
A Prototype for evaluating Post-Quantum Cryptography on resource-constrained Hardware
with real-world Smart City Sensor Data

Jan Seedorf 1, Darshana Rawal1, Jonas Möwes1, Omar Haj Abdulaziz1, Ayham Alhasan1, Thunyathep Santhanavanich1

1 HFT Stuttgart, Schellingstraße 24, 70174 Stuttgart, Germany
jan.seedorf@hft-stuttgart.de, darshana.rawal@hft-stuttgart.de, 12mojo1bif@hft-stuttgart.de, 12haom1bif@hft-stuttgart.de,

22alay1bif@hft-stuttgart.de, thunyathep.santhanavanich@hft-stuttgart.de

Keywords: Smart City sensor data, Post-Quantum Cryptography

Abstract

As the threat of quantum computing to classical cryptography grows, the transition to post-quantum cryptographic (PQC) systems
becomes essential—particularly for smart city infrastructures that rely heavily on secure, real-time sensor data. This paper
investigates the performance of PQC algorithms currently in the final stages of standardization by the U.S. National Institute of
Standards and Technology (NIST), focusing on their deployment in resource-constrained Internet of Things (IoT) devices.
Leveraging real-world smart city sensor datasets, we develop a research prototype that simulates a realistic urban sensing scenario,
using Raspberry Pi 3 and Pi Zero 2 W devices to cryptographically secure and transmit data to a central server. Experimental results
demonstrate that the Kyber family is the most efficient for key encapsulation tasks, while Dilithium and Falcon offer strong
performance for digital signatures. In contrast, PQC algorithms such as McEliece, HQC, and Rainbow exhibit substantial
computational overhead—especially at higher security levels—limiting their suitability for time-sensitive or low-power
environments. Our findings highlight the practical implications of PQC adoption in smart cities and provide evidence-based guidance
for selecting efficient quantum-safe algorithms for real-world urban sensor networks.

1. Introduction and Motivation

In the context of smart cities, sensor data encryption and
integrity protection are of importance for several reasons.
Firstly, the vast array of sensors deployed throughout a smart
city collect a diverse range of data types—from traffic patterns
and environmental conditions to energy consumption and public
infrastructure usage. This data can be sensitive and critical,
making it a prime target for malicious actors. Unauthorized
access to raw sensor data could lead to privacy breaches, such
as revealing individual movements or behaviors, underscoring
the importance of robust encryption to maintain confidentiality.

Moreover, ensuring data integrity is crucial for smart city
safety. Spoofing or tampering with sensor data can disrupt
systems, causing traffic issues or poor environmental responses.
For example, false data injected into traffic management
systems could cause congestion or accidents, while inaccuracies
in environmental sensors could hinder effective responses to
pollution or natural disasters. Cryptographic integrity
mechanisms ensure data authenticity, maintaining trust in
automated decision-making processes. In addition, the
interconnected nature of smart city systems means that data
compromise in one area can have widespread effects.
Encrypting data and using integrity checks prevent unauthorized
data alteration, safeguarding city infrastructure against routine
and sophisticated attacks.

Quantum computing threatens current cryptographic methods,
with the capability to break widely used algorithms like RSA
and ECC, which secure today's digital infrastructure (Chen et
al., 2025). As these threats grow, exploring Post-Quantum
Cryptography (PQC), i.e. cryptographic algorithms designed to
be secure against the potential threats posed by quantum
computers, becomes urgent to secure smart city data and
services. Transitioning to PQC ensures that sensitive
information between city systems remains protected and
trustworthy in the future, even against powerful quantum
computers.

Implementing Post-Quantum Cryptography in smart city
systems is vital to counter future quantum threats while also
ensuring compatibility with existing technologies, especially
resource-constrained IoT devices. Developing efficient PQC
solutions helps maintain robust security and performance,
positioning cities to be secure and adaptable for next-generation
urban challenges.

In this work, we investigate the performance of currently
unbroken post-quantum cryptographic (PQC) algorithms—
particularly those in the final stages of NIST standardization—
when applied to real-world smart city sensor data on resource-
constrained IoT devices. We develop a research prototype
simulating a realistic smart city scenario in which low-power
sensors use PQC to secure data before transmitting it to a server.
Experimental results compare the computational performance of
several PQC key encapsulation and digital signature schemes,
highlighting their suitability for constrained environments.

2. Post-Quantum Cryptography (PQC)

2.1 The Need for Post-Quantum Cryptography

Traditional public-key cryptosystems—such as RSA, DSA, and
elliptic-curve cryptography (ECC)—rely on mathematical
problems like integer factorization and discrete logarithms.
These are computationally hard for classical computers, but
vulnerable to quantum attacks:

• Shor’s Algorithm (Shor, 1994) can solve both integer
factorization and discrete logs in polynomial time on a
quantum computer.

• A large enough quantum computer would break most
of today's digital security, including secure web
traffic, encrypted emails, and software updates.

Even though large-scale quantum computers are not yet a
reality, “store now, decrypt later” attacks pose immediate risks:
adversaries may store encrypted data now to decrypt it once
quantum capabilities emerge.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W16-2025
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-113-2025 | © Author(s) 2025. CC BY 4.0 License.

113

2.2 State-of-the-Art of Post-Quantum Cryptography
(PQC)

Post-Quantum Cryptography (PQC) is advancing rapidly to
replace classical public-key cryptosystems vulnerable to
quantum attacks. The state-of-the-art of post-quantum
cryptographic (PQC) algorithms is centered around developing
encryption and digital signature schemes resilient to the
potential capabilities of quantum computers. Post-Quantum
Cryptography (PQC) efforts, including NIST's standardization
process, are focusing exclusively on a) KEMs (Key
Encapsulation Mechanisms) and b) digital signatures because
these two primitives are the core building blocks of almost all
modern public-key cryptographic protocols:

• KEMs are a structured way to establish a shared secret
between two parties over an insecure channel. This is
the foundation of most secure communication
protocols — for example:
o In TLS (used for HTTPS), clients and servers

negotiate a shared key to encrypt their session.
o In VPNs (IPsec, WireGuard) and SSH, secure

key exchange is vital to prevent eavesdropping.
Classical key exchange methods like RSA and
Elliptic-Curve Diffie-Hellman (ECDH) will be broken
by quantum algorithms (e.g., Shor’s algorithm). Thus,
PQC research focuses on KEMs as a drop-in
replacement to achieve quantum-resistant secure key
exchange.

• Digital signatures ensure that data comes from a
trusted source and has not been altered:
o Digital signatures are used in software updates,

electronic documents, secure boot, and digital
certificates (e.g., X.509 in TLS).

o Current schemes like RSA and ECDSA are
quantum-vulnerable.

 Signatures are especially critical because:
o Many signed documents (legal, medical,

financial) must remain verifiable for decades.
o They are the backbone of public key

infrastructures (PKI) used to establish trust
online.

 Thus, PQC research focuses on quantum-safe
signature schemes like Dilithium, FALCON, and
SPHINCS+ to secure long-term integrity and
authenticity.

The algorithms in consideration encompass various
mathematical foundations, including lattice-based cryptography,
hash-based cryptography, code-based cryptography,
multivariate polynomial cryptography, and others. Each of these
approaches offers unique strengths in terms of security,
efficiency, and resource requirements, which are crucial for
diverse applications ranging from small IoT devices to large-
scale data centers.

The current technical state of the art is led by lattice-based
cryptography, particularly the NIST-standardized CRYSTALS-
Kyber (Bos et al., 2018) for key encapsulation and
CRYSTALS-Dilithium (Ducas et al., 2018) for digital
signatures. These schemes are based on the Learning With
Errors (LWE) and Short Integer Solution (SIS) problems, which
are believed to be hard even for quantum computers. They offer
strong performance, relatively small key and ciphertext sizes,
and efficient implementation across platforms. FALCON
(Fouque et al., 2018), another lattice-based signature scheme,
offers more compact signatures but at the cost of more complex

and delicate implementation due to its reliance on floating-point
arithmetic.

Other PQC families play specialized roles. Code-based
cryptography, like Classic McEliece (Bernstein et al., 2017),
provides excellent security and decryption speed but suffers
from very large public keys. Hash-based schemes, such as
SPHINCS+ (Bernstein et al., 2019), are extremely conservative
and rely only on hash functions for security, making them ideal
for high-assurance use cases like long-term digital signatures
despite their large signatures and slower performance.
Multivariate and isogeny-based schemes once showed promise,
but the most prominent candidates, e.g., Rainbow (Ding et al.,
2017), have been broken or are no longer considered viable. As
standardization progresses and protocols like TLS, SSH, and
IPsec begin integrating PQC algorithms, the focus is shifting to
implementation security, hardware acceleration, and hybrid
deployment strategies to ease the transition.

2.3 NIST PQC Standardization

Recognizing the significant threat that quantum computing
poses to classical public-key cryptographic systems, the U.S.
National Institute of Standards and Technology (NIST)
launched a Post-Quantum Cryptography (PQC) standardization
initiative in 2016. The goal of this effort is to identify and
establish cryptographic algorithms that can resist quantum
attacks while remaining practical, efficient, and suitable for
widespread deployment (Chen et al., 2025).

This multi-phase process involves open global collaboration,
where researchers submit candidate algorithms for rigorous
evaluation. These candidates undergo multiple rounds of public
review, cryptanalysis, and performance testing to ensure both
theoretical robustness and practical applicability across diverse
systems and use cases.

As outlined previously (see section 2.2), NIST’s standardization
focuses primarily on Key Encapsulation Mechanisms (KEMs)
and digital signature schemes, as these are the most widely used
public-key primitives and the most directly threatened by
quantum algorithms like Shor’s. By prioritizing these two
categories, NIST aims to secure the foundational components of
the internet and critical infrastructure, enabling a smooth and
secure transition to a post-quantum future.

NIST's standardized algorithms are expected to become the
benchmarks for securing digital communications against
quantum threats, ensuring the integrity, confidentiality, and
authenticity of information in a post-quantum world. The
ongoing process is closely watched by academia, industry, and
governmental institutions as they prepare to transition to these
new cryptographic standards.

In 2023, NIST selected a set of algorithms to be standardized
based on their strong security, performance, and implementation
properties (Chen et al., 2025). These were formally published as
Federal Information Processing Standards (FIPS) in 2024. The
standards include:

• FIPS 203, which specifies ML-KEM, a key
encapsulation mechanism based on the lattice-based
algorithm CRYSTALS-Kyber (NIST, 2024a).

• FIPS 204, defining ML-DSA, a lattice-based digital
signature scheme based on CRYSTALS-Dilithium
(NIST, 2024b).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W16-2025
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-113-2025 | © Author(s) 2025. CC BY 4.0 License.

114

• FIPS 205, which describes SLH-DSA, a stateless
hash-based digital signature scheme built on
SPHINCS+ (NIST, 2024c).

These algorithms are now the recommended options for federal
agencies and are expected to serve as foundational primitives
for public-key encryption and digital signatures in the post-
quantum era.

Alongside the finalized standards, NIST continues to evaluate
other promising candidates. One of the most prominent is
FALCON, as it is a compact and efficient lattice-based digital
signature scheme (see section 2.2). While not yet standardized,
FALCON is considered a strong alternative for use cases that
require smaller signature and key sizes than Dilithium. NIST
has indicated that a separate standard for FALCON is under
development and may be finalized in the near future.

NIST is also conducting a fourth round of evaluation, focusing
on enhancing the diversity of algorithm families. This round
includes ongoing analysis of Classic McEliece, a code-based
KEM known for its strong security and resistance to quantum
attacks, albeit with large public key sizes that make it less
practical for many applications. The fourth round also revisits
select multivariate and lattice-based candidates to assess their
long-term viability and implementation trade-offs.

Looking ahead, further standards are expected to be finalized in
the near future, including those based on FALCON and
potentially Classic McEliece. In parallel, efforts are underway
within other standards organizations such as the IETF and ISO
to integrate these algorithms into protocols like TLS, X.509
certificates, SSH, and VPN systems.

3. Objectives and Contribution

The overall objective of our work is to investigate the
performance of PQC algorithms that are unbroken at present1 in
the context of smart city sensors and smart city data.
Specifically, our goal is to study the performance of PQC
algorithms currently in the final stages of NIST-standardisation
on resource-constrained IoT hardware when cryptographically
protecting actual real-world smart city sensor data.

Our contributions are the following:

• We introduce a research prototype which simulates a
realistic IoT scenario in which resource-contrained
sensors protect real-world smart city sensor data using
Post-Quantum Cryptography and then transmit this data
to a server.

• We present experimental results obtained with this
research prototype that compare the average
computation times for several PQC key-establishment
algorithms and several PQC digital signature algorithms
(including the ones currently being standardised)

4. Prototype Design and Experimental Setup

4.1 Protoytype Design and Testbed Setup

We implemented a “PQC-Smart-City-Data” benchmarking
system based on i) the PQClean library (Kannwischer et al.,

1 Meaning PQC algorithms that are currently considered to be

“quantum-computationally secure", i.e. algorithms that according to
today’s knowledge cannot be feasibly broken within a reasonable
time frame even by quantum computers.

2022), a C-based library that provides implementations of all
PQC algorithms currently considered by NIST, and ii) on a
Rust-based library that provides an additional implementation
of the Kyber Post-Quantum key encapsulation mechanism
(Argyle-Software, 2025).

Our prototype runs a simple Python Flask server (Pallets, 2024)
and makes requests to it using Python’s requests library. To
execute the PQClean library’s C-based algorithms from Python,
the ctypes module was used. The C source files needed to be
compiled beforehand. To automate this process, Python scripts
were written to generate a Makefile for each algorithm and then
execute make with it.

The Rust-based implementation (Argyle-Software, 2025)
follows a different interface. To accommodate this, a wrapper
was created in the Rust directory. A shell script was also
developed to compile this wrapper and generate the necessary
binaries.

Our testing system consists of two Raspberry Pi devices (Pi3
and Pi Zero 2W), which each can act as either a client or as a
server in a particular experiment. Although Raspberry Pi
devices are more capable than basic microcontrollers, they are
increasingly used in real-world sensor networks, particularly in
smart city and edge computing applications. Their low cost,
small size, and relatively low power consumption make them
suitable for roles such as local gateways, edge processors, or
even as standalone smart sensing units. In many urban
deployments, sensor nodes are expected to perform not just data
collection, but also on-device processing, encryption, and secure
communication—tasks that align well with the capabilities of
Raspberry Pi hardware.

Evaluating post-quantum cryptographic (PQC) algorithms on
Raspberry Pi platforms is therefore a realistic and meaningful
approach. Given the added computational demands of PQC, it's
essential to assess performance on devices that represent the
upper bound of what might be deployed in edge environments.
Raspberry Pi boards provide a practical balance between
resource constraints and computational power, making them an
appropriate and informative testbed for understanding the
viability of PQC in next-generation sensor networks.

In our prototype, the client requests a public key from the server
and uses this public key for the Key Encapsulation Mechanism
(KEM) to wrap an AES key generated by the client, i.e. KEM is
performed at the client side. The client encrypts the payload, i.e.
smart city data, with the generated AES key and digitally signs
a hash of the encrypted data, i.e. digital signatures are also
performed on the client side. The server has the role of signature
verification and key decapsulation in our prototype.

4.2 Communication Flow and Results Measured

In each experiment, the client first generates a symmetric AES
key and encapsulates it with a PQC Key Encapsulation
Mechanism (KEM); it then encrypts the data with a symmetric
AES key and digitally signs the hash of the encrypted data with
a PQC signature algorithm. It then sends the encrypted data, the
digital signature, and the encapsulated AES key to the server.
The server verifies the digital signature, decapsulates the AES
key, and decrypts the data. The time needed for each of these
individual operations is measured individually at the client and
at the server.

The communication steps are hence as follows:

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W16-2025
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-113-2025 | © Author(s) 2025. CC BY 4.0 License.

115

1. The client requests a public key for a key encapsulation
mechanism (KEM).

2. Using this public key, the client generates an AES key
and encapsulates it.

3. The AES key is then used to encrypt the data.
4. The encrypted data is hashed and signed using a post-

quantum signature mechanism.
5. Each process is timed, and the results are saved to a

CSV file.
6. The client sends the following data to the server:

a. Encrypted data
b. Digital Signature
c. Public key corresponding to the digital signature

performed by client
d. Algorithms used for digital signature and KEM
e. Encapsulated AES key
f. IV (Initialization Vector)

7. The server:
a. Hashes the encrypted data and verifies the

signature.
b. Decapsulates the AES key and decrypts the data.
c. Measures execution time and logs it in a CSV file.

In particular, the server logs in each experiment the following
experiment paramters and measurements:

• KEM Algorithm: The key encapsulation mechanism
used.

• Signature Algorithm: The digital signature scheme
applied.

• Server Hash Time: The duration taken to hash the
encrypted data.

• Verify Time: The time required to verify the signature.
• Decapsulation Time: The time needed to decapsulate

the AES key.
• Decrypt Time: The time taken to decrypt the data.
• Device Name: The hardware device used for testing.

An example for data being measured at the server in an
experiment is the following:

KEM	Algorithm,Signature	Algorithm,Server	Hash	Time,Verify	Time,Decapsulation	
Time,Decrypt	Time,Device	Name	
mceliece348864,rainbowIclassic,1294269,10848104,100581416,12927995,raspi3	
mceliece460896,dilithium3,1313435,1491403,208070206,2117392,raspi3	
mceliece460896,falcon1024,2474058,1258018,251924750,2177079,raspi3	
	
The client logs in each experiment the following experiment
paramters and measurements:

• KEM Algorithm: The key encapsulation algorithm
used.

• Signature Algorithm: The digital signature scheme
applied.

• Client Device: The name of the testing device.
• Encapsulation Time: Time taken to encapsulate the

AES key.
• Encryption Time: Time required to encrypt the data.
• Client Hash Time: Time taken to hash the encrypted

data.
• Sign Time: The time needed to generate the digital

signature.
• Data Size: The size (in bytes) of the encrypted data.

An example for data being measured at the client in an
experiment is the following:
	
	
KEM	Algorithm,Signature	Algorithm,Client	Device,Encapsulation	Time,Encryption	
Time,Client	Hash	Time,Sign	Time,Data	Size	

mceliece460896,rainbowVclassic,raspi3,1925776,21083535,2156661,234415071,58943	
mceliece6688128,dilithium3,raspi3,2922648,3377282,2059942,10801897,58943	
mceliece6688128,falcon512,raspi3,1730672,2041088,1266871,27710338,58943	

4.3 Smart City Data Sets

The actual payload data being sent cryptographically protected
from client to server consists of 100 real-world temperature
measurements from actual IoT sensors (located in Fukuoka,
Japan), encoded in JSON format2. The following JSON snippet
shows one example of these 100 measurements:

{"@iot.id":15648,"phenomenonTime":"2022-08-
27T05:55:00.000Z","result":39.0,"resultTime":"2022-08-
27T05:55:00.000Z",
"@iot.selfLink":"https://ogcapi.hft-
stuttgart.de/sta/udigit4icity/v1.1/Observations(15648)"
,"Datastream@iot.navigationLink":"https://ogcapi.hft-
stuttgart.de/sta/udigit4icity/v1.1/Observations(15648)/
Datastream","FeatureOfInterest@iot.navigationLink":"htt
ps://ogcapi.hft-
stuttgart.de/sta/udigit4icity/v1.1/Observations(15648)/
FeatureOfInterest","MultiDatastream@iot.navigationLink"
:"https://ogcapi.hft-
stuttgart.de/sta/udigit4icity/v1.1/Observations(15648)/
MultiDatastream"}

This record represents a sensor observation from a smart city
data platform, captured through the OGC SensorThings API.
The key details are:

• Observation ID: 15648
• Measurement Value: 39.0 (temperature)
• Time of Measurement: 2022-08-27T05:55:00.000Z

(both as phenomenonTime and resultTime)
• API Source: OGC SensorThings API – HFT Stuttgart
• Data Links: Associated Datastream,

FeatureOfInterest, and MultiDatastream resources are
linked, suggesting that this observation is part of a
structured sensor data stream (e.g., a time series).

This type of dataset is typical in smart city deployments and
could represent readings from environmental, mobility,
infrastructure, or energy sensors. It is important to note that we
encrypt and protect the entire JSON object—not just the
measurement value—to ensure the integrity and authenticity of
both the data and its contextual metadata. In smart city and IoT
contexts, sensor data is typically transmitted in structured
formats like JSON, which include not only the measurement
(result) but also metadata such as timestamp, location, device
ID, and links to data streams. While the actual sensor reading
(e.g., temperature, air quality) is central to the application, the
surrounding metadata is equally critical to ensuring data
integrity, context, and trustworthiness.

Protecting only the measurement value leaves the rest of the
message—such as phenomenonTime, FeatureOfInterest, and
Datastream—vulnerable to tampering. An attacker could alter
the timestamp to make old data appear current, change the
location to misrepresent where the measurement was taken, or
swap links to mislead downstream systems. This could have
serious implications in smart city applications, from faulty
traffic management to false pollution alerts.

By applying digital signatures or encryption to the entire JSON
structure, we ensure that the full semantic meaning of the
observation is preserved and verifiable. This guarantees that the
data’s origin, context, and value are all protected as a single,

2 The dataset being used for our experiments is available at:
https://ogcapi.hft-stuttgart.de/sta/udigit4icity/v1.1/Observations

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W16-2025
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-113-2025 | © Author(s) 2025. CC BY 4.0 License.

116

inseparable unit—crucial for audits, traceability, and public
trust in smart city systems.

5. Results

In this section, we present the results of our experimental
evaluation of post-quantum cryptographic (PQC) algorithms on
resource-constrained IoT hardware using real-world smart city
sensor data. Our analysis focuses on both key encapsulation
mechanisms (KEMs) and digital signature algorithms that are
currently in the final stages of standardization by NIST. Using
our custom-built research prototype—which encrypts and
digitally signs typical smart city data—we benchmarked the
average computation times for key generation, encapsulation,
decapsulation, signing, and verification for two different
Raspberry Pi models.

For all graphs shown, the results for the Rust implementation of
Kyber are denoted with *rust, e.g. kyber512rust for the
Kyber512 results based on the Rust implementation (Argyle-
Software, 2025). All other results are based on the C
implementation of the PQClean library (Kannwischer et al.,
2022).

5.1 Key Encapsulation (KEM) Performance

Figure 1 shows results we obtained for the time needed for key
encapsulation on a Raspberry Pi 3B for various PQC key
encapsulation algorithms/parametrisations. Similarly, Figure 2
displays the time needed for key encapsulation on a Raspberry
Pi Zero 2W for various PQC key encapsulation
algorithms/parametrisations.

Figure 1: Encapsulation time on a Raspberry Pi 3B for various

PQC Key Encapsulation Algorithms/Parametrisations

Figure 2: Encapsulation time on a Raspberry Pi Zero 2W for
various PQC Key Encapsulation Algorithms/Parametrisations

The Kyber family (Kyber512, Kyber768, Kyber1024)
consistently achieves the lowest encapsulation times across both
Raspberry Pi devices, making it the most efficient choice for
time-sensitive applications. In contrast, the McEliece and HQC
families exhibit significantly higher encapsulation times,
particularly at higher security levels, with HQC being the most
computationally intensive. As expected, encapsulation
operations are slower on the Pi2W than on the Pi3, but
performance trends remain consistent across devices.

5.2 Digital Signature Performance

Figure 3 shows results we obtained for the needed signature
time on a Raspberry Pi Zero 2W for various PQC signature
algorithms/parametrisations. Figure 4 shows similar results
obtained on a Raspberry Pi Zero 2W.

Figure 3: Signature time on a Raspberry Pi 3B for various PQC

Signature Algorithms/Parametrisations

Figure 4: Signature time on a Raspberry Pi Zero 2W for various

PQC Signature Algorithms/Parametrisations

Dilithium variants (2, 3, 5) show the fastest signing times,
making them highly suitable for constrained devices, while
Falcon offers slightly higher but still efficient performance. In
contrast, the Rainbow family—especially RainbowVclassic—
exhibits extremely high signing times, rendering it impractical
for low-power environments. Performance differences are
consistent across both Raspberry Pi models (the Pi2W generally
slower). The graphs confirm the efficiency of Dilithium and
Falcon compared to the heavy computational load of Rainbow.

5.3 Decapsulation Performance

Figure 5 and Figure 6 show measured decapsulation times for
Kyber variants on a Raspberry Pi 3B and a Raspberry Pi Zero

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W16-2025
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-113-2025 | © Author(s) 2025. CC BY 4.0 License.

117

2W, respectively. Figure 7 and Figure 8 show similar results for
all the other (i.e. non-Kyber) PQC KEM algorithms.

The server-side evaluation highlights clear differences in
performance among post-quantum KEM algorithms, with the
Kyber family demonstrating the highest efficiency, particularly
Kyber512 in Rust, which had the lowest decapsulation times. In
contrast, non-Kyber algorithms such as McEliece and HQC
showed scalability and performance challenges, with
McEliece8192128 exhibiting the highest computational
overhead.

Figure 5: Decapsulation time on a Raspberry Pi 3B for various
Kyber Key Encapsulation Implementations/Parametrisations

Figure 6: Decapsulation time on a Raspberry Pi Zero 2W for

various Kyber Key Encapsulation Implementations
/Parametrisations

Figure 7: Decapsulation time on a Raspberry Pi 3B for various

Key Encapsulation Algorithms/Parametrisations

Figure 8: Decapsulation time on a Raspberry Pi Zero 2W for

various Key Encapsulation Algorithms/Parametrisations

Decapsulation was slightly faster on the Raspberry Pi 3
compared to the Pi 2W, reflecting their hardware differences.
Overall, Kyber consistently outperformed other algorithms on
both platforms, making it the most suitable choice for
decapsulation in resource-constrained or time-sensitive
environments.

Figure 9: Signature Verification time for selected PQC

Signature Algorithms on a Raspberry Pi 3B

Figure 10: Signature Verification time for selected PQC

Signature Algorithms on a Raspberry Pi Zero 2W

5.4 Signature Verification Performance

Figure 9 and Figure 10 display the signature verification times
we measured on a Raspberry Pi 3B and a Raspberry Pi Zero
2W, respectively. Note that we did not further include Rainbow
results in our analysis because the algorithm was withdrawn
from the NIST post-quantum standardization process due to the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W16-2025
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-113-2025 | © Author(s) 2025. CC BY 4.0 License.

118

discovery of practical cryptographic attacks. As a result, it is no
longer a viable or secure option and offers little relevance to
current or future post-quantum applications.

The verification performance analysis shows that Falcon512
offers the fastest verification times, followed closely by
Falcon1024. The Dilithium family also performs efficiently,
albeit slower than Falcon, with verification times increasing
moderately alongside security levels but remaining suitable for
most applications.

5.5 Key Generation Times

Figure 11 and Figure 12 show the overall key generation times
we measured for the various KEM algorithms and the various
digital signature algorithms, resprectively.

Figure 11: Key Generation Times for various Key

Encapsulation algorithms

Figure 12: Key Generation Times for various Digital Signature

algorithms

The analysis of key generation times for Key Encapsulation
Mechanism (KEM) algorithms highlights the Kyber family as
the most efficient, with consistently low key generation times
under one second and minimal performance overhead. This
makes Kyber highly suitable for real-time or resource-
constrained environments. In contrast, the McEliece family,
particularly at higher security levels, shows significantly longer
key generation times—exceeding 17 seconds—which reflects
its strong security guarantees but also reveals its substantial
computational demands.

For signature algorithms, the Falcon family stands out with the
shortest key generation times across all security levels. Falcon
maintains rapid performance even at higher configurations,
offering a strong balance between efficiency and cryptographic
strength. This makes Falcon a practical choice for systems that
require frequent key regeneration or with strict time constraints.

5.6 Summary and Discussion of Findings

Our evaluation of post-quantum cryptographic (PQC)
algorithms with real-world smart city data sets on Raspberry Pi

devices—specifically the Raspberry Pi 3 and Raspberry Pi Zero
2 W—has yielded valuable insights into their performance in
resource-constrained environments. These findings highlight the
practical implications of deploying quantum-resistant
algorithms on low-power edge devices. Overall, Kyber and
Dilithium are the most suitable choices for encapsulation and
signing in resource-constrained smart city deployments.

In the realm of Key Encapsulation Mechanisms (KEMs), the
Kyber family consistently stands out as the most efficient across
all key operations, including key generation, encapsulation, and
decapsulation. Its low computational overhead makes it
particularly well-suited for constrained devices. In contrast,
while McEliece-based algorithms offer strong security
guarantees, they impose substantial computational costs,
especially at higher security levels. This makes McEliece less
practical for time-sensitive or interactive applications.

For digital signatures, Falcon demonstrates the best
performance in terms of key generation and signature
verification, offering a strong balance between speed and
security. However, the Dilithium family also performs
efficiently, and is notably faster in signing, which may be key in
smart sensor networks, as the key generation needs to be
performed less frequently and the verification is usually done at
(powerful) servers, while signing sensor data happens at the
resource-contrained sensor node and with high frequency.

When comparing devices, the Raspberry Pi Zero 2 W shows
consistently slower performance than the Raspberry Pi 3,
attributed to its more limited hardware resources. On average,
operations on the Pi Zero 2 W are approximately 20% slower.
In terms of specific cryptographic roles, server-side operations
such as signature verification and decapsulation highlight the
efficiency of Kyber and Falcon. On the client side,
encapsulation and signing tasks further reinforce Kyber’s
suitability for KEM and the utility of Falcon and Dilithium for
digital signatures.

In summary, the Kyber family is the most practical choice for
applications requiring efficient and lightweight KEM
operations. Falcon and Dilithium offer strong candidates for
signature-based use cases, combining security and performance
in a balanced way. McEliece and Rainbow, while offering
theoretical strengths in certain areas, are best reserved for
applications where performance is not a critical constraint and
maximum security is prioritized.

6. Conclusion

6.1 Summary of Contribution and Results

This study has provided a practical assessment of post-quantum
cryptographic (PQC) algorithms on resource-constrained
platforms, specifically the Raspberry Pi 3 and Raspberry Pi
Zero 2 W, using real-world smart city datasets to simulate
realistic operational conditions. Through detailed
benchmarking, we identified Kyber as the most efficient key
encapsulation mechanism, demonstrating strong performance
across key generation, encapsulation, and decapsulation. For
digital signatures, Falcon and Dilithium emerged as the most
suitable candidates, balancing low computational overheads
with robust security even at higher security levels. In contrast,
McEliece and Rainbow, despite their theoretical resilience,
exhibited significant performance bottlenecks that make them
likely impractical for many time-sensitive or embedded
deployments.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W16-2025
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-113-2025 | © Author(s) 2025. CC BY 4.0 License.

119

By incorporating authentic data representative of smart city
scenarios, our findings underscore the feasibility of integrating
quantum-safe cryptographic primitives into real-world IoT and
edge computing environments. Kyber, Falcon, and Dilithium
provide viable, efficient alternatives to classical public-key
systems and are particularly well-suited for applications in
connected urban infrastructure, sensor networks, and
lightweight client devices. As the cryptographic community
moves toward post-quantum readiness, this evaluation offers
actionable insights for guiding secure and efficient adoption on
constrained platforms operating in data-rich environments.

6.2 Future Work

While this study provides an initial exploration into the practical
deployment of post-quantum cryptographic algorithms on
constrained devices using real-world smart city data, it
represents only a first step toward comprehensive integration.
Our evaluation focused on core cryptographic operations in
isolation, and further research is needed to understand the
broader system-level implications of PQC adoption in real-
world environments.

Future work should involve integrating PQC algorithms into
full communication stacks and security protocols (e.g., TLS 1.3,
MQTT, and CoAP) to assess their impact on end-to-end system
performance. This includes examining latency, throughput, and
interoperability with existing infrastructures. Additionally,
detailed analysis of side-channel resistance, energy
consumption, and memory footprint will be essential,
particularly for battery-powered or ultra-low-power
deployments. Including hybrid cryptographic approaches and
emerging PQC candidates will also help address transitional
needs and optimize for various application contexts across smart
cities and industrial IoT ecosystems.

Acknowledgment

This work is an outcome of the project "Datasecurity4iCity", a
subproject of "iCity: Intelligent City" (https://www.hft-
stuttgart.com/research/projects/i-city). We extend our gratitude
for the funding received through the FHImpuls program under
the number 13FH9E04IA by the German Federal Ministry of
Education and Research (BMBF).

References

Argyle-Software, 2025. Argyle-Software/kyber: A rust
implementation of the Kyber post-quantum KEM,
https://github.com/Argyle-Software/kyber, (last visited: April
25, 2025)

Bernstein, D.J., Chou, T., Hülsing, A., Lange, T., Niederhagen,
R., van Vredendaal, C., 2017. Classic McEliece: conservative
code-based cryptography. Submission to the NIST Post-
Quantum Cryptography Standardization Project, National
Institute of Standards and Technology.
https://classic.mceliece.org/nist.html

Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R.,
Rijneveld, J., Schwabe, P., Wilms, F., 2019. SPHINCS+:
Submission to the NIST Post-Quantum Cryptography
Standardization Project. National Institute of Standards and
Technology (NIST). https://sphincs.org/data/sphincs+-round3-
specification.pdf (last visited: July 5, 2025)

Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V.,
Schanck, J.M., Schwabe, P., Seiler, G., 2018. CRYSTALS -
Kyber: A CCA-secure module-lattice-based KEM. 2018 IEEE
European Symposium on Security and Privacy, London, UK,
353–367. https://doi.org/10.1109/EuroSP.2018.00032

Chen, L., Moody, D., Liu, Y.-K., 2025. NIST (National Institute
for Standards and Technology): Post-Quantum Cryptography
PQC, https://csrc.nist.gov/projects/post-quantum-cryptography,
(last visited: July 1, 2025)

Ding, J., Petzoldt, A., Schmidt, D., 2017. Rainbow: A
multivariable public key signature scheme. Submission to the
NIST Post-Quantum Cryptography Standardization Project,
National Institute of Standards and Technology (NIST).
https://pq-crystals.org/rainbow/

Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe,
P., Seiler, G., Stehlé, D., 2018. CRYSTALS-Dilithium: A
Lattice-Based Digital Signature Scheme. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2018(1),
238–268. https://doi.org/10.13154/tches.v2018.i1.238-268

Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V.,
Pornin, T., Prest, T., Ricosset, T., Seiler, G., Whyte, W., Zhang,
Z., 2018. FALCON: Fast-Fourier lattice-based compact
signatures over NTRU. Submission to the NIST Post-Quantum
Cryptography Standardization Project, 36(5), 1–75.
https://falcon-sign.info/ (last visited: July 1, 2025)

Kannwischer, M.J.., Schwabe, P., Stebila, D., Wiggers, T.,
2022. Improving Software Quality in Cryptography
Standardization Projects, European Symposium on Security and
Privacy (Workshops), Genoa, Italy, June 6-10, 2022, IEEE
Computer Society, Los Alamitos, CA, USA
doi.org/10.1109/EuroSPW55150.2022.00010.

NIST, 2024a. FIPS 203: Module-Lattice-Based Key-
Encapsulation Mechanism (ML-KEM). Federal Information
Processing Standards Publication 203, National Institute of
Standards and Technology, Gaithersburg, MD.
https://doi.org/10.6028/NIST.FIPS.203

NIST, 2024b. FIPS 204: Module-Lattice-Based Digital
Signature Algorithm (ML-DSA). Federal Information
Processing Standards Publication 204, National Institute of
Standards and Technology, Gaithersburg, MD.
https://doi.org/10.6028/NIST.FIPS.204

NIST, 2024c. FIPS 205: Stateless Hash-Based Digital Signature
Algorithm (SLH-DSA). Federal Information Processing
Standards Publication 205, National Institute of Standards and
Technology, Gaithersburg, MD.
https://doi.org/10.6028/NIST.FIPS.205

Pallets, 2024. Flask (Version 3.1.0) [Computer software].
Python Package Index (PyPI). https://palletsprojects.com/ (last
visited: July 1, 2025)

Shor, P.W., 1994. Algorithms for quantum computation:
Discrete logarithms and factoring. Proceedings of the 35th
Annual Symposium on Foundations of Computer Science
(FOCS), Santa Fe, NM, 20–22 November 1994, 124–134.
https://doi.org/10.1109/SFCS.1994.365700

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W16-2025
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-113-2025 | © Author(s) 2025. CC BY 4.0 License.

120

