
A Method for Extracting Functional Areas Specialized for Bicycle Usage 

 
 

Jiwon Lee 1, Wonjong Gong 2, Hyeongwoo Kim 3, Jiyoung Kim 4 

 
1 Social Eco Tech Institute,  Konkuk University, Seoul 05022, Republic of Korea – vert802@konkuk.ac.kr 
2 Social Eco Tech Institute,  Konkuk University, Seoul 05022, Republic of Korea – gwjgwj@konkuk.ac.kr 

3 Social Eco Tech Institute,  Konkuk University, Seoul 05022, Republic of Korea – kimhyeongwoo@konkuk.ac.kr 
4 Social Eco Tech Institute,  Konkuk University, Seoul 05022, Republic of Korea – elliekim@konkuk.ac.kr 

 

 

 

Keywords: Bicycle Usage, Functional Area Extraction, POI Embedding, Network Voronoi Diagram. 

 

 

Abstract 

 

The extraction of urban functional areas plays a critical role in data-driven policymaking. While previous studies have primarily 

focused on general-purpose functional area extraction, this study proposes a novel methodology for identifying bicycle-specialized 

functional areas by integrating spatial network analysis with semantic POI embedding. Using Seoul, South Korea, as a case study, we 

first constructed linear spatial units by applying a network Voronoi algorithm to the city’s bicycle road network and public bicycle 

station data. Next, POI data were classified according to bicycle trip purposes and embedded using a Word2Vec-based approach to 

capture high-dimensional semantic features. These features were then aggregated for each spatial unit, with weights assigned based on 

POI type and proximity to bicycle roads. Finally, K-means clustering was conducted to extract distinct functional areas optimized for 

bicycle usage. The experimental results identified four unique cluster types, including residential-centered and park-oriented zones, 

demonstrating the effectiveness of the proposed methodology in supporting bicycle-friendly urban planning. This approach offers 

valuable insights for public bicycle redistribution, infrastructure deployment, and sustainable mobility policy. 

 

 

1. Introduction 

1.1 Research Background 

The extraction of urban functional areas is crucial as foundational 

data for decision-making across various fields such as housing, 

transportation, and environmental policy. In recent years, with 

the increasing accessibility of data such as Points of Interest (POI) 

and satellite imagery, along with advances in AI technologies, 

research on automatically identifying urban functional areas has 

grown significantly. However, previous studies have rarely 

extracted functional areas for specific purposes. Most have 

focused on delineating the entire urban landscape from a 

generalized perspective. Yet, cities are complex and organically 

structured systems, and the perception of space can vary 

depending on one’s perspective. For instance, functional 

characteristics emphasized in a neighbourhood may differ 

depending on whether an individual is a car user or a public 

transit user. An area physically close to a subway station may be 

seen as highly accessible by public transit users but may be 

perceived as congested and inconvenient by car users due to 

heavy pedestrian traffic. 

Taking these research questions into account, this study proposes 

a methodology for extracting functional areas specialized for 

bicycle usage. As bicycles continue to gain attention as an 

environmentally friendly mode of transport—particularly within 

the context of the growing sharing economy—their societal 

importance is increasing. Therefore, the extraction of functional 

areas tailored to bicycle usage can be highly valuable for 

policymaking, such as bicycle redistribution and the installation 

of related infrastructure. 

To achieve this, we propose a method that defines spatial units 

from the perspective of bicycle users and assigns weights to POIs 

that are closely related to bicycle usage. Whereas previous 

research has commonly used polygon-based spatial forms—such 

as administrative boundaries or grids—this study introduces 

linear spatial units based on the bicycle road network. 

Additionally, POI types that promote bicycle use are weighted 

according to findings from prior studies to ensure they are 

appropriately reflected in the extraction process. 

 

 

1.2 Literature Review 

Traditional methods for extracting urban functional areas 

primarily rely on direct surveys, including field investigations 

and resident interviews (Zhai et al., 2019). However, these 

approaches are time-consuming and costly, and they are limited 

in capturing the dynamic and rapidly changing nature of urban 

environments. With the recent proliferation of urban-related data 

and advancements in AI technologies capable of processing such 

data, there has been a growing trend toward utilizing diverse data 

sources for urban functional area extraction. 

The data used for this purpose can be broadly categorized into 

remote sensing data and geospatial big data. Remote sensing data 

can reflect the physical appearance of a city in near real-time, and 

the rapid progress of image-related AI technologies has 

facilitated numerous studies in this domain. Nevertheless, urban 

functional areas cannot be fully explained by mere land use 

distribution alone. They are often closely associated with internal 

socio-economic activities within a space. As a result, there has 

been an increasing focus on studies utilizing geospatial big data, 

which include not only physical vector data but also unstructured 

data such as trajectory data from various modes of transportation 

and social media data. 

Due to this wide applicability, recent studies have also explored 

the integration of remote sensing data and geospatial big data for 

urban functional area extraction (Qian et al., 2020; Wang and 

Feng, 2024). The extraction methodologies differ depending on 

the type of data employed. Among studies using geospatial big 

data—such as POI data—methods commonly include density-

based approaches (Deng and He, 2022; Luo et al., 2023) and 

semantic information extraction based on Word2Vec (Zhai et al., 

2019; Zhang et al., 2021; Niu and Silva, 2021; Qin et al., 2022; 
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Wang and Feng, 2024). In the latter case, semantic features are 

first extracted and then similar types are grouped using clustering 

methods to delineate urban functional areas. 

Thus, recent research trends focus less on the novelty of 

algorithms themselves and more on improving and integrating 

algorithms to extract more precise semantic information. Table 1 

summarizes and compares related studies in terms of data sources, 

methodologies, and spatial units used for urban functional area 

extraction.   

 
 

Author Data Method Spatial Unit 

Zhai et al. 

(2019) 

POI Place2vec 

K-means 

Administrative 

district 

Qian et al. 

(2020) 

RS image 

Taxi GPS 

YOLO V3 

K-means++ 

KNN 

Road block 

Zhang et al. 

(2021) 

POI Glove 

K-means++ 

TAZ 

Niu and Silva 

(2021) 

POI Doc2vec 

K-means 

Administrative 

district 

Hu et al. 

(2021) 

Taxi GPS 

POI 

GCNN Road segment 

Deng and He 

(2022) 

Building  

POI 

LDA 

SVM 

Voronoi 

diagram 

Qin et al. 

(2022) 

POI Word2vec 

Random 

forest 

Road block 

Luo et al. 

(2023) 

POI Kernel 

density 

K-star 

Grid 

Liu et al. 

(2023) 

Taxi GPS 

POI 

CA-RFM Road block 

Wang and 

Feng 

(2024) 

RS image 

Building 

POI 

Social media 

VGG16 

BERT 

Random 

forest 

Road block 

(Parcel) 

Table 1. Comparison of Related Work 

 

As shown in Table 1, the spatial units employed for urban 

functional area extraction vary across studies. Given that urban 

spaces are continuous and complex, it is essential to subdivide 

them into discrete spatial units for analysis. In this context, 

accurately defining spatial units and assigning appropriate 

functions are critical for robust analytical results. In previous 

studies on urban functional area extraction, administrative units 

(Zhai et al., 2019; Zhang et al., 2021; Niu and Silva, 2021) and 

block units delineated by road boundaries (Qian et al., 2020; Qin 

et al., 2022; Liu et al., 2023; Wang and Feng, 2024) have been 

widely adopted. More recently, however, diverse spatial units 

such as Voronoi diagrams (Deng and He, 2022), road segments 

(Hu et al., 2021), and grids (Luo et al., 2023) have also been 

utilized. 

Each type of spatial unit has its own advantages and 

disadvantages depending on the data used and the analytical 

methodologies applied. Administrative units, for example, have 

the advantage of compatibility with official demographic and 

statistical data collected at the national level. However, they may 

fail to capture actual human mobility patterns and overlook 

activities occurring near administrative boundaries. 

Road-block-based units, which are subdivided based on road 

networks, reflect the natural boundaries of urban spaces. They are 

advantageous in that they can better represent urban activity 

structures and are intuitive for spatial interpretation. Nevertheless, 

their effectiveness depends heavily on the accuracy and 

resolution of road network data (Du et al., 2024). 

Other units, such as Voronoi diagrams and grids, are structurally 

simple and easy to construct, making them suitable for large-

scale datasets. However, they have limitations in that they do not 

necessarily account for the specific characteristics of the data or 

actual human activity areas. 

To address these challenges, Deng and He (2022) proposed a 

method for deriving spatial units that considers these limitations. 

They pointed out that previous studies often relied on overly large 

spatial units, such as parcels or traffic analysis zones (TAZs), 

which tend to overlook the fine-grained characteristics of urban 

areas and may introduce biases into research findings. To 

mitigate this issue, they introduced a spatial partitioning 

approach using Voronoi diagrams aimed at capturing human 

activity-centered functional areas. Their proposed method 

divides space using Voronoi diagrams but also takes into account 

buildings and roads—critical elements of human activity—when 

defining analytical units. This approach enables the extraction of 

functional areas that more accurately reflect actual zones of 

human activity. 

These issues related to spatial units are also closely linked to the 

data utilized in functional area extraction. In particular, some 

studies have employed trajectory data of transportation modes to 

better account for actual human mobility when delineating 

functional areas (Qian et al., 2020; Hu et al., 2021; Luo et al., 

2023). In these cases, spatial units are primarily derived based on 

roads. However, most studies have not directly used individual 

road segments but instead have divided the space into blocks 

based on the road network. 

Hu et al. (2021), however, addressed this research gap by 

classifying functional areas at the road segment level. They 

analogized road segments to "words" and taxi trajectories to 

"documents," and trained a Word2Vec-based model to 

semantically embed each segment into high-dimensional vectors. 

Furthermore, they labeled the function of each road segment 

using surrounding POI data, and finally utilized a Graph 

Convolutional Neural Network (GCNN) model to predict the 

function of each segment. This study is significant in that it 

extracted functional areas directly at the road segment level, 

thereby reflecting the characteristics of actual taxi trajectory data 

where the data are generated. Nevertheless, the study has 

limitations, as it relied solely on taxi trajectory data for extracting 

semantic information from road segments. The POI data they 

used served only as labeling data for road function prediction, 

and even then, the POIs were simply categorized into three types: 

commercial, public, and transportation. Such coarse 

categorization is insufficient to fully capture the complexity of 

urban functions. 

In this context, the present study introduces several contributions 

that differentiate it from prior research.  

First, unlike previous studies that aimed to classify functional 

areas for the entire city from a general perspective, this study 

focuses on identifying functional areas specialized for bicycle 

usage. The classification of urban functional areas is highly 

valuable as foundational data for various policy decisions. 

Specifically, the identification of bicycle-specialized functional 

areas can directly support decision-making related to bicycle 

policies. For instance, areas classified as residential-centered 

bicycle usage zones could be expected to have high bicycle 

demand during morning commuting hours and bicycle surpluses 

in the evening. Such insights could inform strategies for bicycle 

redistribution and station rebalancing. 

Second, to extract bicycle-specialized functional areas, this study 

proposes a novel methodological framework distinct from 

existing approaches. While most previous studies have used 

block-based spatial units, this study introduces a linear, network-

based spatial unit that considers bicycle road accessibility. By 

applying a network Voronoi algorithm based on the locations of 
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public bicycle stations, we subdivided the accessible road 

segments to define spatial units. Additionally, when extracting 

semantic information from POI data, we improved the algorithm 

by assigning weights to POI types that promote bicycle usage, 

thereby enabling the derivation of semantic features that more 

accurately reflect bicycle-related functions. 

 

 

2. Methodology 

 

This study aims to extract functional areas specialized for bicycle 

usage by first defining road-based spatial units that reflect bicycle 

usage patterns. To identify the function of each spatial unit, POI 

data with socially meaningful classifications were embedded 

using a Word2Vec-based method, from which high-dimensional 

semantic features were extracted. Finally, POI data were 

aggregated at the spatial unit level to extract functional areas 

tailored to bicycle usage. The overall research framework is 

illustrated in Figure 1. 

 

 

2.1 Road-Based Spatial Units Reflecting Bicycle Usage 

To extract urban functional areas specialized for bicycle usage, it 

is essential to define spatial units based on the actual roads where 

bicycle activity occurs. To achieve this, the locations of bicycle 

stations were first geocoded, and a network Voronoi diagram was 

applied to partition the accessible road segments for each station. 

While a conventional Voronoi diagram divides a plane by 

identifying regions closest to a set of seed points using Euclidean 

distance, a network Voronoi diagram instead uses network 

distances to determine proximity. Okabe et al. (2008) defined the 

network Voronoi diagram as the union of network Voronoi 

subsets, which can be formally expressed as Eq. (1). 

 

 

 

 

 

 

 

(1) 

 
  

where  Vor = network Voronoi diagram 

 Vori = network Voronoi subset 

 p = random point 

 pi = general point 

                ds (p, pi) = shortest distance on the network  

between points p and pi 

 n = number of generated points on the network 

 

Based on this equation, the bicycle road network was divided 

using the positions of bicycle stations as reference points. The 

bicycle road network comprises nodes and edges. First, for each 

bicycle station, the closest node was identified and set as the 

center node. Subsequently, edges connected to these nodes were 

classified. If an edge was connected to nodes belonging to the 

same Voronoi cell, it was assigned a single value corresponding 

to that cell. However, if an edge connected nodes belonging to 

different cells, the edge was split, and each segment was assigned 

the corresponding cell value. 

 

 

2.2 Semantic Feature Extraction Using POI Data 

To identify the functional characteristics of each spatial unit, it is 

necessary to extract semantic information from POI data that 

contain rich attribute information. For this purpose, we 

constructed a Word2Vec-based learning model following the 

approach proposed by Zhai et al. (2019). First, POI types were 

categorized according to bicycle trip purposes, based on publicly 

available data. Next, to create a training dataset, we formed pairs 

of central POIs and neighboring POIs. Specifically, for each 

central POI, the k nearest POIs were designated as neighboring 

POIs, forming context pairs. To enhance the model's ability to 

capture semantic similarity, the dataset was augmented so that 

POI types located closer in actual distance were more likely to be 

recognized as semantically similar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1. Research flow 
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This training dataset was then used to train a Skip-gram model of 

Word2Vec, which predicts surrounding words (neighboring POIs) 

from a given central word (central POI). The model was trained 

using a cross-entropy loss function, which measures the 

difference between the predicted probability distribution and the 

true distribution. Finally, a softmax function was applied to 

normalize the output values between 0 and 1, converting them 

into probabilities. As a result, each POI type was represented as 

a vector, and these vectors encapsulate the semantic information 

of each POI type. 

 

 

2.3 Extraction of Bicycle-Specialized Functional Areas 

Finally, to extract functional areas specialized for bicycle usage, 

each spatial unit was aggregated by assigning weights based on 

distance and POI type. To match point-based POIs to linear 

spatial units, the distance from each POI to the spatial unit was 

considered, with higher weights assigned to POIs located closer 

to the spatial unit. In addition, following the findings of Zhao et 

al. (2020), POIs classified as "Park" and "Transportation" were 

identified as having a positive influence on bicycle usage and 

were thus assigned additional weights. Ultimately, the weighted 

semantic information of POI types was aggregated for each 

spatial unit, and K-means clustering was performed to classify 

the functional areas. 

To characterize the identified functional areas, each cluster was 

further analyzed using POI density and POI enrichment factor. 

POI density indicates the dominant POI type within a given 

cluster, while the POI enrichment factor enables comparisons of 

whether a certain POI type appears in relatively higher or lower 

proportions compared to other areas. The calculation methods for 

these indices are provided in Eq. (2) and Eq. (3). 

 

𝑃𝐷 = 𝑁𝑖
𝑞

/𝐴𝑖                                                                          (2) 

 

where   𝑁𝑖
𝑞
= number of POIs in category q in the cluster i 

                      Ai = total area of the cluster i 

 

𝐸𝐹 = (𝑁𝑖
𝑞

/𝑁𝑖 )/(𝑁𝑞/𝑁)                                                       (3) 

 

where   𝑁𝑖
𝑞
= number of POIs in category q in the cluster i 

                      Ni = total POI count in cluster i  

                      Nq = total POI count in cluster q 

                      N = total count of POIs throughout the city 

 

 

3. Experiments and Results 

3.1 Study Area and Data 

This study focuses on Seoul, South Korea, as the primary study 

area to extract functional areas specialized for bicycle usage. For 

this purpose, data on 2,628 public bicycle stations (Seoul Bike 

“Ddareungi”) were collected as of May 2022. To construct linear-

based spatial units, only roads classified with a network type of 

“bike” from OpenStreetMap (OSM) were selected and used. In 

the case of POI data, about 780,000 data of 20 types were 

collected by referring to the travel purpose used by the Household 

Travel Survey. All datasets used in this study were obtained from 

the Seoul Open Data Plaza(data.seoul.go.kr). The entire 

algorithm was implemented using Python version 3.10.6. For 

network-based analysis, libraries such as NetworkX and OSMnx 

were utilized, and TensorFlow 2.0 was used for extracting 

semantic features of POI types. 

 

3.2 Experimental Results 

To establish linear, bicycle-specific spatial units, the locations of 

bicycle stations were first matched to the nearest nodes of bicycle 

roads provided by OpenStreetMap (OSM), which were then 

designated as central nodes. To apply the network Voronoi 

diagram to these central nodes, Dijkstra's algorithm was 

employed to classify sets of nodes closest to each central node. 

The resulting node classifications were stored as dictionary-type 

data. Next, edges connected to the classified nodes were 

subdivided. In cases where an edge connected nodes with 

different classification values, the Shapely library was used to 

split the edge accordingly. Through this process, a total of 2,628 

bicycle stations were classified into linear bicycle road segments. 

To identify the function of each spatial unit, semantic information 

was extracted from POI data. The POI data were categorized into 

20 types and embedded using a Word2Vec-based approach. For 

this, K-nearest neighbors were used to select the 10 closest POIs 

to each central POI to form tuples. The tuples were then 

augmented by incorporating distance information before 

performing embedding. Referring to previous studies, the 

hyperparameters were set as follows: embedding dimension = 70 

and number of iterations = 10,000. 

Finally, the functional areas were aggregated and classified based 

on the previously defined spatial units. During aggregation, 

weights were assigned to individual POI data to emphasize 

bicycle-specialized functional characteristics. Following prior 

studies, POIs categorized as "Park" and "Transportation" were 

assigned a weight of 2, while all other POI types were assigned a 

weight of 1. Additionally, the distance from each POI to the 

bicycle road segment within each spatial unit was taken into 

account. POIs were assigned differentiated weights based on 

their proximity as follows: within 10 meters, 10–50 meters, 50–

100 meters, 100–500 meters, and beyond 500 meters. 

These weighted values were then combined with the previously 

extracted 70-dimensional semantic vectors to compute the final 

functional value for each spatial unit. Based on these aggregated 

results, K-means clustering was performed to classify the 

functional areas. The optimal number of clusters was determined 

using the elbow method, resulting in K = 4 for the final functional 

area classification. 

The results of the bicycle-specialized functional area extraction 

are shown in Figure 2. To analyze the identified functional areas,  

POI density and POI enrichment factor were calculated for each 

cluster(Table 2 and Table 3). The findings revealed: (Cluster 1) 

Bicycle usage areas centered around detached housing, (Cluster 

2) Bicycle usage areas centered around villa-type housing, 

(Cluster 3) Bicycle-friendly areas with a concentration of parks 

and schools, (Cluster 4) Areas used for commuting or shopping 

by bicycle 

The upper part of Figure 2 provides a zoomed-in view of how 

each cluster is spatially differentiated. Notably, since the spatial 

units were established based on roads accessible from bicycle 

stations, the aggregation of POIs differs from that of previous 

studies, offering a unique and refined approach. 

 

 

 

 

 

 

 

 

 

 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W16-2025 
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-45-2025 | © Author(s) 2025. CC BY 4.0 License.

 
48



 

 

 

 

 

 

POI category Cluster1 Cluster2 Cluster3 Cluster4 

Home_single house 0.566  0.293  0.060  0.097  

Home_apartment 0.015  0.031  0.250  0.023  

Home_others 0.114  0.173  0.053  0.036  

Work_public 0.001  0.001  0.004  0.002  

Work_private 0.081  0.146  0.047  0.186  

Work_factory 0.005  0.010  0.018  0.014  

School 0.006  0.009  0.044  0.005  

Academy 0.007  0.007  0.009  0.004  

Job-related service 0.006  0.007  0.014  0.008  

Shopping 0.030  0.040  0.034  0.071  

Leisure 0.011  0.013  0.016  0.017  

Park 0.004  0.006  0.024  0.005  

Dining_restaurant 0.078  0.135  0.113  0.289  

Dining_café 0.016  0.031  0.029  0.064  

Dining_bar 0.014  0.024  0.007  0.055  

Medical_hospital 0.003  0.008  0.013  0.032  

Medical_pharmacy 0.004  0.006  0.010  0.013  

Transport_bus 0.035  0.049  0.231  0.055  

Transport_subway 0.003  0.008  0.020  0.021  

Transport_parkinglot 0.002  0.002  0.003  0.003  

Table 2. POI density by cluster 

 

 

 

 

 

 

 

POI category Cluster1 Cluster2 Cluster3 Cluster4 

Home_single house 0.626  0.323  0.067  0.107  

Home_apartment 0.174  0.354  2.871  0.267  

Home_others 0.381  0.579  0.179  0.121  

Work_public 0.232  0.328  1.088  0.609  

Work_private 0.304  0.553  0.179  0.701  

Work_factory 0.215  0.454  0.804  0.617  

School 0.248  0.338  1.693  0.196  

Academy 0.405  0.447  0.529  0.256  

Job-related service 0.324  0.404  0.770  0.428  

Shopping 0.350  0.466  0.397  0.836  

Leisure 0.315  0.373  0.459  0.491  

Park 0.795  1.107  4.452  0.872  

Dining_restaurant 0.265  0.457  0.384  0.982  

Dining_café 0.247  0.471  0.446  0.972  

Dining_bar 0.278  0.482  0.140  1.085  

Medical_hospital 0.398  1.058  1.625  4.151  

Medical_pharmacy 0.254  0.411  0.677  0.861  

Transport_bus 1.105  1.563  7.376  1.766  

Transport_subway 0.645  1.660  4.036  4.153  

Transport_parkinglot 0.896  1.261  1.588  1.742  

Table 3. POI enrichment factor by cluster 

 

 

Figure 2. Functional area extraction results 
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4. Conclusion 

This study proposed a novel methodology for extracting 

functional areas specialized for bicycle usage by subdividing 

spatial units based on actual bicycle road networks and 

aggregating high-dimensional semantic information derived 

from POI location and type data. The experiment was conducted 

using all public bicycle stations in Seoul, South Korea. 

First, road networks accessible from each station were divided by 

applying a network Voronoi diagram based on station locations. 

Next, POI types were categorized considering bicycle trip 

purposes, and these were used as training data to extract semantic 

vectors for each type. Finally, weights were assigned to 

individual POIs based on their distance and type, and semantic 

information was aggregated for each spatial unit. K-means 

clustering was then applied to classify the functional areas. As a 

result, four bicycle-specialized functional area clusters were 

identified, and the characteristics of each cluster were analyzed 

using POI density and POI enrichment factor metrics. 

This study is distinct from previous research in that it subdivided 

spatial units into linear segments to better reflect actual bicycle 

usage patterns, rather than relying on traditional block-based or 

administrative units for the entire city. Furthermore, by 

incorporating both distance and type-based weights in POI 

aggregation, the proposed approach provides a more nuanced 

method for identifying bicycle-specific functional areas. 

However, this study has limitations in that it only utilized spatial 

semantic information derived from POI data when extracting 

functional areas. In the context of bicycle-specific functional 

areas, not only the physical urban functions but also the dynamic 

flow of movements are critical factors. Therefore, future research 

aims to propose a spatiotemporal functional area extraction 

method that incorporates temporal information related to bicycle 

movements in addition to spatial characteristics. 
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