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Abstract 
 
Land use data, provided as open data by Japan’s National Land Numerical Information (NLNI), has long served as a fundamental 
resource across various fields such as urban planning and disaster prevention. The dataset divides the entire country into 100-meter 
square mesh units and classifies each unit according to its land use purpose, enabling spatially detailed understanding of land use 
patterns. However, maintaining this dataset requires significant time and cost, as human operators visually interpret land use for each 
mesh by overlaying satellite imagery with geospatial data. As a result, it is difficult to update the dataset rapidly on a nationwide scale, 
leading to insufficient responsiveness to changes in land use. To address this issue, this study developed a method to automate land 
use classification using satellite imagery and improve the efficiency of land use data maintenance. Specifically, the method utilizes 
high-resolution and high-frequency observation data from Sentinel-2 and employs machine learning to automatically classify land use 
into four categories: Residential land, Other inhabitable land, Water bodies, and Forests and wastelands. As a result, the method enables 
high-accuracy generation of land use data and achieves significantly improved efficiency compared to conventional approaches. 
Furthermore, by integrating time-series satellite imagery, the method shows potential for flexibly responding to changes in land use. 
 
 

1. Introduction 

1.1 Background 

Japan’s National Land Numerical Information (NLNI) is an open 
platform provided by the Ministry of Land, Infrastructure, 
Transport and Tourism (MLIT), offering integrated access to 
geospatial data across the country. The platform provides access 
to a wide range of geospatial information, including land use, 
topography, and transportation networks. According to the 2024 
guidelines for the maintenance of NLNI, it is necessary to 
improve and update the data while addressing diverse user needs 
under constraints of limited budgets and human resources (MLIT, 
2024). Therefore, the use of advanced technologies such as AI is 
encouraged to promote more efficient data maintenance. 
 
Among the core datasets included in NLNI, the “Detailed Land 
Use Mesh Data” (hereinafter referred to as “land use data”) plays 
a particularly important role. This dataset divides the entire 
country into 100-meter square mesh units and classifies each unit 
according to its land use purpose, enabling a spatially detailed 
understanding of land use patterns. Consequently, land use data 
is essential for supporting decision-making across a wide range 
of domains, including urban planning, infrastructure 
development, and disaster prevention. It also serves as a critical 
foundation for the realization of smart cities. 
 
A concept closely related to land use is land cover. While land 
cover classification is based on the physical state of the Earth’s 
surface, land use classification is defined by the intended purpose 
of land as determined by human socio-economic activities. 
Internationally, these two concepts are clearly distinguished due 
to differences in their classification objectives and targets, and 
each adopts an independent classification system. 
 
For example, the Land Use and Land Cover (LULC) 
classification system developed by the United States Geological 

Survey (USGS) hierarchically categorizes land features, with 
Level 1 representing land cover and Level 2 representing land use 
(Anderson et al., 1976). Similarly, the Food and Agriculture 
Organization (FAO)’s Land Cover Classification System 
(LCCS) defines land cover as the observable physical state of the 
Earth’s surface, whereas land use is classified based on 
anthropogenic factors, including legal and management 
perspectives (FAO, 2025). 
 
As illustrated above, land use and land cover are defined as 
distinct classification systems at the international level. In 
particular, in Japan, where urban, rural, forested, and aquatic 
areas are often located in close proximity and intermingle, 
understanding land use based on human activities has proven to 
be more practical for administrative operations, planning, and 
disaster management. Consequently, land use classification has 
been given greater emphasis. As a result, numerous studies have 
been conducted utilizing land use data in the Japanese context. 
 
For example, Koarai and Nakano (2017) analyzed the 
geographical characteristics and causal factors of tsunami 
damage during the Great East Japan Earthquake by integrating 
land use data with topographic, elevation, and tsunami-related 
datasets. Their study demonstrates that land use information is 
effective for disaster risk assessment. 
 
In addition, Ohashi et al. (2024) combined land use data from 
1976 to 2014 with population data from the national census to 
predict the spatial impacts of future population decline on land 
use across Japan, using machine learning techniques. This study 
highlights the potential of applying land use data to time-series 
analyses. 
 
However, several challenges remain in the maintenance of land 
use data. Currently, approximately 34 million mesh units 
covering the entire country are manually classified by human 
operators through visual interpretation of satellite imagery. As a 
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result, the process requires years of effort and incurs substantial 
costs, which in turn limit the frequency of updates. Moreover, 
although the high spatial resolution of 100-meter mesh units 
enhances the practical utility of the data for applications such as 
urban and disaster planning, it also contributes to increased labor 
and operational costs in the maintenance process. 
 
Furthermore, Takayanagi (2017) pointed out that variations in 
classification accuracy among operators and the infrequent 
updates of the dataset hinder adequate responsiveness to changes 
in land use. Against this backdrop, the development of methods 
to automate and streamline land use classification is increasingly 
expected—both in Japan and internationally—as a fundamental 
technology to support urban and regional planning. 
 
Therefore, there is a growing need to fundamentally reconsider 
the methods used to maintain land use data and to adopt more 
efficient and automated approaches. In particular, establishing a 
system that enables rapid and continuous data updates would 
facilitate the tracking of temporal changes in land use and 
development trends in cities and regions, thereby enhancing the 
utility of land use data as a foundational resource for policy-
making. Such approaches are expected to become increasingly 
practical in fields such as smart city development, disaster 
response, and urban reconstruction. 
 
1.2 Previous Studies 

In the field of remote sensing, techniques for the automatic 
classification of land cover and land use using satellite imagery 
have advanced significantly in recent years. In particular, the 
introduction of machine learning and deep learning has enabled 
high-accuracy classification of large-scale spatial data. 
 
Li et al. (2018) conducted a systematic review of deep learning 
applications to remote sensing imagery and reported that deep 
learning models such as convolutional neural networks (CNNs), 
recurrent neural networks (RNNs), and generative adversarial 
networks (GANs) outperform traditional hand-crafted feature-
based methods in major tasks such as image classification, 
segmentation, and object detection. Zhu et al. (2017) also 
demonstrated that, compared to conventional machine learning 
techniques such as support vector machines (SVMs) and Random 
Forests, deep learning enables automatic and high-dimensional 
feature extraction from large-scale datasets, achieving superior 
performance. On the other hand, they also highlighted several 
challenges, including the need for large amounts of high-quality 
labeled data and the impact of class imbalance on learning 
performance. 
 
Gong et al. (2020) demonstrated that, in scene classification 
using public remote sensing datasets, not only model selection 
but also factors such as image resolution and differences in target 
regions and structures have a significant impact on classification 
accuracy. Talukdar et al. (2020) compared machine learning 
algorithms including Random Forest, support vector machines 
(SVMs), and artificial neural networks (ANNs), and reported that 
Random Forest offers a favorable balance of classification 
accuracy, generalizability, and computational efficiency. 
Similarly, Ghayour et al. (2021) showed that Random Forest 
outperformed other methods in land cover classification using 
Sentinel-2 imagery, highlighting the effectiveness of combining 
it with spectral information. 
 
On the other hand, the majority of these studies have focused on 
land cover classification, where the target classes typically 
consist of physical attributes such as forests, water bodies, and 

bare land. In addition, the classification units are generally either 
pixel-based or object-based, and the spatial scope tends to be 
limited to regional scales. Campos-Taberner et al. (2020) 
attempted to improve the classification accuracy of agricultural 
land use by applying a long short-term memory (LSTM) model 
to time-series Sentinel-2 imagery; however, the study was 
restricted to agricultural regions and employed a custom-defined 
classification scheme. 
 
Although relatively few in number, some studies have focused on 
land use classification. For example, Zhao et al. (2019) integrated 
satellite imagery with social sensing data such as point-of-interest 
(POI) information and human mobility data to estimate land use 
categories—such as residential, commercial, and industrial 
areas—within urban environments. However, such approaches 
tend to heavily rely on human activity data, and their 
classification schemes do not necessarily align with 
administrative land use categories. 
 
In Japan, Ochi (2009) applied an object-based approach to high-
resolution satellite imagery and demonstrated improved 
delineation of land cover boundaries and enhanced classification 
accuracy in urban areas. This suggests that the choice of 
classification unit has a significant impact on the final 
classification results. 
 
In summary, existing studies have largely focused on the 
classification of physical attributes or analyses conducted within 
limited geographic areas. As a result, technologies for 
automatically classifying and generating land use data at the 
national level, based on mesh units and aligned with 
administrative classification schemes, have yet to be fully 
established. 
 
1.3 Objectives 

The objective of this study is to establish a method for efficiently 
and frequently maintaining land use data across Japan by 
utilizing satellite imagery and machine learning. In particular, the 
study aims to develop a technique that enables the automatic 
classification of land use at a nationwide scale, based on 100-
meter mesh units and aligned with the institutional classification 
scheme of NLNI provided by the Ministry of Land, Infrastructure, 
Transport and Tourism. 
 
Based on the land use data from NLNI, this study consolidates 
land use categories into four classes: residential land, other 
inhabitable land, water bodies, and forests and wastelands. This 
classification scheme is designed to balance practical efficiency 
and classification accuracy by prioritizing the identification of 
major land use types, taking into account the geographical 
characteristics of Japan, where forests and water bodies occupy 
the majority of the national territory. 
 
To evaluate the effectiveness of the proposed method, land use 
data provided by NLNI are used as reference data representing 
past interpretations, and the classification performance is 
assessed by comparing the predicted results with these reference 
data for two regions—Akita and Nara Prefectures. This 
evaluation enables the assessment of classification accuracy and 
generalization performance, including regional variation. 
 
This paper is organized as follows: Section 2 describes the data 
and methodology used in this study; Section 3 presents the 
classification results and accuracy evaluation; Section 4 
discusses the findings and identifies remaining issues; and 
Section 5 provides the conclusion and future perspectives. 
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2. Methodology 

2.1 Study Areas 

This study focused on two regions in Japan. The model was 
trained and validated with data from Akita Prefecture, and 
extrapolation testing was conducted using data from Nara 
Prefecture. Their locations are shown in Figures 1 and 2. 
 
Akita Prefecture is located in one of the colder regions of Japan 
and is characterized by buildings with varied elevation profiles 
designed to accommodate heavy snowfall. In contrast, Nara 
Prefecture is situated in a warmer region and is characterized by 
sturdy, flat-roofed buildings designed to withstand typhoons. 
Such climatic differences are believed to influence building 
structures and land use patterns, and validation under varying 
climate conditions is considered effective for enhancing the 
generalizability of the proposed method. 
 
Another notable feature of both regions is that they exhibit clearly 
defined land use patterns separating urban and rural areas. 
Therefore, these regions were selected as study areas to evaluate 
the general applicability of the proposed method. 
 
2.2 Source Data 

In this study, Sentinel-2 satellite imagery was used as the source 
of remote sensing data. Sentinel-2 is an Earth observation 
satellite operated by the European Space Agency (ESA), offering 
high spatial resolution of up to 10 meters, high revisit frequency 
of approximately every five days, and 13 spectral bands. The data  
 

 
Figure 1. Study area: Akita Prefecture 

 

 
Figure 2. Study area: Nara Prefecture 

are available free of charge (ESA, 2015). Owing to these 
characteristics, Sentinel-2 data have been widely used in various 
fields such as urban planning, agriculture, disaster management, 
and mining. In this study, they were adopted as suitable remote 
sensing data for land use classification. 
 
For both model training and validation, interpreted land use data 
provided by the NLNI were used as training and evaluation data, 
respectively. In Akita Prefecture, the satellite imagery was 
aligned with the interpretation period of the land use data, which 
was November 2020. The scene with the least cloud coverage 
from within a one-month window before and after this period was 
selected using the STAC API provided by Amazon Web Services 
(AWS) (ESA, 2015). 
 
In contrast, for Nara Prefecture, priority was given to data quality, 
and a 2023 annual mosaic image was used. For the sake of 
implementation efficiency and visual clarity, the Sentinel-2 
Global Mosaic provided by the European Commission’s 
Copernicus Programme was adopted (European Commission, 
2023). The classification scheme of the NLNI land use data is 
described in detail in Section 2.4. 
 
By using satellite imagery acquired from different regions and 
time periods, this study enables the examination of whether the 
model can effectively distinguish variations in land use within the 
imagery. Furthermore, it allows for the evaluation of the model’s 
potential to accommodate temporal changes in land use. 
 
2.3 Data Preprocessing 

In this study, the acquired imagery underwent a series of 
preprocessing and feature extraction steps for land use 
classification. First, spatial clipping was performed on the 
satellite imagery based on the spatial extent of the land use data 
of the target regions in order to remove areas outside the scope 
of analysis. Next, multiple spectral bands and indices known to 
be effective for land cover identification were selected and used 
as input features for the classification model. The features used 
in this study are listed in Table 1. 
 
 

 
Table 1. Features of this study and their descriptions 

Feature
Resolution

(m)
Description

Blue
(Band2)

10 Visible blue band (490 nm)

Green
(Band3)

10  Visible green band (560 nm)

Red
(Band4)

10 Visible red band (665 nm)

NIR
(Band8)

10  Near-infrared band (842 nm)

SWIR
(Band11)

20  Shortwave infrared band (1610 nm)

NDVI 10
Index that indicates the density and vigor of
green vegetation

MNDWI 20
An index that highlights surface water
(including snow) and reflects the moisture
content in vegetation

NDSI 20
An index that detects the distribution of
bare ground and impervious surfaces, such
as sand and concrete
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As shown in Table 1, Blue, Green, and Red correspond to the 
visible light bands, specifically Band 2, Band 3, and Band 4, 
respectively. NIR refers to near-infrared and corresponds to Band 
8, while SWIR denotes short-wave infrared and corresponds to 
Band 11. All bands were acquired at their highest available 
spatial resolution. In addition, three indices were derived from 
these bands and included as additional features. 
 
First, the NDVI (Normalized Difference Vegetation Index) is an 
index used to evaluate vegetation presence and physiological 
activity, based on the spectral characteristics whereby vegetation 
exhibits high reflectance in the near-infrared region and absorbs 
strongly in the red region (Tucker, 1979). 
 
Next, the MNDWI (Modified Normalized Difference Water 
Index) is an index used to enhance the extraction of water bodies, 
based on the spectral characteristics whereby water exhibits high 
reflectance in the green band and is strongly absorbed in the 
shortwave infrared region (Xu, 2006). 
 
Finally, the NDSI (Normalized Difference Soil Index) is an index 
used to detect non-vegetated areas such as sand and concrete, 
based on the spectral characteristics whereby dry minerals and 
artificial structures exhibit high reflectance in the shortwave 
infrared region and vegetation is strongly absorbed in the near-
infrared region (Chen et al., 2021). The NDSI helps emphasize 
non-vegetated areas and artificial structures, thereby improving 
the separability from water bodies and vegetation. 
 
These indices were computed using the formulas shown below. 
 

 
(1) 

 

 
(2) 

 

 
(3) 

 
2.4 Preparation of Training Data 

In this study, the land use data from the NLNI were used as 
previously interpreted land use classification results, and training 
data for model development and evaluation were prepared 
accordingly. 
 
The spectral features extracted in Section 2.3 had varying spatial 
resolutions; therefore, all features were resampled to 20 meters. 
Then, pixel values were averaged within each 100-meter mesh to 
obtain representative values for each mesh unit. To ensure spatial 
consistency between features and labels, each pixel was assigned 
to a 100-meter mesh based on its center coordinate, and the land 
use classification label assigned to that mesh was used. 
 
Based on the design policy described in Section 1.3, the 
classification labels were restructured by aggregating the land use 
categories from the NLNI data into four classes: residential land, 
other inhabitable land, water bodies, and forests and wastelands. 
The correspondence between the original categories and the 
restructured classes is shown in Table 2. This classification 
scheme introduces a two-level hierarchy: the first level divides 
areas into inhabitable and uninhabitable zones, and the second 
level further splits each category into two sub-classes, resulting 
in a total of four classes. 
 

In this study, inhabitable land is defined as land that has already 
been developed or could potentially be converted into residential 
areas in the future, such as agricultural land, roads, and railway 
tracks. In contrast, uninhabitable land refers to natural areas such 
as water bodies and forests, which are generally unsuitable for 
construction or permanent human settlement (Fujimoto, 2013). 
Inhabitable land is further divided into “residential land,” where 
buildings are present, and “other inhabitable land.” 
Uninhabitable land is subdivided into “water bodies” and “forests 
and wastelands.” 
 
Through the above procedures, a training dataset was constructed 
in which each 100-meter mesh unit has a unified feature vector 
and corresponding label. This dataset serves as the foundation for 
training, validation, and extrapolation evaluation of the 
classification model described in the following sections. 
 
2.5 Machine Learning Model Construction 

Using the training dataset constructed in Section 2.4, a machine 
learning model was developed to automate land use classification 
across the entire Akita Prefecture. The primary configuration 
settings used for model training are summarized in Table 3. 
 
 

 
Table 2. Land use classification mapping table 

 
 

 
Table 3. Main configuration settings used for model training 

 

Stage 1 Stage 2 Classification categories

Inhabitable
land

Residential
land

-

Other
inhabitable

land

Paddy fields, Other agricultural land,
Roads, Railways,

Other land, Golf courses

Uninhabitable
land

Water bodies
River and lake bodies,

Coastal areas, Marine waters

Forests and
wastelands

-

Item Setting

Target area Entire Akita Prefecture

Classification model Random Forest

Residential land:      38,831 

Other inhabitable land:    195,778 

Water bodies:    147,609 

Forests and wastelands: 1,115,886 

Total: 1,498,104 

Training method Five-fold cross-validation

n_estimators = 200

max_depth = 10

min_samples_split = 2

Number of training mesh units

Hyperparameters
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In this study, the Random Forest algorithm (Breiman, 2001) was 
adopted as the base model. Random Forest is an ensemble 
learning method composed of multiple decision trees, and it 
demonstrates robust classification performance for high-
dimensional and non-linear features. It is also resistant to class 
imbalance, making it well-suited for complex and structured 
classification tasks such as land use classification. 
 
In recent years, studies have reported using Transformer-based 
deep learning models for automatic land use and land cover 
classification, showing high performance (Khan et al., 2024). 
However, such models require large training datasets, significant 
computational resources, and offer limited interpretability. 
Therefore, this study adopts Random Forest as the machine 
learning model, aiming to balance classification accuracy and 
computational efficiency. 
 
In addition, LightGBM (Ke et al., 2017) was also tested for 
comparison. However, for the 100-meter mesh-based 
classification problem addressed in this study, LightGBM 
produced slightly less stable results compared to Random Forest. 
This outcome is likely due to LightGBM’s tendency to be overly 
sensitive to subtle scale variations in the optimization of 
predictive performance, whereas Random Forest, with its simple 
majority-voting mechanism among decision trees, maintains 
more robust classification performance even in the presence of 
overlapping class distributions. Therefore, in this study, the 
Random Forest was ultimately used as the main model. 
 
During model construction, approximately 1.5 million 100-meter 
mesh units covering the entire Akita Prefecture were used. Given 
the class imbalance present in the mesh label distribution, five-
fold cross-validation was adopted. In this approach, the dataset 
was split into five subsets while maintaining class proportions 
within each fold; in each iteration, 80% of the data was used for 
training and the remaining 20% for validation. This method helps 
to prevent overfitting while ensuring generalization performance. 
Hyperparameters were set based on values commonly used in 
previous studies, such as Talukdar et al. (2020), and were found 
to yield satisfactory performance in this study as well. 
 
Instead of performing a single multi-class classification for the 
four land use categories, this study employed a hierarchical two-
stage binary classification approach. In the first stage, mesh units 
were classified as either inhabitable land or uninhabitable land. 
In the second stage, inhabitable land was further classified into 
residential land and other inhabitable land, while uninhabitable 
land was classified into water bodies and forests and wastelands. 
Each binary classifier outputs a probability between 0 and 1 for 
each class, with the higher value determining the predicted label 
for each mesh unit. This approach improves class separability by 
sequentially dividing land categories with distinct spectral 
characteristics and helps reduce the accumulation of 
classification errors. Furthermore, the hierarchical structure 
offers practical advantages by enabling a more interpretable and 
logically structured classification process. 
 
2.6 Prediction and Evaluation 

Using the machine learning model constructed in Section 2.5, 
land use classification was performed at the 100-meter mesh 
level for areas covering the entirety of Akita and Nara Prefectures 
and their surrounding regions. In this study, since marine waters 
are also included in the classification, the entire image, including 
surrounding areas, was used as the prediction target, rather than 
being separated by the administrative area of each region. The 
resulting predictions were quantitatively evaluated by comparing 

them with previously interpreted land use classification data 
provided by the National Land NLNI. For Akita Prefecture, 
internal validation was conducted using five-fold cross-
validation, while for Nara Prefecture, generalization performance 
was assessed through extrapolation testing of the trained model. 
 
In this study, the evaluation metrics used were overall accuracy, 
precision, recall, and F1 score. Overall accuracy represents the 
proportion of correctly classified mesh units out of the total. 
Precision refers to the proportion of correctly predicted instances 
among all instances predicted as a given class. Recall measures 
the proportion of correctly predicted instances among all 
instances that actually belong to the target class. The F1 score is 
the harmonic mean of precision and recall, serving as a metric 
that accounts for the balance between them. It should be noted 
that overall accuracy is defined as a single value across all classes 
in multi-class classification, and cannot be meaningfully 
assigned on a per-class basis. Therefore, only the overall value is 
reported. 
 

3. Results 

3.1 Classification Results in Akita Prefecture 

Figure 3 presents the land use classification results for the four 
categories across Akita Prefecture and its surrounding regions. 
The evaluation metrics and classification accuracy for each class 
are summarized in Table 4. To enable a more detailed 
comparison of classification performance, a close-up view 
focusing on the western area of Akita City was generated. The 
corresponding classification results are shown in Figure 4, and 
the reference labels are shown in Figure 5. A visual comparison 
of these figures confirms a high degree of agreement between the 
predicted results and the actual interpretation labels. 
 
3.2 Classification Results in Nara Prefecture 

Figure 6 presents the land use classification results for the four 
categories across Nara Prefecture and its surrounding regions. 
The evaluation metrics and classification accuracy for each class 
are summarized in Table 5. To enable a more detailed 
comparison of classification performance, a close-up view 
focusing on the central area of Nara City was generated. The 
corresponding classification results are shown in Figure 7, and 
the reference labels are shown in Figure 8. Even in the 
extrapolation evaluation, a visual comparison confirms a high 
degree of agreement between the predicted results and the actual 
interpretation labels. 
 

4. Discussion 

4.1 Evaluation of Classification Performance 

As shown in Figures 3 and 6, despite targeting large land areas, 
inhabitable and uninhabitable zones are clearly distinguished, 
indicating that the model successfully achieves detailed land use 
classification. 
 
According to Table 4, the classification performance in Akita 
Prefecture shows a high overall accuracy of 88.2%. Focusing on 
each class, the indicators for uninhabitable areas all exceeded 
80%, demonstrating strong performance. However, the precision 
for inhabitable areas did not reach 80%. In particular, the 
precision for residential land was extremely low at 32%. This 
may be attributed to the fact that uninhabitable areas occupy the 
majority of the target region, and among inhabitable areas, 
residential land had a relatively small number of samples 
available for training compared to the other classes. 
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Figure 3. Land use prediction in Akita Prefecture 

 

 
Table 4. Evaluation metrics in Akita Prefecture 

 

 
Figure 4. Predicted results in Western Akita City 

 

 
Figure 5. Ground truth labels in Western Akita City 

 
Figure 6. Land use prediction in Nara Prefecture 

 

 
Table 5. Evaluation metrics in Nara Prefecture 

 

 
Figure 7. Predicted results in Central Nara City 

 

 
Figure 8. Ground truth labels in Central Nara City 

Akita Prefecture
Accuracy

 (%)
Precision

(%)
Recall

(%)
F1 Score

(%)

Residential land - 32 86 46

Other
inhabitable land

- 70 83 76

Water bodies - 88 88 88

Forests and
wastelands

- 98 89 94

Overall 88.2 72.0 86.5 76.0

Nara Prefecture
Accuracy

 (%)
Precision

(%)
Recall

(%)
F1 Score

(%)

Residential land - 99 100 99

Other
inhabitable land

- 96 100 98

Water bodies - 78 96 86

Forests and
wastelands

- 100 98 99

Overall 98.3 93.2 98.4 95.6
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According to Table 5, the classification performance in Nara 
Prefecture yielded an exceptionally high overall accuracy of 
98.3%. In Nara, urban areas are concentrated in the northern part 
of the prefecture, while the southern part is dominated by forested 
regions. Compared to Akita Prefecture, this clearer distinction 
between inhabitable and uninhabitable areas likely contributed to 
the high performance. Focusing on each class, most evaluation 
metrics achieved high values around 90%, indicating that the 
model exhibits strong generalizability. On the other hand, the 
metrics for water bodies were slightly lower. This may be due to 
the presence of infrastructure overlapping rivers within some 
mesh units, as well as the model’s tendency to overestimate water 
bodies around scattered ponds and lakes in urban areas. 
 
These results indicate that the proposed model tends to 
misclassify areas located at the boundaries between different land 
use types. One possible reason is that while humans can interpret 
land use flexibly by considering surrounding context, machine 
learning models make decisions independently for each mesh 
unit, often relying excessively on local features. Therefore, 
improving classification performance in such complex boundary 
regions remains a challenge. 
 
4.2 Feature Importance Analysis 

To understand the behavior of the model, feature importance was 
analyzed for each classification stage. The visualized feature 
importances for all classification models are shown in Figure 9. 
 
In the inhabitable vs. uninhabitable classification, visible light 
bands such as Green and Blue showed high contributions, with 
the Green band exhibiting the highest importance. This likely 
reflects its effectiveness in distinguishing urban areas and 
farmland based on their reflectance characteristics. 
 
In the classification between residential land and other 
inhabitable land, the NIR band—which captures vegetation 
reflectance—had a high level of importance. On the other hand, 
in the classification between water bodies, and forests and 
wastelands, NDVI stood out with particularly high importance, 
demonstrating its effectiveness for this task. 
 
Although MNDWI and NDSI did not show high importance 
overall, they contributed to reducing misclassifications in 
specific classes. In future studies, it is expected that their 
effectiveness can be quantitatively evaluated through more 
detailed classification schemes and localized accuracy 
assessments. 
 

 
Figure 9. Feature Importance for Each Classification Model 

 

4.3 Practical Applicability of the Proposed Method 

Focusing on the processing time of the proposed method, model 
construction required approximately one hour, and the prediction 
process took about 0.5 hours each for Akita and Nara Prefectures. 
Considering that traditional manual interpretation methods have 
required years of effort and significant manpower to develop 
nationwide land use datasets, the introduction of this method has 
the potential to significantly reduce both time and costs. 
 
Furthermore, this method achieved high classification accuracy 
even when using satellite imagery acquired at different time 
periods. This result suggests that variations in the timing of image 
acquisition have limited impact on classification performance, 
demonstrating the method’s operational flexibility—an 
advantage in practical applications. 
 
In addition, when combined with the high-frequency observation 
capabilities of Sentinel-2, this method holds the potential to 
enhance the timeliness of land use data updates, enabling the 
development of a system that can respond quickly and 
continuously to temporal changes. For example, even in the event 
of large-scale disasters that alter land use, it would be possible to 
rapidly identify the affected areas without the need for on-site 
inspections. 
 

5. Conclusion 

This study aimed to develop a novel method for automatically 
performing land use classification at a 100-meter mesh resolution 
across the entirety of Japan, a capability that had not been 
previously established. By leveraging satellite imagery and 
machine learning techniques, we successfully developed the 
world's first system capable of efficiently producing high-
precision and high-frequency land use data. Specifically, the 
system was applied to Akita and Nara Prefectures to automate 
classification into four categories: residential land, other 
inhabitable land, water bodies, and forests and wastelands. 
 
In the validation of the model constructed for Akita Prefecture, 
an overall accuracy of 88.2% was achieved. A closer look at 
class-specific performance revealed an overfitting tendency for 
the residential land class, indicating that the number of training 
samples has a significant influence on model performance. In the 
extrapolation test conducted for Nara Prefecture, most evaluation 
metrics exceeded 90%, demonstrating the model’s strong 
generalizability across different regions and time periods. 
 
Furthermore, this study introduced spectral indices such as NDVI, 
MNDWI, and NDSI as features, which contributed to improved 
accuracy in distinguishing water bodies and artificial surfaces. 
The incorporation of these indices into the feature set proved 
effective in enhancing the model’s discrimination capabilities 
compared to conventional approaches. 
 
Moreover, the proposed method requires only a short time for 
model training and prediction, allowing for significant efficiency 
gains over traditional manual processing. Given its ability to 
generate land use data with high frequency, this approach is 
expected to support various forms of decision-making in smart 
city contexts, including urban planning, infrastructure 
management, and disaster prevention. In particular, it can 
facilitate the rapid understanding of changes at urban and 
regional scales, thereby enabling more effective and practical 
policy development and area management. 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W16-2025 
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-121-2025 | © Author(s) 2025. CC BY 4.0 License.

 
127



 

For future work, improving classification accuracy remains a key 
challenge. Further efforts should include expanding beyond the 
four-class scheme established in this study to enable more 
detailed land use categorization, as well as performing 
classification at higher spatial resolutions. Achieving these goals 
will require the use of higher-resolution imagery and the 
application of deep learning approaches. Additionally, for areas 
with low classification confidence, incorporating traditional 
manual interpretation as a supplementary measure could enhance 
the overall reliability of the classification results. By validating 
these approaches and scaling up to cover the entire country, it 
will be possible to develop a more accurate and continuously 
updated national land use dataset. 
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