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Abstract 

 

This study focuses on the growth of road networks in volunteered street view imagery (VSVI) data, using data from the Mapillary 

platform in Tokyo as a case study. The results demonstrate that VSVI data extends outward from the city center and is governed by 

two fundamental spatial processes, densification and exploration, as observed for OpenStreetMap in previous studies. Among these, 

densification becomes more dominant as dataset grows, rising from 76.8% to 91.4% of total contributions. Furthermore, bivariate 

regression analyses indicated relationships between the number of image contributions and road coverage, as well as the growth rate 

of road networks for various road types. Specifically, the growth in coverage for National Expressways follows a logarithmic model, 

whereas other road types are better represented by linear models with higher-grade roads exhibiting greater growth rates. This study 

represents the first attempt to explore the links between the number of contributions and spatial distribution in VSVI, thereby 

providing new insights into its dynamic growth patterns and future development trends.  

 

 

 

1. Introduction 

Citizen participation has been demonstrated as an effective 

means of collecting various types of geographic information 

(Goodchild, 2007), playing a crucial role in supporting data-

driven initiatives in smart cities. Among these, volunteered 

street view imagery (VSVI), which is a dataset of street-level 

images contributed by volunteers, has proven to be a valuable 

resource for acquiring timely and detailed streetscape 

information through a fully open and cost-free approach 

(d’Andrimont et al., 2018; Zhang et al., 2021; Tsutsumida and 

Funada, 2023). VSVI holds significant potential for supporting 

automatic mapping, enabling dynamic urban monitoring, and 

informing urban environmental policymaking. However, its 

practical application remains limited, partly because of the 

inherent spatial heterogeneity of VSVI contributions (Juhász 

and Hochmair, 2015; Juhász and Hochmair, 2016; Ma et al., 

2019; Mahabir et al., 2020) and unknown mechanisms 

governing the spatial distribution of data.  

 

As a type of crowdsourced data, the VSVI allows users to 

upload street-level images captured at any time, location, or 

device. Due to the uncertainty of contribution locations, many 

recent studies have sought to explore the mechanisms 

influencing the spatial distribution of such data. Existing 

research has examined spatial distribution differences at the 

national, city, and road levels, revealing relationships between 

VSVI distribution and factors such as social (e.g., population 

density) and physical environments (e.g., land use), and the 

availability of other commercial street-level imagery data 

(Juhász and Hochmair, 2015; Juhász and Hochmair, 2016; Ma 

et al., 2019; Mahabir et al., 2020; Seto and Nishimura, 2022). 

Zheng and Amemiya (2024) explored the relationship between 

the number of street revisits and VSVI data quality at the road 

level without investigating the intrinsic mechanisms 

contributing to the spatial distribution. Because VSVI does not 

guarantee data coverage, understanding place selection patterns 

across different contribution stages and the statistical 

relationships between contribution volume and coverage rate 

could provide new insights into the dynamics of VSVI mapping 

and help estimate future development trends. 

 

The growth patterns of road networks have been explored in 

other types of crowdsourced data, particularly in 

OpenStreetMap (OSM) (Corcoran and Mooney, 2013; Corcoran 

et al., 2013; Elias et al., 2023; Minaei, 2020; Zhao et al., 2015). 

However, these results may not apply to VSVI because, unlike 

OSM, which allows users to contribute data remotely via the 

Internet, VSVI requires contributors to physically visit locations 

and upload photographs taken on-site. As a result, the spatial 

choices of contributions as well as the patterns and speed of 

data expansion may differ significantly. Therefore, it is 

important to investigate VSVI within the framework of the 

existing theories to better understand its unique characteristics 

and dynamics. 

 

Therefore, we performed an intrinsic analysis of the evolution 

of a network of roads containing VSVI with increasing 

contributions. For spatial expansion patterns, we hypothesized 

that, considering city centers as primary areas of activity for 

citizens, the distance from the city center may influence the 

priority of a location being contributed to. Moreover, the two 

sequentially dominant expansion patterns of exploration 

(expansion of the network into new areas) and densification 

(increase in the local density of the street network) observed in 

OSM street network representations (Corcoran et al., 2013) may 

also apply to VSVI because high-grade roads are often more 

accessible, more likely to attract on-site contribution behaviors, 

and thereby cover roads faster than low-grade roads. Regarding 

the statistical relationships between the volume number and 

coverage rate, we assume that the results vary by road type 

owing to the different travel speeds of the dominant travel 

modes across road types. To assess the above assumptions, the 

analysis observed the spatial expansion process at different 

contribution stages, considering the distance to the city center 

and road types, as well as exploring the growth rate of road 

coverage along with contribution volumes for different road 

types. Specifically, we explored imagery data on the Mapillary 

platform (launched in 2014), which was the first website to 
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share geotagged photos contributed by a crowd. With 

exponential growth in data, more than two billion street-level 

images from over 190 counties are available on this platform 

(https://www.mapillary.com/).  

 

2. Methods 

2.1 Overview of analysis 

Tokyo was selected as the study area because it is a hotspot for 

Mapillary activities in Japan. Specifically, we first conducted a 

qualitative observation of the spatial expansion of road 

networks containing Mapillary data at different contribution 

levels and across varying distances from the city center to 

examine the influence of location on place selection. We then 

quantified the volume of the two expansion patterns of 

exploration (defined as the contribution length for high-grade 

roads) and densification (defined as the contribution length for 

low-grade roads) to explore the sequential transition between 

them (Section 3.3). Furthermore, to estimate the rate of network 

growth, we fit linear, logarithmic, and logistic bivariate 

regression models using the number of contributions as the 

independent variable for all road segments and types (Section 

3.4). To note, the contribution volume was calculated based on 

the number of unique image IDs in the study area. The spatial 

coverage values (Di) at different contribution stages were 

calculated as the ratio of the total length of the road segments 

containing data (Lroad_data) to the total road length (Ltotal) in 

Tokyo for all road segments or specific road types. 

 

 
 

 

2.2 Data description 

2.2.1 Map imagery data: A total of 5,626,656 imagery data 

points were downloaded from the Mapillary API for Tokyo on 

the date of data collection, that is, July 18, 2022. To this end, a 

bounding box covering the entire area of Tokyo was created and 

all imagery data up to the retrieval date (July 16–18, 2022) were 

downloaded. GeoJSON files containing the coordinates of the 

image nodes, sequence ID of the image, image ID, and 

timestamp were then retrieved and transferred into point shape 

files in ArcGIS Pro 3.0.0 for further analysis. To facilitate 

temporal analysis, images without timestamps and those taken 

before the launch of Mapillary in 2014 were excluded. Images 

more than 55 m from the road centerline (the sum of half the 

maximum road width (35 m; based on road data) and the 

assumed GPS drift (20 m)) were removed because they were 

deemed to not have been captured along roads. Additionally, we 

excluded points located on railways that were not included in 

this study. These procedures were performed in ArcGIS using 

the “closest facility” tool to match the image points with roads. 

After these steps, 5,264,258 map points remained for analysis. 

 

2.2.2   Reference road data: Reference roads were used to 

evaluate the spatial distribution of the data and data attributes. 

The reference roads for evaluation were obtained from the 

centerline road data of the Digital Map (Basic Geospatial 

Information) 2021 provided by the Geospatial Information 

Authority of Japan. The roads were categorized into five groups: 

National Expressways, National Highways, Prefectural Roads, 

Municipal Roads, and Parkways/Garden Paths. Road segments, 

used as the unit of measurement for road length covered by data, 

were generated by dividing roads at intersections. However, for 

National Expressways, tunnels, and road segments exceeding 1 

km in length with few intersections, segmentation was 

performed at 100-meter intervals (a method commonly adopted 

in urban audit studies; Li et al., 2015; Li, 2021) to ensure 

comparability in segment length. After preprocessing, a total of 

767,228 road segments were used to construct a road network 

for data connections. The average length of each segment was 

52 m. After matching Mapillary points, 185,832 road segments 

were found to contain Mapillary data. 

 

3. Results 

3.1 Monthly growth of Mapillary contributions 

 

Figure 1 illustrates the development of Mapillary contributions 

in Tokyo in the form of continuous contributions during the 

study period. Most of these contributions were made after 2016. 

The Mapillary dataset for Tokyo reached more than one million 

contributions in March 2018, and five million contributions in 

December 2021. 

 

Figure 1. Monthly growth of Mapillary contributions in Tokyo. 

The upper row on the x-axis shows months. Values 

in brackets show example dates and total 

contributions at that date. 

 

3.2 Spatial coverage 

Based on the calculations performed in ArcGIS, the total length 

of the reference road network in Tokyo is 39,440.5 km. After 

more than eight years of contribution, the length of the 

segments containing Mapillary image data was 10,769 km, 

which was almost one-third of the total length (27.3%; Figure 2). 

In terms of road type, the highest road coverage was found for 

National Expressways (90.9%; Figure 3 (b)), followed by 

National Highways (90.3%; Figure 3 (c)) and Prefectural Roads 

(73.5%; Figure 3 (d)). The values were relatively low for 

Municipal Roads (24.0%; Figure 3 (e)) and Parkways/Garden 

Paths (16.7%; Figure 3 (f)). 
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3.3 Spatial expansion process 

Figure 4 shows the spatial expansion of the Mapillary street 

network in Tokyo, in parallel with an increase in the number of 

contributions (Nc). Generally, coverage gradually increased 

from the center of Tokyo (Tokyo Station) to its outskirts. In the 

early stage, when the total number of image contributions was 

less than two million (Figure 4 (a and b)), road network 

expansion primarily occurred within a 10 km radius from the 

city center, with only a small number of contributions beyond 

the range. In the later stages, when the contributions exceeded 

two million Figure 4 (c, d, and e), there were noticeably fewer 

contributions within the 10 km zone, whereas more 

contributions appeared in the 10-20 km range and– 20-50 km 

range.  

 

To quantitatively examine whether a similar pattern found in 

OSM (Corcoran et al., 2013; as described in Section 1) was 

observed for the VSVI, we calculated the percentage of the 

length of each road type among the road segments newly 

mapped at each Nc level. As shown in Figure 5, this percentage 

for high-grade road types (National Expressways, National 

Highways, and Prefectural Roads), which represent exploration, 

decreased from 43.5 to 9.4%, whereas the ratio for low-grade 

roads (Municipal Roads and Parkways/Garden Paths), 

representing densification, increased from 76.8 to 91.4% with 

an increase in Nc.  

 

3.4 Rate of network growth 

Regressions were carried out for all road segments and each 

road type using the number of image contributions as an 

independent variable and spatial coverage in Tokyo at 

corresponding contribution levels as the dependent variable. 

Table 1 and Figure 6 present the best-fitting models (selected 

based on Akaike Information Criterion values). For all road 

segments, the top model had a coefficient of 5.3, indicating an 

approximately 5.3% increase in coverage per million 

contributions (Figure 6 (a)). For National Expressways (Figure 

6 (b)), a logarithmic model provided the best fit, whereas a 

linear model was most suitable for other road types (Figure 6 

(c–f)), with coefficient values ranging from 3.1 for 

Parkways/Garden Paths (Figure 6 (f)) to 18.0 for National 

Highways (Figure 6 (c)).   

 

 
 

Figure 2. Spatial distribution of road segments with Mapillary data (red lines) and without Mapillary data (gray lines) for all 

road segments. 

(a) National Expressways (90.9%) (b) National Highways (90.3%) (c) Prefectural Roads (73.5%)

(d) Municipal Roads (24.0%) (e) Parkways/ Garden paths (16.7%)

Road segments containing data

Road segments without data

Tokyo

Prefectural boundary

 

Figure 3. Spatial distribution of road segments with Mapillary data (red lines) and without Mapillary data (gray lines) across all 

road types. 
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Figure 4. Spatial expansion process of the Mapillary road network at different levels of contributions 
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Figure 5. Percentages of newly mapped road lengths of road segments for different road types at different contribution levels. 

Table 1. Model parameters for the best-fitting regression models of road coverage with the number of street revisits as the 

independent variable. 

 

Road types Equation 

    Parameter Estimates 

R2 Sig. Const. B 

All road segments Linear 0.995 < 0.001 0.912 *** 5.259 *** 

National Expressways Logarithmic 0.934 < 0.001 67.282 *** 11.885 *** 

National Highways Linear 0.856 < 0.001 18.749 *** 17.951 *** 

Prefectural Roads Linear 0.98 < 0.001 3.098 *** 15.323 *** 

Municipal Roads Linear 0.998 < 0.001 0.195 *** 4.524 *** 

Parkways/ Garden Paths Linear 0.982 < 0.001 1.013 *** 3.149 *** 

Note.: *** p < 0.001 
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4. Discussion 

As a potential data source for streetscape information generated 

through citizen engagement to support data-driven urban policy-

making, this study addresses a key challenge in the application 

of volunteered street view imagery (VSVI): the uncertainty in 

its spatial distribution. To address this, we established a novel 

link between the contribution volume and the spatial 

distribution patterns.  

 

The results of the expansion process support our assumption 

that when the number of contributions is low in the early stage 

of VSVI development in a district, road segments with available 

data tend to be concentrated in the city center area. As the 

number of contributions increases, more road segments 

containing data are found on the outskirts. These results are 

consistent with those of previous studies, showing that higher 

spatial coverage is found in densely populated areas (Mahabir et 

al., 2020; Seto and Nishimura, 2023), which is thought to be 

due to a higher number of potential contributors. For spatial 

expansion on the outskirts (the Tama area in Tokyo), hotspot 

enclaves appeared randomly at different levels of contribution 

in addition to some major roads. This was likely due to the 

mapping events conducted by some organizations, such as the 

Mapillary community in Japan or for education in the field of 

GIS, as well as the personal preferences of some power users to 

achieve full data coverage in a specific area.  

 

In terms of road network expansion, a similar pattern was found 

in Mapillary and OpenStreetMap (Corcoran et al., 2013). 

Exploration (contributions to high-grade roads) tended to occur 

primarily at an earlier stage, whereas densification 

(contributions to low-grade roads) maintained a stable increase 

during the study period, leading to a later dominance. Unlike 

OpenStreetMap, a similar phenomenon observed in Mapillary 

was more likely driven by higher accessibility and traffic 

volume. The similarities in data-expansion patterns across 

different forms of crowdsourced data provide insights into the 

potential for identifying common mechanisms or patterns 

underlying the expansion processes of other similar datasets. 

 

Regarding the current state of spatial coverage, the results 

indicate that after nearly eight years of contributions in Tokyo, 

Mapillary—despite not achieving full road coverage—provides 

relatively comprehensive coverage on higher-grade roads. This 

level of coverage is comparable to that of Google Street View, a 

representative example of traditional street view imagery 

services. Notably, Google Street View has been reported to 

have an average spatial coverage of 90.5% across 45 small- and 

medium-sized cities in the U.S. (Kim & Jang, 2023). These 

findings suggest that even an unstructured, citizen-driven VSVI 

contribution approach can generate a dataset comparable to 

commercial SVI services, particularly for high-grade roads. As 

for the growth rate, differences were found between road types, 

as assumed. High-grade roads were best described using a 

logarithmic model with a high starting rate that decreased when 

a certain high level of coverage was reached. This later stage 

may indicate the completion of the mapping. In contrast, the 

relationship for low-grade roads is best described by a linear 

function with a stable growth rate.  

 

Differences between road types in this respect may be due to 

platform characteristics of VSVI mapping behavior, where 

volunteers must physically travel along roads to collect data. As 

a result, high-grade roads with greater accessibility tend to 

attract more contributors. The higher travel speeds and 

relatively shorter total length of these roads facilitate the rapid 

and long-distance expansion of VSVI data. Therefore, we 

suggest that although the number of contributions in an area has 

been widely used as a metric of the level of VSVI development 

in that area, studies/audits must account for the large differences 

between geographic and social environments and different road 

types. 

 

 

Figure 6. Regression models of the relationship between spatial coverage and number of contributions for each road type. The 

best-fit model is indicated in red. 
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Based on our analysis of road network growth on Mapillary 

platform, we proposed a novel proxy measure for evaluating the 

level of VSVI data availability–an essential requirements for 

smart city applications–based on its stages of development. 

Specifically, in the early stages, VSVI are more likely to capture 

information on high-grade roads. In contrast, coverage of low-

grade roads tends to emerge later and at a slower pace, typically 

following a spatial sequence from the city center to the outskirts. 

Furthermore, we offer several recommendations for VSVI 

platforms to improve spatial completeness. As contributions 

grow, areas frequently visited by citizens are likely to become 

well represented quickly, since contributors must physically 

visit locations to take photos. However, gaps in coverage–

particularly in areas or along road types with lower traffic 

volumes (e.g., suburban areas or low-grade roads)–should be 

addressed by increasing user motivation or offering targeted 

incentives. Potential strategies include game-like challenge 

tasks and reward systems calibrated to the difficulty of coverage.   

 

Our study had some limitations. First, the method used to locate 

points on roads relied on the closest distance, which may have 

introduced map-matching errors, especially at intersections and 

in areas where roads overlap. The 55-meter threshold may have 

included points that were not on roads or excluded valid ones. 

Additionally, analyzing the relationship between coverage and 

contribution alone does not provide a proxy measure that can be 

used to evaluate coverage in other regions. Future studies 

should explore the role of the ratio of contribution to area size 

or total road length in determining data completeness. Finally, 

patterns of duplicate posting, which tend to enhance the spatial 

and temporal resolution of streetscape information (Zheng and 

Amemiya, 2024), should be examined further in future work.  

 

5. Conclusions 

This study presents an initial analysis of the relationship 

between contribution volume and street network growth in 

VSVI. Specifically, we identify the spatial characteristics of 

network expansion on the Mapillary platform, highlight shifts in 

dominant patterns, and reveal the relationship between 

contribution volume and growth in spatial coverage across 

different road types. These findings provide a theoretical basis 

for predicting VSVI data availability in smart city applications, 

taking into account road types and regional characteristics at 

different stages of development. The results are expected to 

promote the broader use of such data in practical applications 

and enhance our understanding of the effectiveness of citizen 

participation in data collection. 
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