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Abstract

Accurate building change detection in high-resolution satellite imagery is critical for urban planning, disaster response, and smart
city applications. Existing methods often rely on large labeled datasets or handcrafted features, limiting scalability across diverse
geographic regions. In this paper, we propose a hybrid framework that integrates a pretrained Vision-Language Model (Grounding
DINO) with a lightweight CNN-Transformer architecture to perform text-guided building change detection. Without any fine-
tuning, Grounding DINO generates semantic building masks from bi-temporal image pairs using the text prompt “building,” which
are used to amplify structural features in a ResNetl18 backbone. A custom Transformer encoder with dual spatial and channel
attention refines these features to capture both local details and global context. On the LEVIR-CD dataset, our framework improves
Recall by +3.98%, F1-Score by +3.01%, and Intersection over Union (IoU) by +4.70% compared to a CNN-Transformer baseline.
These results highlight the potential of vision-language models to enhance remote sensing workflows without extensive domain-

specific fine-tuning.

1. Introduction

Urban landscapes evolve rapidly, making the detection of build-
ing changes in high-resolution satellite imagery critical for urban
planning, smart city development, and disaster response. Ac-
curate and timely change detection enables monitoring of in-
frastructure growth, assessing post-disaster impacts, and sup-
porting sustainable urban development initiatives. However,
traditional approaches to building change detection, such as
those relying on handcrafted features or shallow learning al-
gorithms, often fail to capture the complex spatio-temporal pat-
terns present in remote sensing data.

Recent advancements in deep learning, particularly convolu-
tional neural networks (CNNs) and Transformer architectures,
have significantly improved the ability to model these intric-
ate relationships. At the same time, Vision-Language Models
(VLMs) have emerged as powerful tools for integrating tex-
tual cues with visual data, enabling improved contextual under-
standing and focusing on task-relevant features. Despite these
advances, adapting pretrained VLMs to remote sensing tasks
remains challenging due to differences between natural images
and satellite data, the need for domain-specific fine-tuning, and
the scarcity of labeled datasets for supervised learning.

To address these challenges, this paper introduces a novel frame-

work that integrates a pretrained Vision-Language Model (Ground-

ing DINO) with a lightweight CNN-Transformer architecture
for building change detection in satellite imagery. Grounding
DINO generates semantic building masks from bi-temporal im-
age pairs using the text prompt “building.” These masks are
then used to amplify structural features extracted by a ResNet18
backbone (He et al., 2016), while a custom Transformer en-
coder with dual spatial and channel attention mechanisms cap-
tures both local details and global context.

This study investigates whether integrating a pretrained Vision-
Language Model (VLM), specifically Grounding DINO, with
a lightweight CNN-Transformer framework can enhance build-
ing change detection in high-resolution satellite imagery without

extensive fine-tuning or large labeled datasets. Specifically, we
ask:

Does incorporating VLM-guided masking and dual attention
mechanisms into a CNN-Transformer framework improve build-
ing change detection accuracy compared to a baseline model?

We address this question through experiments on the LEVIR-
CD dataset, including ablation studies and threshold sensitivity
analyses. Results show that incorporating VLM-guided mask-
ing improves Recall, F1-Score, and loU over a CNN-Transformer
baseline, demonstrating the potential of Vision-Language Mod-
els to enhance change detection pipelines without domain-specific
fine-tuning.

1.1 Contributions
The main contributions of this work are summarized as follows:

We propose a text-informed preprocessing strategy that em-
ploys Grounding DINO’s pretrained weights to generate build-
ing masks without domain-specific fine-tuning, adapting Vision-
Language Models for remote sensing change detection.

We design an input amplification approach that enhances build-
ing regions in satellite imagery, guiding a hybrid ResNet18-
Transformer network to focus on structural changes.

We conduct extensive evaluations, including ablation studies
and sensitivity analyses, demonstrating that the proposed frame-
work achieves better results on the LEVIR-CD dataset while
minimizing reliance on large labeled datasets.

This approach provides a scalable and adaptable solution for
urban monitoring and Earth Observation(EO) applications.

2. Related Works
2.1 Deep Learning Based Change Detection

Building change detection using remote sensing has been a chal-
lenging and hot topic in the field of earth observation. With
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the advent of deep learning, Convolutional Neural Networks
(CNNs5s) have markedly improved building change detection by
learning hierarchical feature representations. In particular, Sia-
mese CNN architectures—such as FC-Siam-Diff (Daudt et al.,
2018) and U-Net based models have been successfully applied
to remote sensing change detection tasks (Peng et al., 2019),
(Chen and Shi, 2020).

Despite these advances, CNNs struggle to capture long-range
dependencies and global context due to their limited recept-
ive fields, hindering comprehensive change analysis. Attention-
based Transformer architectures, including Vision Transformers
(ViT), address this by blending local and global information
(Vaswani and ..., 2017), (Dosovitskiy et al., 2020). Using atten-
tion to model distant relationships, they improve image under-
standing and feature extraction, enabling more effective change
detection (Chen et al., 2022).

Hybrid models that combine CNNs with Transformers (Bazi
et al., 2021) effectively fuse local features with global context,
thereby improving multi-scale feature extraction. In addition,
hierarchical transformers such as the Swin Transformer (Liu et
al., 2021), (Zhang et al., 2022) have further advanced remote
sensing applications by efficiently modeling multi-scale contex-
tual features through shifted window-based attention. Despite
these advances, existing methods often require large amounts
of labeled data, extensive fine-tuning, and may lack the object-
specific focus needed for precise change detection.

2.2 Vision Language Models in Remote Sensing

Vision-language models (VLMs) have transformed many com-
puter vision tasks by effectively combining visual and textual
information. For instance, CLIP (Radford et al., 2021) aligns
images with text descriptions in natural scenes, while Ground-
ing DINO (Liu et al., 2023) uses a transformer-based design
to directly incorporate text prompts for open-set object detec-
tion. Despite these advances, remote sensing applications have
mostly relied on vision-only methods for tasks such as satellite
change detection (Chen and Shi, 2020) and land type classific-
ation (Bazi et al., 2021).

In remote sensing, models like SAM (Kirillov et al., 2023), de-
veloped by Meta Al, have been adapted for segmentation tasks.
SAM achieves zero-shot generalization through promptable in-
teractive inputs, such as points, bounding boxes, and masks. For
example, it has been used to segment land cover using simple
prompts (e.g., “forest” or “urban”) without retraining, as seen
in tools like samgeo (Wu and Osco, 2023). Unlike SAM’s in-
teractive prompts, Grounding DINO directly leverages text for
zero-shot detection, suiting automated change tasks. However,
adapting vision foundation models (VFMs) to remote sensing
data is challenging because they are originally trained on nat-
ural images. These models often require extensive fine-tuning
due to lower resolution and inconsistent datasets, making the
process computationally expensive and data-intensive (Diab et
al., 2025).

Recent advancements have started to leverage the multimodal
strengths of VLMs for change detection in satellite imagery.
For example, ChangeCLIP (Dong et al., 2024) introduced a
framework that uses CLIP’s multimodal features to enhance
building change detection via text prompts with minimal fine-
tuning. Qiu et al. (Qiu et al., 2024) further refined this approach
by integrating a transformer-based fusion of optimized prompts

and image features, and SegCLIP (Zhang et al., 2024) demon-
strates how CLIP can be incorporated into semantic segmenta-
tion tasks to effectively merge textual and visual information.

While methods such as ChangeCLIP and SegCLIP have shown
promising results in leveraging multimodal features, they of-
ten require domain-specific adaptation or optimized prompt en-
gineering for remote sensing applications. In contrast, our ap-
proach employs pretrained Grounding DINO in a zero-shot set-
ting, demonstrating its feasibility without task-specific fine-tuning.

To our knowledge, our work is the first to employ Grounding
DINO in remote sensing building change detection. By using
its zero-shot capabilities, our method avoids domain-specific re-
training and introduces a simple hybrid approach that uses pre-
trained VFMs to guide a Transformer model in detecting build-
ing changes in satellite imagery.

3. Methodology

In this section, we first introduce the base model, a simple and
lightweight hybrid Transformer with a ResNet18 backbone (He
etal., 2016), designed for building change detection using bench-
mark EO dataset. Next, we provide a detailed description of
our proposed method to employ pretrained Grounding DINO
model (Liu et al., 2023). This will enhance the base model and
improve results without requiring fine-tuning or domain adapt-
ation.

3.1 Base Model Architecture

Our base model is a lightweight CNN-Transformer hybrid, in-
tegrating a ResNet18 backbone (He et al., 2016) with a custom
Transformer encoder for efficient building change detection.
The ResNetl8, pretrained on ImageNet, extracts multi-scale
spatial features from image pairs (epochl, epoch2) through its
convolutional layers (up to conv4_x), yielding feature maps with
512, 256, 128, 64, and 3 channels. These features are dif-
ferenced to capture temporal changes, then reshaped into se-
quences for Transformer processing. The custom Transformer
encoder employs multi-head self-attention (8 heads) to model
spatial dependencies and a channel attention mechanism in-
spired by the Convolutional Block Attention Module (CBAM)
(Woo et al., 2018) to refine feature importance across channels.

The spatial attention, via multi-head self-attention, computes
weights over spatial positions. For input z € REXE*XC (where
L is sequence length, B is batch size, C is feature dimension),
it calculates:

T
Attention(Q, K, V') = softmax (%) V, 1)
k

where Q = aWq, K = Wk, V = Wy are projections
(Wa, Wi, Wy € RE*4) and dy = C/8 is the head dimen-
sion. This focuses on spatially relevant change regions.

The channel attention weights features using global pooling.

For input z € RE*HW) it computes:
CA(z) = o(a+ m), 2)
a = FC2(ReLU(FC; (AvgPool(x)))), 3)
m = FCz(ReLU(FC; (MaxPool(z)))), 4

where FC; : C — (C/16, FC2 : C/16 — C, and o is the
sigmoid function. These weights enhance informative channels.
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Figure 1. Flowchart of the proposed methodology for building change detection.

Features are upsampled and refined to output a 256x256 change
map.

3.2 VFM Enhancement

To enhance our base CNN-Transformer, we employ Ground-
ing DINO (Liu et al., 2023), which uses a Swin-T backbone
to extract multi-scale image features, a BERT text encoder for
“building” prompt embeddings, and a DINO-based decoder with
cross-modal attention (Kirillov et al., 2023) to produce bound-
ing boxes and logits. For each image pair (1, I2) from epochl

and epoch2, we process the images with Grounding DINO to
generate building masks, converting these outputs into binary
masks M7 and M, based on confidence scores exceeding 0.5.
This 0.5 threshold was chosen empirically to balance preci-
sion and recall, following standard practice in object detection.
These masks are defined as:

max(¢;) if (z,y) € By, £; > 0.5,
0 otherwise,

Mi(xvy) = { (5)

where B; are bounding boxes, ¢; are logits for “building,” and

i =1, 2 denotes epochs. The change mask is computed as:
MA:‘Ml_MQL (6)

resized to match ResNet18 feature dimensions (e.g., 8x8) us-

ing bilinear interpolation. Feature differences from the CNN
(Fa = F1 — F») are amplified:

FA =Fa - (1+ M), €)

where M} is the resized change mask. This amplification em-
phasizes building-related changes, leveraging pretrained VFM
knowledge to boost performance without domain adaptation.

3.3 Loss Function

To train our model effectively for building change detection, we
employ a combined loss function that balances binary cross-
entropy (BCE), Dice loss, and focal loss to address class imbal-
ance in the LEVIR-CD dataset (Chen and Shi, 2020). The BCE
loss is defined as:

N
Loce =~ [ lospi) + (1 - ) log(1 —p)], ®

i=1

where p; = o(9;) is the sigmoid output and N is the total num-
ber of pixels.

The Dice loss, which enhances overlap accuracy, is given by:

Loee =1 — 2D P ©)
Zi:l pi + Zi:l Yite
with € = 107° ensuring stability.
The total loss is:
L = wpceLBcE + Wpice Lice; (10

with wecg = wpice = 1.0.

Figure 1 illustrates the complete methodology, from bi-temporal
image input through ResNet18 feature extraction, VFM enhance-
ment with Grounding DINO, feature amplification, Transformer
processing, and decoder upsampling, including the training loop
with costume loss function.

4. Experiments
4.1 Dataset

We use the LEVIR-CD dataset (Chen and Shi, 2020), a bench-
mark for building change detection in high-resolution satellite
imagery. It comprises 637 pairs of RGB images captured at
different times between 2002 and 2018, covering various re-
gions in Texas, USA, to study building-related changes. Each
pair is originally 1024x1024 pixels, with corresponding binary
change masks. To align with our model’s input requirements
and enhance sample diversity, we resize images and masks to
256x256 pixels. Assuming each 1024x1024 pair is cropped
into four 256x256 sub-pairs, this yields 2548 pairs, split into
training (70%, 1780 pairs), validation (10%, 256 pairs), and test
(20%, 512 pairs) sets. This resizing enhances the detail level for
detecting fine building changes.

4.2 Training Setup

Training was performed using PyTorch on an NVIDIA GeForce
RTX 3090 GPU with 24GB memory for efficient batch pro-
cessing. We applied data augmentation, including random ho-
rizontal and vertical flips (probability 0.5), to enhance train-
ing robustness and generalization. The model was trained with
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Adam optimization (1r=0.001, weight_decay=0.00001) and
a StepLR scheduler (step size 5, gamma 0.1), using the com-
bined loss from Section 3. Training ran for 60 epochs, with the
best model selected based on validation loss.

4.3 Evaluation Metrics

We assess performance using standard change detection met-
rics: Overall Accuracy (OA), Precision, Recall, F1-Score, and
Intersection over Union (IoU). For predictions § and ground
truth y (both {0, 1} per pixel), with true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN),
the formulations are:

OA:TP+$1I:I—:11;II\DI+FN’ (i
Pre — %EFP, (12)
Rec = TP%N, (13)
ToU = ﬁ (15)

5. Results and Discussion

We evaluated the impact of integrating Grounding DINO’s text-
guided enhancement into our CNN-Transformer framework by
comparing our full VFM model to a baseline CNN-Transformer
on the LEVIR-CD test set. As shown in Table 1, the baseline
model achieved an Overall Accuracy (OA) of 98.80%, Preci-
sion of 88.11%, Recall of 82.80%, F1-Score of 85.37%, and
an Intersection over Union (IoU) of 74.48%. With the addition
of Grounding DINO’s enhancement, our full model improved
these metrics to an OA of 99.03%, Precision of 90.04%, Recall
of 86.78%, F1-Score of 88.38%, and IoU of 79.18%. These im-
provements demonstrate that text-guided feature amplification
significantly boosts the detection of building changes, with F1-
Score and IoU serving as key metrics that balance precision and
recall while accurately measuring spatial overlap.

Table 1. Performance on LEVIR-CD test set (%) Base:
CNN-Transformer, Full: VFM-Enhance.

Model OA P R F1 TIoU
FC-Siam-Diff 98.11 74.38 80.00 86.55 66.68
STANet 98.46 91.21 85.79 80.99 75.12
CDNet 98.67 85.08 86.70 88.38 76.52

Our Base model 98.80 88.11 82.80 85.37 74.48
Our Full model  99.03 90.04 86.78 88.38 79.18

Furthermore, when compared to other reported methods in the
literature (Qiu et al., 2024), our approach exhibits competit-
ive performance. For example, while FC-Siam-Diff achieves
an IoU of 66.68%, our full model improves IoU by over 12 per-

centage points. Although STANet shows high precision (91.21%),

its overall F1-Score (80.99%) and IoU (75.12%) are lower than
those of our method. Similarly, CDNet’s performance, with
an F1-Score of 88.38% and an IoU of 76.52%, is comparable,
yet our model provides a balanced enhancement across all met-
rics. These comparisons highlight the effectiveness of our text-
guided enhancement in achieving robust and competitive results
for building change detection.

An ablation study (Table 2) further isolates the contributions
of individual components. Removing the VFM enhancement
drops the IoU to 74.47%, nearly matching the baseline perform-
ance, while disabling the channel attention module reduces the
ToU further to 68.31%. These results confirm that both the text-
guided enhancement and the channel attention module are crit-
ical to achieving higher detection accuracy.

Table 2. Ablation study on LEVIR-CD test set to evaluate the
effect of channel attention and VFM enhancement (%).

Configuration IoU Fl

Full Model 79.18 88.38
w/o Channel Attention 74.47 85.38
w/o VEM Enhancement 68.31 81.16

Qualitative results support these quantitative findings too. As il-
lustrated in Figure 2, our framework effectively highlights building-
related changes while suppressing irrelevant background differ-
ences. White pixels correspond to true positives, while red and
green pixels denote false positives and false negatives, respect-
ively. Notably, the model demonstrates strong performance in
suburban areas with sparse construction but exhibits minor in-
accuracies in dense urban cores where small rooftop structures
are partially occluded.

Leveraging pretrained models such as Grounding DINO and
SAM for building change detection in satellite imagery intro-
duces challenges due to domain mismatch between their general-
purpose pretraining (e.g., on datasets like COCO or SA-1B) and

the specific characteristics of remote sensing data. Without fine-
tuning, these models may produce inaccurate building masks—such
as missed detections or false positives—which can propagate
errors into the downstream change detection pipeline and de-
grade overall accuracy. To mitigate these issues, we apply strategies
like weighted integration of VLM outputs and confidence threshold-
ing, which limit the influence of potentially noisy masks on
feature differences. This approach enhances robustness and re-
duces dependency on fine-tuning, offering a balance between
computational efficiency and detection performance, albeit with
some trade-offs in precision compared to fully customized mod-

els.

Overall, our experimental results validate the effectiveness of
incorporating pretrained vision-language models, specifically
Grounding DINO, into a CNN-Transformer framework for change
detection in satellite imagery. The integration of text-guided
feature amplification not only enhances overall performance but
also contributes to more reliable and interpretable change maps.

6. Conclusion

In this paper, we presented a hybrid change detection frame-
work that integrates a pretrained Vision-Language Model (Ground-
ing DINO) with a CNN-Transformer architecture for building
change detection in high-resolution satellite imagery. By lever-
aging text-guided semantic masks, our approach amplifies struc-
tural features and focuses the network on task-relevant regions
without requiring extensive domain-specific fine-tuning. Exper-
iments on the LEVIR-CD dataset demonstrate notable improve-
ments over a baseline CNN-Transformer model, with gains in
Recall, F1-Score, and IoU. Ablation studies further confirm the
critical contributions of both the vision-language enhancement
and the dual attention mechanisms to these improvements.
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Figure 2. Qualitative results: (a) epochl image, (b) epoch2 image, (c) ground truth overlay on the resulting change map. white: TP,
red: FP, green: FN

While the proposed framework shows promising results, it also
has some limitations. The current evaluation is limited to a
single benchmark dataset, and additional experiments are ne-
cessary to validate generalizability across diverse geographic
regions, imaging conditions, and sensor types. Furthermore,
relying on pretrained Vision-Language Models introduces po-
tential domain mismatch challenges, particularly in dense urban
areas or under varying illumination, which may affect mask ac-
curacy and downstream performance.

Future work will explore strategies for fine-tuning VLMs on
remote sensing imagery to mitigate domain gaps, assess com-
putational efficiency on larger-scale datasets, and extend the
framework to other change detection tasks, such as infrastruc-
ture monitoring and land cover analysis. Additionally, incorpor-
ating temporal sequences and ancillary geospatial information
could further improve robustness and enable more comprehens-
ive urban monitoring applications.
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