values, 
standard deviation, and other statistical parameters. 
 
This approach ensured a sound basis for comparing the 
implementations by analyzing not only overall runtime 
differences but also potential variations and patterns within the 
measurement data. 
 
5.3 Experimental Setup and Benchmarks Definition 

To ensure a statistically sound analysis, each test case used 
various combinations of random and static keys as well as 
random and static initialization vectors. This allowed us to 
examine whether and to what extent these parameters 
influenced the performance of the implementation. 
 
Each test series was repeated 100 times to minimize the impact 
of outlier measurements and to create a reliable data set. Tests 
were conducted with keystream lengths of 1, 8, 128, and 1024 
bits to analyze how different output lengths affected the 
performance of the implementation. 
 
To further improve the validity of the results, the initial test runs 
were excluded from the analysis, as they were identified as 
potential outliers that could be distorted by initialization 
processes or other system-related effects. 
 
The benchmarks were conducted in three categories: 
 

• Full: This benchmark measures the time required for 
complete keystream generation followed by data 
encryption. In this process, the generated keystream is 
combined with the original message using an XOR 
operation and stored. This simulates a typical use case 
of DRACO for encryption. 

• Keystream_gen: This test only measures the time taken 
to generate the keystream, without performing any 
subsequent encryption. It helps analyze the raw 
performance of keystream generation and identify speed 
differences across various microcontrollers and 
programming languages. 

• Struct_init: This benchmark measures the initialization 
time of the DRACO algorithm—that is, the time needed 
to set up the internal registers and structures before any 
keystream generation or encryption can occur. 
 

However, the keystream_gen benchmark was ultimately 
used only to validate the results of the full benchmark. A 
detailed evaluation of the keystream_gen data was not 
performed, as the results were nearly identical to those of the 

full benchmark. Thus, a separate analysis of keystream_gen 
would not have provided any additional insights. 
 

6. Results 

In the following section, we present and analyze the results of 
our benchmarking experiments. These results provide insights 
into the performance of our DRACO implementations across 
different configurations, platforms, and programming 
languages. By comparing execution times for initialization and 
keystream generation, we aim to highlight performance trends, 
identify bottlenecks, and draw conclusions about the efficiency 
and suitability of each implementation for resource-constrained 
environments. 
 
For interpreting the graphs, the following structure should be 
noted: the labels always follow the format <Key, IV>. The 
number on the X-axis indicates the keystream length in bits. For 
example, the label <r, s | 8> represents a random key with 
a static IV and a keystream length of 8 bits1. The Y-axis always 
shows the time in microseconds, allowing for a performance 
comparison between the different configurations. If not 
specifically noted, the graphs present the results of the “Full” 
benchmark, i.e. the time required for complete keystream 
generation followed by data encryption. For all our experiments, 
a very low standard-deviation was observed (i.e. less than 1%, 
not displayed in the figures). 
 
6.1 Experimental Results on the ESP32 Microcontroller 

Figure 1 shows the runtime performance (in µs) of the DRACO 
stream cipher on an ESP32 microcontroller for various input 
data sizes and different combinations of random/static key and 
random/static initialization vector (IV), comparing our two 
implementations (C++, Rust).  
 
With respect to keystream length, C++ and Rust exhibit similar 
behavior. A direct comparison of the two languages shows that 
Rust is approximately twice as fast as C++ when generating a 
keystream of 1 bit. At 4 bits, the execution times begin to 
converge, and from 128 bits onward, C++ becomes 
insignificantly faster than Rust. 
 
 
 

 
Figure 1: Runtime performance of the DRACO stream cipher 
on an ESP32 microcontroller for various input data sizes (in 

bits) and different combinations of random/static key and 
random/static initialization vector (µs) 

 
1 In other words, the numbers on the x-axis display the number 

of input bits to the stream cipher, where the [r/s],[r/s] 
notation above the input bit size indicates whether the key 
and/or the IV are random (r) or static (s) for these results. 
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Figure 2 shows the time need to inizialize the DRACO 
algorithm (benchmark “Struct_init”) on an ESP32 
microcontroller. When comparing the four variants of 
random/static key and random/static IV for initialization on the 
ESP32, it becomes clear that the execution times remain 
consistent within the same programming language—regardless 
of the chosen configuration. The C++ implementation is 
consistently slightly faster than the Rust version throughout. 
 
 

 
Figure 2: Initialization performance of the DRACO stream 

cipher on an ESP32 microcontroller for different combinations 
of random/static key and random/static initialization vector (µs) 
 
 
6.2 Experimental Results on the ESP8266 Microcontroller 

Figure 3 shows the runtime performance (in µs) of the DRACO 
stream cipher on an ESP8266 microcontroller for various input 
data sizes and different combinations of random/static key and 
random/static initialization vector (IV), comparing our two 
implementations (C++, Rust). 
 
For the execution time of the full benchmark on the ESP8266, 
we observe that the differences between the two 
implementations are minimal across the entire range of 
keystream lengths. However, outliers appear in the Rust 
implementation at 1-bit keystream length, particularly in the 
configurations with a random key & static IV and static key & 
random IV. The exact cause of this behavior could not be 
clearly determined, but it is likely related to the limited 
compiler support for the ESP8266 in the Rust ecosystem. 
 
 

 
Figure 3: Runtime performance of the DRACO stream cipher 
on an ESP8266 microcontroller for various input data sizes (in 

bits) and different combinations of random/static key and 
random/static initialization vector (µs) 

 
 
Figure 4 shows the time need to inizialize the DRACO 
algorithm (benchmark “Struct_init”) on an ESP32 
microcontroller. Initialization on the ESP8266 also shows that 

the different combinations of key and IV result in the same 
execution time within each respective implementation. 
However, the difference between C++ and Rust is more 
pronounced in this case. Compared to the ESP32, the overall 
execution times are significantly higher, reflecting the lower 
performance capabilities of the ESP8266. 
 
 

 
Figure 4: Initialization performance of the DRACO stream 

cipher on an ESP8266 microcontroller for different 
combinations of random/static key and random/static 

initialization vector (µs) 
 

 
6.3 Experimental Results on the Raspberry Pi Pico 
Microcontroller 

Figure 5 shows the runtime performance (in µs) of the DRACO 
stream cipher on an Raspberry Pi Pico microcontroller for 
various input data sizes and different combinations of 
random/static key and random/static initialization vector (IV), 
comparing our two implementations (C++, Rust). A similar 
pattern in execution times can also be observed on the 
Raspberry Pi Pico. Rust is slightly faster than C++ up to a 
keystream length of 8 bits. After that, the two implementations 
begin to converge, and at 1024 bits, C++ ultimately becomes 
faster. 
 
 

 
Figure 5: Runtime performance of the DRACO stream cipher 
on an Raspberry Pi Pico microcontroller for various input data 
sizes (in bits) and different combinations of random/static key 

and random/static initialization vector (µs) 
 
 
6.4 Benchmarks with Smart City Data Sets from the iCity 
Project 

The iCity: Intelligent City initiative by HFT Stuttgart2, launched 
in 2017, is a multidisciplinary research partnership aimed at 
developing holistic solutions for a livable, intelligent, and 
sustainable urban future. It brings together over 50 researchers 
and 45 industry, municipal, and SME partners to create 

 
2 https://www.hft-stuttgart.com/research/projects/i-city 
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innovative methods, services, and products across domains such 
as energy management, mobility, data platforms, and urban 
infrastructure. The project places a strong emphasis on systemic 
integration—not only technologically, but also socially and 
ecologically—ensuring citizen well-being remains central to 
smart city development. Current work focuses on advancing 
digital urban twins, open urban data platforms, and 5G-
supported IoT infrastructure, aiming to bridge academic 
research and practical deployment while supporting open-source 
adoption and data-driven decision-making. 
 
In addition to the experiments using randomly generated 
payload data (see sections 6.1, 6.2, 6.3), we also conducted tests 
with real sensor data sourced from HFT Stuttgart’s iCity 
project, specifically from building cooling systems. This dataset 
includes measurements from valves, pumps, and refrigeration 
units, capturing parameters such as temperature, power 
consumption, and volume flow rate. By incorporating this 
operational data into our benchmarking framework, we were 
able to evaluate the performance and reliability of the DRACO 
cipher in a realistic context, emulating the encryption demands 
of smart city infrastructure systems and ensuring its practical 
suitability for securing critical sensor communications. 
 
The benchmarks in this experiment were executed on the 
ESP8266 microcontroller, operating at a clock frequency of 80 
MHz. For this test, the Rust implementation of the DRACO 
cipher was used. A keystream of 22,464 bits was generated, 
corresponding to 702 individual raw sensor measurement data 
values of 32 bits each, reflecting the size of the real-world 
sensor dataset. The full benchmark was performed, meaning 
that both the keystream generation and the encryption of the 
dataset using a bitwise XOR operation were included in the 
measurement. 
 
This setup was chosen to simulate a realistic encryption 
workload based on actual sensor data from smart city cooling 
systems. In a typical deployment scenario, a sink node—such as 
a building controller or edge gateway—would collect these 
individual measurements from distributed cooling system 
sensors and perform on-device encryption before forwarding the 
data to a central server, ensuring confidentiality from the 
moment of acquisition. 
 
A total of 400 benchmark runs were conducted for each 
dataset—iCity sensor data and random payloads—using the 
Rust implementation of DRACO on the ESP8266 at 80 MHz. 
Both benchmarks were run under identical conditions, with the 
only difference being the type of payload: real sensor data from 
iCity cooling systems vs. randomly generated data. These runs 
were evenly distributed across four key/IV configurations: 
random key & random IV (r, r), random key & static IV (r, s), 
static key & random IV (s, r), static key & static IV (s, s). In 
other words, each configuration was tested 100 times, ensuring 
consistent and comprehensive coverage across different 
initialization scenarios. This setup allowed us to evaluate 
whether key and IV variability influenced encryption 
performance under realistic and synthetic conditions.  
 
Table 1 summarizes the overall execution time statistics based 
on all 400 benchmark runs for each dataset (i.e. for encrypting 
iCity sensor data versus random data) using the DRACO cipher, 
regardless of the specific key/IV configuration (i.e., whether 
random or static keys and IVs were used). By aggregating 
results across all four combinations (r,r; r,s; s,r; s,s), the table 
provides a global performance comparison between the two data 
types. This approach offers a broad view of how the nature of 

the payload—real-world sensor data vs. synthetic random 
data—affects execution time, independent of initialization 
settings.  
 
 

Metric iCity Data Random Data 
Mean (µs) 282,891.4 282,871.5 

Median (µs) 282,897.0 282,870.0 
Standard Deviation 31.82 25.60 

Min (µs) 282,820 282,790 
Max (µs) 283,287 282,977 

Table 1: Average execution times (µs) and standard deviation 
for the DRACO full benchmark, comparing iCity sensor data 
and random payloads on an ESP8266 microcontroller 
 
 
Both datasets yield nearly identical mean and median execution 
times—around 282,890 µs for iCity data and 282,870 µs for 
random data—indicating that the type of data has negligible 
impact on performance. The standard deviation is slightly 
(albeit insignificantly) higher for the iCity data, suggesting 
marginally more variability, possibly due to subtle differences 
in memory access patterns. Overall, the data confirms that 
DRACO delivers consistent and stable performance regardless 
of whether the payload is synthetic or from a real-world smart 
city source. 

 
Table 2 presents in more detail the average execution times (in 
microseconds) for the DRACO full benchmark with respect to 
the four different key/IV configurations, using both iCity sensor 
data and random payloads on the ESP8266 (80 MHz) with the 
Rust implementation. 
 
 

randomKey 
YesNo 

randomIV 
YesNo 

iCity Mean 
(¬µs) 

Random 
Mean 
(¬µs) 

False False 282908.82 282870.31 
False True 282887.76 282883.78 
True False 282885.3 282881.53 
True True 282883.72 282850.21 

Table 2: Average execution times (µs) for the DRACO full 
benchmark across four different key/IV configurations, 
comparing iCity sensor data and random payloads on an 

ESP8266 microcontroller 
 

 
It can be observed that across all configurations, the execution 
time differences between iCity sensor data and random payloads 
are consistently small. This implies that the type of data being 
encrypted—whether real-world sensor data (iCity) or randomly 
generated payloads—has little to no impact on DRACO’s 
performance,  affirming its reliability for real-world smart city 
workloads.  
 
Also, note that across all four key and IV configurations the 
execution times for the iCity and random datasets are very 
close, with differences ranging from ~4 to ~39 microseconds. 
This implies that DRACO's performance is largely unaffected 
by whether the key or IV is static or randomly generated. 
 
6.5 Summary of Results and Discussion 

In summary, our C++ Implementation is slightly faster than our 
Rust implementation, starting at 128-bit keystream lengths. 
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Also, C++ has good compiler optimizations, resulting in stable 
performance. 
 
The Rust implementation, on the other hand, was faster in our 
experiments for short keystream lengths (1 and 8 bits), except 
on the ESP8266. However, Rust requires platform-specific code 
for each microcontroller. Also, there was less programming 
language support for Rust for microcontrollers, especially for 
the ESP8266. But Rust offers stronger safety guarantees 
through the Rust compiler. 
 
Overall, both languages are well-suited for implementing the 
cipher. While there are some small performance differences, 
these are generally minor and unlikely to be significant in 
practice. The biggest distinction is that implementing Rust 
across different microcontrollers is more complex than C++, but 
this added complexity may be worthwhile due to the additional 
safety guarantees Rust provides. 
 
 

7. Conclusion and Future Work 

In this work, we implemented and evaluated the DRACO 
stream cipher in both C++ and Rust on three widely used 
microcontroller platforms: ESP32, ESP8266, and Raspberry Pi 
Pico. Our goal was to analyze the correctness, efficiency, and 
resource usage of both implementations, particularly in the 
context of lightweight and resource-constrained IoT 
environments. 
 
Through a standardized testing framework and a carefully 
designed benchmarking setup, we measured the performance of 
keystream generation, encryption, and initialization under 
various key and IV configurations. Our results demonstrate that 
both implementations perform reliably and efficiently, with 
minor variations depending on the target platform and language.  
 
In addition to experiments conducted with randomly generated 
payload data, we also performed tests using real-world sensor 
data obtained from HFT Stuttgart’s iCity project. This data, 
collected from deployed urban sensors monitoring cooling 
systems allowed us to evaluate the performance and behavior of 
the DRACO cipher with raw measurement data from real 
sensors. By integrating actual smart city data into our test 
framework, we ensured that the encryption performance 
measurements reflect practical usage scenarios, helping to 
validate the suitability of DRACO for real-time data protection 
in urban IoT deployments. 
 
Overall, our study highlights the feasibility of DRACO as a 
lightweight encryption solution for smart cities. The results 
demonstrate that the technology is mature and efficient enough 
for immediate, affordable deployment at city scale, enabling 
secure sensor data transmission in smart urban infrastructures 
without significant cost or performance trade-offs. 
 
The on-sensor stream-cipher encryption approach demonstrated 
in this work is well-suited for low- to mid-power sensors and 
edge devices with processing capabilities comparable to the 
ESP8266 or ESP32 microcontroller. This includes a wide range 
of sensors commonly found in smart city environments, such as 
those used for measuring temperature, humidity, air quality, 
pressure, and flow within infrastructure systems like HVAC and 
utility networks. It is also applicable to building automation 
devices, smart meters, traffic sensors, and environmental 
monitoring units deployed across urban infrastructure. These 
devices typically operate on constrained hardware with limited 

memory and compute resources, yet the results show that 
efficient, on-device encryption with DRACO is feasible and 
practical even under these conditions. This confirms the 
suitability of the approach for scalable, secure data transmission 
in real-world smart city applications. 
 
Further, our work provides practical insights into the trade-offs 
between C++ and Rust for cryptographic applications in 
embedded systems. Our results show that both C++ and Rust 
are well-suited for implementing the DRACO stream cipher on 
microcontrollers. Although some minor performance 
differences were observed, they are generally negligible and 
unlikely to impact practical applications. The most notable 
distinction lies in the implementation effort: while Rust 
introduces greater complexity when targeting different 
microcontroller platforms, it also offers stronger safety 
guarantees through its strict compile-time checks. This trade-off 
may justify the added development effort, particularly in 
security-critical or safety-sensitive environments. 
 
While this study provides a strong foundation for evaluating the 
DRACO stream cipher on embedded platforms using both C++ 
and Rust, several directions remain open for future exploration. 
One key area is extending the benchmarks to a broader range of 
microcontrollers and hardware architectures, such as ARM 
Cortex-M0+ or RISC-V, to further assess performance and 
portability. Additionally, future work could involve integrating 
DRACO into real-world applications—particularly within the 
context of smart cities, where lightweight encryption is crucial 
for protecting sensitive, distributed data streams. 
 
Smart city infrastructures rely heavily on sensor data for 
decision-making in areas like traffic management, public safety, 
environmental monitoring, and utility control. This data is often 
real-time, continuous, and privacy-sensitive, making efficient 
and secure encryption essential. Evaluating DRACO’s 
performance in such settings could reveal its strengths and 
limitations under real-world constraints, including network 
latency, packet loss, and power consumption. 
 
From a software engineering perspective, further investigation 
into compiler optimizations and memory usage in both 
languages could help fine-tune the cipher for deployment in 
ultra-constrained devices. Exploring hardware-accelerated 
implementations, or embedding DRACO into existing 
cryptographic libraries for IoT ecosystems, could also improve 
integration and adoption. Finally, analyzing long-term 
reliability, security resilience in multi-session or multi-user 
environments, and the maintainability of the C++ and Rust 
codebases will be important for ensuring the cipher’s viability 
in large-scale, mission-critical smart city deployments. 
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