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Abstract 
 
As the threat of quantum computing to classical cryptography grows, the transition to post-quantum cryptographic (PQC) systems 
becomes essential—particularly for smart city infrastructures that rely heavily on secure, real-time sensor data. This paper 
investigates the performance of PQC algorithms currently in the final stages of standardization by the U.S. National Institute of 
Standards and Technology (NIST), focusing on their deployment in resource-constrained Internet of Things (IoT) devices. 
Leveraging real-world smart city sensor datasets, we develop a research prototype that simulates a realistic urban sensing scenario, 
using Raspberry Pi 3 and Pi Zero 2 W devices to cryptographically secure and transmit data to a central server. Experimental results 
demonstrate that the Kyber family is the most efficient for key encapsulation tasks, while Dilithium and Falcon offer strong 
performance for digital signatures. In contrast, PQC algorithms such as McEliece, HQC, and Rainbow exhibit substantial 
computational overhead—especially at higher security levels—limiting their suitability for time-sensitive or low-power 
environments. Our findings highlight the practical implications of PQC adoption in smart cities and provide evidence-based guidance 
for selecting efficient quantum-safe algorithms for real-world urban sensor networks. 
 
 

1. Introduction and Motivation 

In the context of smart cities, sensor data encryption and 
integrity protection are of importance for several reasons. 
Firstly, the vast array of sensors deployed throughout a smart 
city collect a diverse range of data types—from traffic patterns 
and environmental conditions to energy consumption and public 
infrastructure usage. This data can be sensitive and critical, 
making it a prime target for malicious actors. Unauthorized 
access to raw sensor data could lead to privacy breaches, such 
as revealing individual movements or behaviors, underscoring 
the importance of robust encryption to maintain confidentiality. 
 
Moreover, ensuring data integrity is crucial for smart city 
safety. Spoofing or tampering with sensor data can disrupt 
systems, causing traffic issues or poor environmental responses. 
For example, false data injected into traffic management 
systems could cause congestion or accidents, while inaccuracies 
in environmental sensors could hinder effective responses to 
pollution or natural disasters. Cryptographic integrity 
mechanisms ensure data authenticity, maintaining trust in 
automated decision-making processes. In addition, the 
interconnected nature of smart city systems means that data 
compromise in one area can have widespread effects. 
Encrypting data and using integrity checks prevent unauthorized 
data alteration, safeguarding city infrastructure against routine 
and sophisticated attacks. 
 
Quantum computing threatens current cryptographic methods, 
with the capability to break widely used algorithms like RSA 
and ECC, which secure today's digital infrastructure (Chen et 
al., 2025). As these threats grow, exploring Post-Quantum 
Cryptography (PQC), i.e. cryptographic algorithms designed to 
be secure against the potential threats posed by quantum 
computers, becomes urgent to secure smart city data and 
services. Transitioning to PQC ensures that sensitive 
information between city systems remains protected and 
trustworthy in the future, even against powerful quantum 
computers. 
 

Implementing Post-Quantum Cryptography in smart city 
systems is vital to counter future quantum threats while also 
ensuring compatibility with existing technologies, especially 
resource-constrained IoT devices. Developing efficient PQC 
solutions helps maintain robust security and performance, 
positioning cities to be secure and adaptable for next-generation 
urban challenges. 
 
In this work, we investigate the performance of currently 
unbroken post-quantum cryptographic (PQC) algorithms—
particularly those in the final stages of NIST standardization—
when applied to real-world smart city sensor data on resource-
constrained IoT devices. We develop a research prototype 
simulating a realistic smart city scenario in which low-power 
sensors use PQC to secure data before transmitting it to a server. 
Experimental results compare the computational performance of 
several PQC key encapsulation and digital signature schemes, 
highlighting their suitability for constrained environments. 
 

2. Post-Quantum Cryptography (PQC)  

2.1 The Need for Post-Quantum Cryptography  

Traditional public-key cryptosystems—such as RSA, DSA, and 
elliptic-curve cryptography (ECC)—rely on mathematical 
problems like integer factorization and discrete logarithms. 
These are computationally hard for classical computers, but 
vulnerable to quantum attacks: 
 

• Shor’s Algorithm (Shor, 1994) can solve both integer 
factorization and discrete logs in polynomial time on a 
quantum computer. 

• A large enough quantum computer would break most 
of today's digital security, including secure web 
traffic, encrypted emails, and software updates. 
 

Even though large-scale quantum computers are not yet a 
reality, “store now, decrypt later” attacks pose immediate risks: 
adversaries may store encrypted data now to decrypt it once 
quantum capabilities emerge. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W16-2025 
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-113-2025 | © Author(s) 2025. CC BY 4.0 License.

 
113



 

2.2 State-of-the-Art of Post-Quantum Cryptography 
(PQC) 

Post-Quantum Cryptography (PQC) is advancing rapidly to 
replace classical public-key cryptosystems vulnerable to 
quantum attacks. The state-of-the-art of post-quantum 
cryptographic (PQC) algorithms is centered around developing 
encryption and digital signature schemes resilient to the 
potential capabilities of quantum computers. Post-Quantum 
Cryptography (PQC) efforts, including NIST's standardization 
process, are focusing exclusively on a) KEMs (Key 
Encapsulation Mechanisms) and b) digital signatures because 
these two primitives are the core building blocks of almost all 
modern public-key cryptographic protocols: 
 

• KEMs are a structured way to establish a shared secret 
between two parties over an insecure channel. This is 
the foundation of most secure communication 
protocols — for example: 
o In TLS (used for HTTPS), clients and servers 

negotiate a shared key to encrypt their session. 
o In VPNs (IPsec, WireGuard) and SSH, secure 

key exchange is vital to prevent eavesdropping. 
Classical key exchange methods like RSA and 
Elliptic-Curve Diffie-Hellman (ECDH) will be broken 
by quantum algorithms (e.g., Shor’s algorithm). Thus, 
PQC research focuses on KEMs as a drop-in 
replacement to achieve quantum-resistant secure key 
exchange. 

• Digital signatures ensure that data comes from a 
trusted source and has not been altered: 
o Digital signatures are used in software updates, 

electronic documents, secure boot, and digital 
certificates (e.g., X.509 in TLS). 

o Current schemes like RSA and ECDSA are 
quantum-vulnerable. 

 Signatures are especially critical because: 
o Many signed documents (legal, medical, 

financial) must remain verifiable for decades. 
o They are the backbone of public key 

infrastructures (PKI) used to establish trust 
online. 

 Thus, PQC research focuses on quantum-safe 
signature schemes like Dilithium, FALCON, and 
SPHINCS+ to secure long-term integrity and 
authenticity. 

 
The algorithms in consideration encompass various 
mathematical foundations, including lattice-based cryptography, 
hash-based cryptography, code-based cryptography, 
multivariate polynomial cryptography, and others. Each of these 
approaches offers unique strengths in terms of security, 
efficiency, and resource requirements, which are crucial for 
diverse applications ranging from small IoT devices to large-
scale data centers. 
 
The current technical state of the art is led by lattice-based 
cryptography, particularly the NIST-standardized CRYSTALS-
Kyber (Bos et al., 2018) for key encapsulation and 
CRYSTALS-Dilithium (Ducas et al., 2018) for digital 
signatures. These schemes are based on the Learning With 
Errors (LWE) and Short Integer Solution (SIS) problems, which 
are believed to be hard even for quantum computers. They offer 
strong performance, relatively small key and ciphertext sizes, 
and efficient implementation across platforms. FALCON 
(Fouque et al., 2018), another lattice-based signature scheme, 
offers more compact signatures but at the cost of more complex 

and delicate implementation due to its reliance on floating-point 
arithmetic. 
 
Other PQC families play specialized roles. Code-based 
cryptography, like Classic McEliece (Bernstein et al., 2017), 
provides excellent security and decryption speed but suffers 
from very large public keys. Hash-based schemes, such as 
SPHINCS+ (Bernstein et al., 2019), are extremely conservative 
and rely only on hash functions for security, making them ideal 
for high-assurance use cases like long-term digital signatures 
despite their large signatures and slower performance. 
Multivariate and isogeny-based schemes once showed promise, 
but the most prominent candidates, e.g., Rainbow (Ding et al., 
2017), have been broken or are no longer considered viable. As 
standardization progresses and protocols like TLS, SSH, and 
IPsec begin integrating PQC algorithms, the focus is shifting to 
implementation security, hardware acceleration, and hybrid 
deployment strategies to ease the transition. 
 
2.3 NIST PQC Standardization 

Recognizing the significant threat that quantum computing 
poses to classical public-key cryptographic systems, the U.S. 
National Institute of Standards and Technology (NIST) 
launched a Post-Quantum Cryptography (PQC) standardization 
initiative in 2016. The goal of this effort is to identify and 
establish cryptographic algorithms that can resist quantum 
attacks while remaining practical, efficient, and suitable for 
widespread deployment (Chen et al., 2025). 
 
This multi-phase process involves open global collaboration, 
where researchers submit candidate algorithms for rigorous 
evaluation. These candidates undergo multiple rounds of public 
review, cryptanalysis, and performance testing to ensure both 
theoretical robustness and practical applicability across diverse 
systems and use cases. 
 
As outlined previously (see section 2.2), NIST’s standardization 
focuses primarily on Key Encapsulation Mechanisms (KEMs) 
and digital signature schemes, as these are the most widely used 
public-key primitives and the most directly threatened by 
quantum algorithms like Shor’s. By prioritizing these two 
categories, NIST aims to secure the foundational components of 
the internet and critical infrastructure, enabling a smooth and 
secure transition to a post-quantum future. 
 
NIST's standardized algorithms are expected to become the 
benchmarks for securing digital communications against 
quantum threats, ensuring the integrity, confidentiality, and 
authenticity of information in a post-quantum world. The 
ongoing process is closely watched by academia, industry, and 
governmental institutions as they prepare to transition to these 
new cryptographic standards. 
 
In 2023, NIST selected a set of algorithms to be standardized 
based on their strong security, performance, and implementation 
properties (Chen et al., 2025). These were formally published as 
Federal Information Processing Standards (FIPS) in 2024. The 
standards include: 
 

• FIPS 203, which specifies ML-KEM, a key 
encapsulation mechanism based on the lattice-based 
algorithm CRYSTALS-Kyber (NIST, 2024a). 

• FIPS 204, defining ML-DSA, a lattice-based digital 
signature scheme based on CRYSTALS-Dilithium 
(NIST, 2024b). 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W16-2025 
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-113-2025 | © Author(s) 2025. CC BY 4.0 License.

 
114



 

• FIPS 205, which describes SLH-DSA, a stateless 
hash-based digital signature scheme built on 
SPHINCS+ (NIST, 2024c). 
 

These algorithms are now the recommended options for federal 
agencies and are expected to serve as foundational primitives 
for public-key encryption and digital signatures in the post-
quantum era. 
 
Alongside the finalized standards, NIST continues to evaluate 
other promising candidates. One of the most prominent is 
FALCON, as it is a compact and efficient lattice-based digital 
signature scheme (see section 2.2). While not yet standardized, 
FALCON is considered a strong alternative for use cases that 
require smaller signature and key sizes than Dilithium. NIST 
has indicated that a separate standard for FALCON is under 
development and may be finalized in the near future. 
 
NIST is also conducting a fourth round of evaluation, focusing 
on enhancing the diversity of algorithm families. This round 
includes ongoing analysis of Classic McEliece, a code-based 
KEM known for its strong security and resistance to quantum 
attacks, albeit with large public key sizes that make it less 
practical for many applications. The fourth round also revisits 
select multivariate and lattice-based candidates to assess their 
long-term viability and implementation trade-offs. 
 
Looking ahead, further standards are expected to be finalized in 
the near future, including those based on FALCON and 
potentially Classic McEliece. In parallel, efforts are underway 
within other standards organizations such as the IETF and ISO 
to integrate these algorithms into protocols like TLS, X.509 
certificates, SSH, and VPN systems.  
 

3. Objectives and Contribution 

The overall objective of our work is to investigate the 
performance of PQC algorithms that are unbroken at present1 in 
the context of smart city sensors and smart city data. 
Specifically, our goal is to study the performance of PQC 
algorithms currently in the final stages of NIST-standardisation 
on resource-constrained IoT hardware when cryptographically 
protecting actual real-world smart city sensor data. 
 
Our contributions are the following: 

• We introduce a research prototype which simulates a 
realistic IoT scenario in which resource-contrained 
sensors protect real-world smart city sensor data using 
Post-Quantum Cryptography and then transmit this data 
to a server. 

• We present experimental results obtained with this 
research prototype that compare the average 
computation times for several PQC key-establishment 
algorithms and several PQC digital signature algorithms 
(including the ones currently being standardised) 

 
4. Prototype Design and Experimental Setup 

4.1 Protoytype Design and Testbed Setup 

We implemented a “PQC-Smart-City-Data” benchmarking 
system based on i) the PQClean library (Kannwischer et al., 

 
1 Meaning PQC algorithms that are currently considered to be 

“quantum-computationally secure", i.e. algorithms that according to 
today’s knowledge cannot be feasibly broken within a reasonable 
time frame even by quantum computers. 

2022), a C-based library that provides implementations of all 
PQC algorithms currently considered by NIST, and ii) on a 
Rust-based library that provides an additional implementation 
of the Kyber Post-Quantum key encapsulation mechanism 
(Argyle-Software, 2025).  
 
Our prototype runs a simple Python Flask server (Pallets, 2024) 
and makes requests to it using Python’s requests library. To 
execute the PQClean library’s C-based algorithms from Python, 
the ctypes module was used. The C source files needed to be 
compiled beforehand. To automate this process, Python scripts 
were written to generate a Makefile for each algorithm and then 
execute make with it. 
 
The Rust-based implementation (Argyle-Software, 2025) 
follows a different interface. To accommodate this, a wrapper 
was created in the Rust directory. A shell script was also 
developed to compile this wrapper and generate the necessary 
binaries.  
 
Our testing system consists of two Raspberry Pi devices (Pi3 
and Pi Zero 2W), which each can act as either a client or as a 
server in a particular experiment. Although Raspberry Pi 
devices are more capable than basic microcontrollers, they are 
increasingly used in real-world sensor networks, particularly in 
smart city and edge computing applications. Their low cost, 
small size, and relatively low power consumption make them 
suitable for roles such as local gateways, edge processors, or 
even as standalone smart sensing units. In many urban 
deployments, sensor nodes are expected to perform not just data 
collection, but also on-device processing, encryption, and secure 
communication—tasks that align well with the capabilities of 
Raspberry Pi hardware. 
 
Evaluating post-quantum cryptographic (PQC) algorithms on 
Raspberry Pi platforms is therefore a realistic and meaningful 
approach. Given the added computational demands of PQC, it's 
essential to assess performance on devices that represent the 
upper bound of what might be deployed in edge environments. 
Raspberry Pi boards provide a practical balance between 
resource constraints and computational power, making them an 
appropriate and informative testbed for understanding the 
viability of PQC in next-generation sensor networks. 
 
In our prototype, the client requests a public key from the server 
and uses this public key for the Key Encapsulation Mechanism 
(KEM) to wrap an AES key generated by the client, i.e. KEM is 
performed at the client side. The client encrypts the payload, i.e. 
smart city data, with the generated AES key and digitally signs 
a hash of the encrypted data, i.e. digital signatures are also 
performed on the client side. The server has the role of signature 
verification and key decapsulation in our prototype. 
 
4.2 Communication Flow and Results Measured 

In each experiment, the client first generates a symmetric AES 
key and encapsulates it with a PQC Key Encapsulation 
Mechanism (KEM); it then encrypts the data with a symmetric 
AES key and digitally signs the hash of the encrypted data with 
a PQC signature algorithm. It then sends the encrypted data, the 
digital signature, and the encapsulated AES key to the server. 
The server verifies the digital signature, decapsulates the AES 
key, and decrypts the data. The time needed for each of these 
individual operations is measured individually at the client and 
at the server. 
 
The communication steps are hence as follows: 
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1. The client requests a public key for a key encapsulation 
mechanism (KEM). 

2. Using this public key, the client generates an AES key 
and encapsulates it. 

3. The AES key is then used to encrypt the data. 
4. The encrypted data is hashed and signed using a post-

quantum signature mechanism. 
5. Each process is timed, and the results are saved to a 

CSV file. 
6. The client sends the following data to the server: 

a. Encrypted data 
b. Digital Signature 
c. Public key corresponding to the digital signature 

performed by client 
d. Algorithms used for digital signature and KEM 
e. Encapsulated AES key 
f. IV (Initialization Vector) 

7. The server: 
a. Hashes the encrypted data and verifies the 

signature. 
b. Decapsulates the AES key and decrypts the data. 
c. Measures execution time and logs it in a CSV file. 

 
In particular, the server logs in each experiment the following 
experiment paramters and measurements: 
 

• KEM Algorithm: The key encapsulation mechanism 
used. 

• Signature Algorithm: The digital signature scheme 
applied. 

• Server Hash Time: The duration taken to hash the 
encrypted data. 

• Verify Time: The time required to verify the signature. 
• Decapsulation Time: The time needed to decapsulate 

the AES key. 
• Decrypt Time: The time taken to decrypt the data. 
• Device Name: The hardware device used for testing. 

 
An example for data being measured at the server in an 
experiment is the following: 
 
KEM	Algorithm,Signature	Algorithm,Server	Hash	Time,Verify	Time,Decapsulation	
Time,Decrypt	Time,Device	Name	
mceliece348864,rainbowIclassic,1294269,10848104,100581416,12927995,raspi3	
mceliece460896,dilithium3,1313435,1491403,208070206,2117392,raspi3	
mceliece460896,falcon1024,2474058,1258018,251924750,2177079,raspi3	
	
The client logs in each experiment the following experiment 
paramters and measurements: 
 

• KEM Algorithm: The key encapsulation algorithm 
used. 

• Signature Algorithm: The digital signature scheme 
applied. 

• Client Device: The name of the testing device. 
• Encapsulation Time: Time taken to encapsulate the 

AES key. 
• Encryption Time: Time required to encrypt the data. 
• Client Hash Time: Time taken to hash the encrypted 

data. 
• Sign Time: The time needed to generate the digital 

signature. 
• Data Size: The size (in bytes) of the encrypted data. 

 
An example for data being measured at the client in an 
experiment is the following: 
	
	
KEM	Algorithm,Signature	Algorithm,Client	Device,Encapsulation	Time,Encryption	
Time,Client	Hash	Time,Sign	Time,Data	Size	

mceliece460896,rainbowVclassic,raspi3,1925776,21083535,2156661,234415071,58943	
mceliece6688128,dilithium3,raspi3,2922648,3377282,2059942,10801897,58943	
mceliece6688128,falcon512,raspi3,1730672,2041088,1266871,27710338,58943	
 
4.3 Smart City Data Sets  

The actual payload data being sent cryptographically protected 
from client to server consists of 100 real-world temperature 
measurements from actual IoT sensors (located in Fukuoka, 
Japan), encoded in JSON format2. The following JSON snippet 
shows one example of these 100 measurements: 
 
{"@iot.id":15648,"phenomenonTime":"2022-08-
27T05:55:00.000Z","result":39.0,"resultTime":"2022-08-
27T05:55:00.000Z", 
"@iot.selfLink":"https://ogcapi.hft-
stuttgart.de/sta/udigit4icity/v1.1/Observations(15648)"
,"Datastream@iot.navigationLink":"https://ogcapi.hft-
stuttgart.de/sta/udigit4icity/v1.1/Observations(15648)/
Datastream","FeatureOfInterest@iot.navigationLink":"htt
ps://ogcapi.hft-
stuttgart.de/sta/udigit4icity/v1.1/Observations(15648)/
FeatureOfInterest","MultiDatastream@iot.navigationLink"
:"https://ogcapi.hft-
stuttgart.de/sta/udigit4icity/v1.1/Observations(15648)/
MultiDatastream"} 
 
This record represents a sensor observation from a smart city 
data platform, captured through the OGC SensorThings API. 
The key details are: 
 

• Observation ID: 15648 
• Measurement Value: 39.0 (temperature) 
• Time of Measurement: 2022-08-27T05:55:00.000Z 

(both as phenomenonTime and resultTime) 
• API Source: OGC SensorThings API – HFT Stuttgart 
• Data Links: Associated Datastream, 

FeatureOfInterest, and MultiDatastream resources are 
linked, suggesting that this observation is part of a 
structured sensor data stream (e.g., a time series). 

 
This type of dataset is typical in smart city deployments and 
could represent readings from environmental, mobility, 
infrastructure, or energy sensors. It is important to note that we 
encrypt and protect the entire JSON object—not just the 
measurement value—to ensure the integrity and authenticity of 
both the data and its contextual metadata. In smart city and IoT 
contexts, sensor data is typically transmitted in structured 
formats like JSON, which include not only the measurement 
(result) but also metadata such as timestamp, location, device 
ID, and links to data streams. While the actual sensor reading 
(e.g., temperature, air quality) is central to the application, the 
surrounding metadata is equally critical to ensuring data 
integrity, context, and trustworthiness. 
 
Protecting only the measurement value leaves the rest of the 
message—such as phenomenonTime, FeatureOfInterest, and 
Datastream—vulnerable to tampering. An attacker could alter 
the timestamp to make old data appear current, change the 
location to misrepresent where the measurement was taken, or 
swap links to mislead downstream systems. This could have 
serious implications in smart city applications, from faulty 
traffic management to false pollution alerts. 
 
By applying digital signatures or encryption to the entire JSON 
structure, we ensure that the full semantic meaning of the 
observation is preserved and verifiable. This guarantees that the 
data’s origin, context, and value are all protected as a single, 

 
2 The dataset being used for our experiments is available at: 
https://ogcapi.hft-stuttgart.de/sta/udigit4icity/v1.1/Observations 
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inseparable unit—crucial for audits, traceability, and public 
trust in smart city systems. 
 

5.  Results 

In this section, we present the results of our experimental 
evaluation of post-quantum cryptographic (PQC) algorithms on 
resource-constrained IoT hardware using real-world smart city 
sensor data. Our analysis focuses on both key encapsulation 
mechanisms (KEMs) and digital signature algorithms that are 
currently in the final stages of standardization by NIST. Using 
our custom-built research prototype—which encrypts and 
digitally signs typical smart city data—we benchmarked the 
average computation times for key generation, encapsulation, 
decapsulation, signing, and verification for two different 
Raspberry Pi models. 
 
For all graphs shown, the results for the Rust implementation of 
Kyber are denoted with *rust, e.g. kyber512rust for the 
Kyber512 results based on the Rust implementation (Argyle-
Software, 2025). All other results are based on the C 
implementation of the PQClean library (Kannwischer et al., 
2022). 
 
5.1 Key Encapsulation (KEM) Performance 

Figure 1 shows results we obtained for the time needed for key 
encapsulation on a Raspberry Pi 3B for various PQC key 
encapsulation algorithms/parametrisations. Similarly, Figure 2 
displays the time needed for key encapsulation on a Raspberry 
Pi Zero 2W for various PQC key encapsulation 
algorithms/parametrisations. 
 

 
Figure 1: Encapsulation time on a Raspberry Pi 3B for various 

PQC Key Encapsulation Algorithms/Parametrisations 
 

 
Figure 2: Encapsulation time on a Raspberry Pi Zero 2W for 
various PQC Key Encapsulation Algorithms/Parametrisations 

The Kyber family (Kyber512, Kyber768, Kyber1024) 
consistently achieves the lowest encapsulation times across both 
Raspberry Pi devices, making it the most efficient choice for 
time-sensitive applications. In contrast, the McEliece and HQC 
families exhibit significantly higher encapsulation times, 
particularly at higher security levels, with HQC being the most 
computationally intensive. As expected, encapsulation 
operations are slower on the Pi2W than on the Pi3, but 
performance trends remain consistent across devices. 
 
5.2 Digital Signature Performance 

Figure 3 shows results we obtained for the needed signature 
time on a Raspberry Pi Zero 2W for various PQC signature 
algorithms/parametrisations. Figure 4 shows similar results 
obtained on a Raspberry Pi Zero 2W. 
 

 
Figure 3: Signature time on a Raspberry Pi 3B for various PQC 

Signature Algorithms/Parametrisations 
 

 
Figure 4: Signature time on a Raspberry Pi Zero 2W for various 

PQC Signature Algorithms/Parametrisations 
 
Dilithium variants (2, 3, 5) show the fastest signing times, 
making them highly suitable for constrained devices, while 
Falcon offers slightly higher but still efficient performance. In 
contrast, the Rainbow family—especially RainbowVclassic—
exhibits extremely high signing times, rendering it impractical 
for low-power environments. Performance differences are 
consistent across both Raspberry Pi models (the Pi2W generally 
slower). The graphs confirm the efficiency of Dilithium and 
Falcon compared to the heavy computational load of Rainbow.  
 
5.3 Decapsulation Performance 

Figure 5 and Figure 6 show measured decapsulation times for 
Kyber variants on a Raspberry Pi 3B and a Raspberry Pi Zero 
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2W, respectively. Figure 7 and Figure 8 show similar results for 
all the other (i.e. non-Kyber) PQC KEM algorithms. 
 
The server-side evaluation highlights clear differences in 
performance among post-quantum KEM algorithms, with the 
Kyber family demonstrating the highest efficiency, particularly 
Kyber512 in Rust, which had the lowest decapsulation times. In 
contrast, non-Kyber algorithms such as McEliece and HQC 
showed scalability and performance challenges, with 
McEliece8192128 exhibiting the highest computational 
overhead. 
 

 
Figure 5: Decapsulation time on a Raspberry Pi 3B for various 
Kyber Key Encapsulation Implementations/Parametrisations 

 

 
Figure 6: Decapsulation time on a Raspberry Pi Zero 2W for 

various Kyber Key Encapsulation Implementations 
/Parametrisations 

 

 
Figure 7: Decapsulation time on a Raspberry Pi 3B for various 

Key Encapsulation Algorithms/Parametrisations 
 

 
Figure 8: Decapsulation time on a Raspberry Pi Zero 2W for 

various Key Encapsulation Algorithms/Parametrisations 
 
Decapsulation was slightly faster on the Raspberry Pi 3 
compared to the Pi 2W, reflecting their hardware differences. 
Overall, Kyber consistently outperformed other algorithms on 
both platforms, making it the most suitable choice for 
decapsulation in resource-constrained or time-sensitive 
environments. 
 

 
Figure 9: Signature Verification time for selected PQC 

Signature Algorithms on a Raspberry Pi 3B 
 

 
Figure 10: Signature Verification time for selected PQC 

Signature Algorithms on a Raspberry Pi Zero 2W 
 
5.4 Signature Verification Performance 

Figure 9 and Figure 10 display the signature verification times 
we measured on a Raspberry Pi 3B and a Raspberry Pi Zero 
2W, respectively. Note that we did not further include Rainbow 
results in our analysis because the algorithm was withdrawn 
from the NIST post-quantum standardization process due to the 
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discovery of practical cryptographic attacks. As a result, it is no 
longer a viable or secure option and offers little relevance to 
current or future post-quantum applications. 
 
The verification performance analysis shows that Falcon512 
offers the fastest verification times, followed closely by 
Falcon1024. The Dilithium family also performs efficiently, 
albeit slower than Falcon, with verification times increasing 
moderately alongside security levels but remaining suitable for 
most applications. 
 
5.5 Key Generation Times 

Figure 11 and Figure 12 show the overall key generation times 
we measured for the various KEM algorithms and the various 
digital signature algorithms, resprectively. 
 

 
Figure 11: Key Generation Times for various Key 

Encapsulation algorithms 
 

 
Figure 12: Key Generation Times for various Digital Signature 

algorithms 
 
The analysis of key generation times for Key Encapsulation 
Mechanism (KEM) algorithms highlights the Kyber family as 
the most efficient, with consistently low key generation times 
under one second and minimal performance overhead. This 
makes Kyber highly suitable for real-time or resource-
constrained environments. In contrast, the McEliece family, 
particularly at higher security levels, shows significantly longer 
key generation times—exceeding 17 seconds—which reflects 
its strong security guarantees but also reveals its substantial 
computational demands. 
 
For signature algorithms, the Falcon family stands out with the 
shortest key generation times across all security levels. Falcon 
maintains rapid performance even at higher configurations, 
offering a strong balance between efficiency and cryptographic 
strength. This makes Falcon a practical choice for systems that 
require frequent key regeneration or with strict time constraints. 
 
5.6 Summary and Discussion of Findings 

Our evaluation of post-quantum cryptographic (PQC) 
algorithms with real-world smart city data sets on Raspberry Pi 

devices—specifically the Raspberry Pi 3 and Raspberry Pi Zero 
2 W—has yielded valuable insights into their performance in 
resource-constrained environments. These findings highlight the 
practical implications of deploying quantum-resistant 
algorithms on low-power edge devices. Overall, Kyber and 
Dilithium are the most suitable choices for encapsulation and 
signing in resource-constrained smart city deployments. 
 
In the realm of Key Encapsulation Mechanisms (KEMs), the 
Kyber family consistently stands out as the most efficient across 
all key operations, including key generation, encapsulation, and 
decapsulation. Its low computational overhead makes it 
particularly well-suited for constrained devices. In contrast, 
while McEliece-based algorithms offer strong security 
guarantees, they impose substantial computational costs, 
especially at higher security levels. This makes McEliece less 
practical for time-sensitive or interactive applications. 
 
For digital signatures, Falcon demonstrates the best 
performance in terms of key generation and signature 
verification, offering a strong balance between speed and 
security. However, the Dilithium family also performs 
efficiently, and is notably faster in signing, which may be key in 
smart sensor networks, as the key generation needs to be 
performed less frequently and the verification is usually done at 
(powerful) servers, while signing sensor data happens at the 
resource-contrained sensor node and with high frequency.  
 
When comparing devices, the Raspberry Pi Zero 2 W shows 
consistently slower performance than the Raspberry Pi 3, 
attributed to its more limited hardware resources. On average, 
operations on the Pi Zero 2 W are approximately 20% slower. 
In terms of specific cryptographic roles, server-side operations 
such as signature verification and decapsulation highlight the 
efficiency of Kyber and Falcon. On the client side, 
encapsulation and signing tasks further reinforce Kyber’s 
suitability for KEM and the utility of Falcon and Dilithium for 
digital signatures. 
 
In summary, the Kyber family is the most practical choice for 
applications requiring efficient and lightweight KEM 
operations. Falcon and Dilithium offer strong candidates for 
signature-based use cases, combining security and performance 
in a balanced way. McEliece and Rainbow, while offering 
theoretical strengths in certain areas, are best reserved for 
applications where performance is not a critical constraint and 
maximum security is prioritized. 
 

6. Conclusion 

6.1 Summary of Contribution and Results 

This study has provided a practical assessment of post-quantum 
cryptographic (PQC) algorithms on resource-constrained 
platforms, specifically the Raspberry Pi 3 and Raspberry Pi 
Zero 2 W, using real-world smart city datasets to simulate 
realistic operational conditions. Through detailed 
benchmarking, we identified Kyber as the most efficient key 
encapsulation mechanism, demonstrating strong performance 
across key generation, encapsulation, and decapsulation. For 
digital signatures, Falcon and Dilithium emerged as the most 
suitable candidates, balancing low computational overheads 
with robust security even at higher security levels. In contrast, 
McEliece and Rainbow, despite their theoretical resilience, 
exhibited significant performance bottlenecks that make them 
likely impractical for many time-sensitive or embedded 
deployments. 
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By incorporating authentic data representative of smart city 
scenarios, our findings underscore the feasibility of integrating 
quantum-safe cryptographic primitives into real-world IoT and 
edge computing environments. Kyber, Falcon, and Dilithium 
provide viable, efficient alternatives to classical public-key 
systems and are particularly well-suited for applications in 
connected urban infrastructure, sensor networks, and 
lightweight client devices. As the cryptographic community 
moves toward post-quantum readiness, this evaluation offers 
actionable insights for guiding secure and efficient adoption on 
constrained platforms operating in data-rich environments. 
 
6.2 Future Work 

While this study provides an initial exploration into the practical 
deployment of post-quantum cryptographic algorithms on 
constrained devices using real-world smart city data, it 
represents only a first step toward comprehensive integration. 
Our evaluation focused on core cryptographic operations in 
isolation, and further research is needed to understand the 
broader system-level implications of PQC adoption in real-
world environments. 
 
Future work should involve integrating PQC algorithms into 
full communication stacks and security protocols (e.g., TLS 1.3, 
MQTT, and CoAP) to assess their impact on end-to-end system 
performance. This includes examining latency, throughput, and 
interoperability with existing infrastructures. Additionally, 
detailed analysis of side-channel resistance, energy 
consumption, and memory footprint will be essential, 
particularly for battery-powered or ultra-low-power 
deployments. Including hybrid cryptographic approaches and 
emerging PQC candidates will also help address transitional 
needs and optimize for various application contexts across smart 
cities and industrial IoT ecosystems. 
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