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Abstract 
 
Location-based storytelling is a key strategy in smart tourism, enabling immersive engagement through narrative content triggered by 
user movement. This study proposes a data-driven framework for designing enclosure- and viewpoint-geofences that align with 
storytelling modes, leveraging GPS horizontal-accuracy clustering and motion-sensor noise filtering to detect meaningful spatial 
engagement zones. We introduce a lightweight decision-tree classifier using cluster duration and motion variability features to 
distinguish valid indoor stays from transient or noise-induced clusters. In a field experiment with 12 participants in Akita City, our 
method achieved 94 percent classification accuracy and a 0.96 𝐹! -score under leave-one-out cross-validation. Furthermore, our 
qualitative comparisons imply the geofence identifications can outperform baseline techniques such as HDBSCAN and stay point 
detection. The results demonstrate the practical potential of the proposed approach for context-sensitive geofencing in urban tourism. 
This framework advances autonomous, adaptive geofencing for enriched tourist experiences. 
 
 

1. Introduction 

Location-based storytelling has emerged as a key strategy in 
smart tourism, aiming to deepen visitors’ engagement with local 
culture, heritage, and urban environments (Kasemsarn and 
Nickpour, 2025). Rather than simply navigating from one site to 
another, tourists are now invited to experience places through 
narrative layers that unfold in response to their movement. These 
stories—delivered at the right place and time—can include 
observation tips, historical facts, architectural commentaries, or 
even personal anecdotes linked to the space, thus enhancing the 
cognitive and emotional resonance of a site. 
 
A fundamental technology that enables such dynamic storytelling 
is geofencing. By defining virtual boundaries around specific 
geographic areas, geofencing allows digital systems to recognize 
when a user enters, exits, or moves near a point of interest (POI). 
This spatial awareness enables applications to trigger relevant 
narrative content in real time, making the visitor’s experience 
more immersive and responsive to their physical surroundings 
(Boletsis and Chasanidou, 2018). Although originally developed 
for purposes of asset tracking and proximity-based marketing, 
geofencing has found new relevance in tourism services by 
facilitating the delivery of personalized regional stories based on 
users’ real-world interactions with places. 
 
Designing effective geofences in complex urban environments 
presents considerable challenges. Specifically, GPS signal 
accuracy can significantly fluctuate due to factors such as urban 
canyons, indoor environments, and interference from physical 
structures (Parent et al., 2013). Additionally, the temporal 
resolution of location sampling, i.e., how often a position is 
recorded, may lead to missed detections or false triggers (Garzon 
et al., 2017). Beyond these technical limitations, developers must 
also consider the intent and structure of the storytelling itself. 
Elements such as the spatial scale of a POI, the anticipated user 
behaviours, and the desired storytelling mode (e.g., immersive 
versus observational) all influence how and where geofences 
should be set. A small sculpture viewed from a plaza may require 
a different approach than a museum visited from within. 
 

Against these backgrounds, this study seeks to advance location-
aware services into the realm of story-aware systems that more 
precisely align with user engagement patterns. Section 2 
discusses the diverse factors—ranging from spatial typologies to 
user transition dynamics—that inform geofence design from a 
storytelling perspective. This leads to the recognition that 
understanding interaction patterns is critical for tailoring 
geofence parameters effectively. To address this, Section 3 
introduces a classification framework for detecting geofence 
zones using mobile sensor data collected from actual tourist 
behaviour. We focus particularly on landmark features, which 
exhibit varying engagement patterns depending on whether they 
are entered, observed from afar, or bypassed altogether. Section 
4 presents the findings from in-situ experiments that test the 
framework’s performance in real-world environments. Finally, 
Section 5 concludes with a reflection on the implications for 
future development of autonomous, adaptive, and narrative-
driven geofencing systems in smart tourism. 
 

2. Key Perspectives of Geofence Designs for Regional 
Storytelling 

In the context of smart tourism, designing effective geofences 
requires more than just technical precision—it also necessitates a 
nuanced understanding of how stories are tied to places and how 
people experience those places. This section explores the 
storytelling-oriented considerations that influence geofence 
design. Three keys perspectives, that is, feature types, transition 
dynamics, and interaction patterns, offer a conceptual foundation 
for designing geofences that align not just with physical space, 
but with the narrative logic of how visitors encounter and engage 
with it. 
 
2.1 Feature Types 

Urban spaces are composed of a wide variety of spatial features, 
ranging from discrete landmarks such as monuments and statues, 
to expansive environments like boulevards, plazas, or historic 
districts. These features vary not only in size and form but also in 
their cultural meaning and the types of engagement they invite. 
Despite this diversity, many existing location-based guide 
systems tend to treat all POIs uniformly, failing to account for 
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their distinct spatial and semantic characteristics. Conventional 
systems often treat a monument and a public park as equivalent 
units, despite their vastly different user interaction patterns and 
spatial extents (Sun et al., 2020). To address this limitation, 
research introduced the concept of hierarchical POI structures, 
wherein larger, compound POIs (super-POIs), such as a historic 
district, can encapsulate smaller embedded POIs, like buildings, 
gardens, or statues (Wang et al, 2018). This layered model helps 
better reflect the nested nature of spatial experience in urban 
tourism. 
 
Building on this, our prior research has adopted Kevin Lynch’s 
influential theory on urban elements (Lynch, 1960), which 
categorizes city spaces into five types: paths, edges, districts, 
nodes, and landmarks. Each type suggests a different spatial logic 
and storytelling opportunity. For instance, streets or corridors 
support narrative sequences, while landmarks serve as focal 
points for symbolic or interpretive stories (Sasaki et al., 2024). 
Recognizing these distinctions enables designers to construct 
more meaningful geofence structures that respect the semantics 
of space. 
 
2.2 Transition Dynamics 

A second dimension in geofence design for storytelling involves 
the temporal ordering of user experiences—or what we refer to 
as transition dynamics. In a location-aware system, users rarely 
encounter POIs in isolation; their experience is shaped by the 
path they take and the sequence in which stories are delivered. 
Prior interactions leave cognitive traces that influence how future 
content is perceived. For example, repetition of the same content 
at previously visited sites can diminish user engagement, 
particularly in exploratory settings where novelty is highly 
valued (Tokita et al., 2019). Therefore, geofencing systems 
should incorporate a form of memory—tracking which stories 
have already been delivered to a user—to avoid redundancy and 
preserve narrative freshness. 
 
Temporal awareness can also be more formally modelled in 
geofencing operations. Specifically, a temporal-aware 
geofencing approach ensures that the activation is dynamically 
adjusted based on the user's recent interaction history (Garzon et 
al., 2014). For example, a story about a city gate might only 
trigger if the user visited a related castle within the last hour. Such 
logic introduces a contextual filter based on time, allowing stories 
to respond not just to place, but also to narrative sequence and 
recency. 
 
2.3 Interaction Patterns 

Among the three factors, this study places special emphasis on 
interaction patterns—that is, how users physically and spatially 
engage with a particular place. This dimension is particularly 
important for landmarks, which can be experienced in different 
ways depending on whether users enter the space or view it from 
a distance. Based on this distinction, we indicate two types of 
geofences: enclosure-geofences and viewpoint-geofences. 
 
Enclosure-geofences are triggered when users enter a defined 
spatial boundary, such as a museum, gallery, or temple complex. 
These geofences are best suited for immersive storytelling, where 
content is delivered in response to close-range, interior 
interaction. Visitors may walk through multiple zones, encounter 
displays, or engage in site-specific activities, and the narrative 
should unfold accordingly. 
 

Viewpoint-geofences, on the other hand, are activated at external 
observation points—such as scenic overlooks, architectural 
vistas, or strategic angles from which landmarks are viewed. 
These are more appropriate for interpretive storytelling, which 
frames the site visually and contextually, often highlighting its 
historical significance, symbolic meaning, or aesthetic form from 
a distance. 
 
Figure 1 presents representative examples of both enclosure- and 
viewpoint-geofences, along with the corresponding storytelling 
strategies they support. By differentiating these interaction 
modes, we can better tailor the structure, trigger conditions, and 
narrative content of geofences to match the lived experience of 
site visitors. 
 

 
Figure 1. Examples of enclosure-geofence and viewpoint-
geofence with corresponding guide content. Interior guides 

describe spatial details from within, while exterior guides focus 
on the appearance from a specific viewpoint. 

 
3. Classification Methods for Geofence Identification 

This study proposes a classification framework for assisting 
geofence designs that align with different storytelling needs in 
smart tourism, using mobile sensor data collected from tourists’ 
devices. The framework especially focuses on the necessity of 
identifying enclosure-geofences, which correspond to immersive 
spatial experiences, and viewpoint-geofences, which support 
external observation.  
 
3.1 Necessity of a Data-Driven Approach 

While geofence design based on feature types (Section 2.1) and 
transition dynamics (Section 2.2) can largely be initiated by map-
based planning and developer’s intention, interaction patterns 
(Section 2.3) are inherently user-driven and context-sensitive. 
Users do not always engage with POIs in predictable ways; they 
may pause unexpectedly at certain viewpoints, or bypass 
enclosed spaces altogether. This unpredictability makes it 
difficult to predefine geofences solely through static geographic 
information. Therefore, a data-driven approach is essential to 
understand how visitors interact with urban features. By 
analysing mobile sensor data—such as GPS trajectories, dwell 
time, and movement speed—developers can detect patterns that 
indicate either entry into spaces (enclosure-geofence candidates) 
or external engagement points (viewpoint-geofence candidates). 
 
3.2 Overview of Classification Framework 

To address the variability and unpredictability of user 
interactions with physical spaces, this study proposes a data-
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driven framework that identifies candidate geofenced zones from 
mobile sensor data, particularly GPS trajectories. The goal is to 
distinguish between indoor zones, corresponding to immersive 
interactions (i.e., enclosure-geofences), and viewing zones, 
associated with external observation (i.e., viewpoint-geofences). 
 
Figure 2 illustrates the overall workflow of the proposed 
classification framework. The process begins with the collection 
of raw GPS trajectory data from mobile devices carried by 
tourists during their exploration of urban environments. Then, the 
framework applies GPS Accuracy Clustering to detect regions 
where signal accuracy significantly deteriorates. These clusters 
often indicate indoor environments or densely built-up areas 
where GPS signals are obstructed. As such, these clusters are 
treated as candidates for indoor zones. The candidates of indoor 
zones data often contain noise, such as abrupt location jumps or 
low-accuracy readings due to environmental factors. Therefore, 
the second step involves Noise Detection, which filters out 
anomalous or unreliable data points. In parallel, the system 
analyses remaining location data to identify positions where users 
repeatedly pause or linger, particularly in outdoor spaces. Such 
Stay Point Detection often correspond to locating where users 
visually engage with a landmark, such as a viewpoint or scenic 
spot. As a result, these points are flagged as candidates for 
viewing zones, which inform viewpoint-geofence design. 
 

 
Figure 2. Flow of the classification framework. GPS accuracy 

clustering is used to extract enclosure-geofence candidates, 
followed by noise detection to filter out irrelevant clusters. 
Remaining data is passed through stay point detection to 

identify viewpoint-geofences. 
 
3.3  GPS Accuracy Clustering 

The process begins with GPS accuracy clustering applied to the 
entire user trajectory. To detect candidate indoor-zones—areas 
where GPS signal accuracy degrades due to built-up or enclosed 
environments—we employ the GPS horizontal accuracy 
clustering. Let the trajectory be represented as: 
 

𝑇𝑟 = {𝑝" = (𝑡" , 𝑙𝑎𝑡" , 𝑙𝑜𝑛" , ℎ")|𝑖 = 1,… ,𝑁} (1) 
 
where 𝑡" = timestamp 
 𝑙𝑎𝑡" , 𝑙𝑜𝑛" = geographic coordinates in 2D 
 ℎ" = GPS horizontal accuracy 
 
In practical deployments, the horizontal accuracy value is readily 
available from the GPS sensor APIs built into modern 
smartphones. You may also leverage other complementary 
signals, such as Wi-Fi or barometric pressure changes, instead of 
GPS horizontal accuracy data (Wang et al., 2016). We first 
discard any point whose accuracy exceeds an upper bound 𝐻#$ 
(e.g., 200 meters) and obtain the filtered trajectory data 𝑇𝑟′, since 

extremely poor readings cannot reliably indicate indoor locations. 
Each remaining point is classified as an indoor candidate if its 
accuracy exceeds a lower threshold 𝐻%&'  (e.g., 10 meters), 
otherwise as outdoor: 
 

𝑠" = 9
1, ℎ" ≥ 𝐻%&'
0, ℎ" < 𝐻%&'

(2) 

 
The process then scans 𝑇𝑟′ in time order and identify contiguous 
segments where 𝑠" = 1. For each such segment running from 
index 𝑒 (enter) to 𝑙 (leave), its geometric centroid is calculated as 
the core of the indoor segment. 
 
If a new indoor segment is detected before the user moves beyond 
a predefined buffer radius 𝐷, the new segment is considered part 
of the previous cluster and is merged accordingly (Figure 3). This 
strategy accounts for brief periods of high GPS accuracy that may 
occur indoors, such as passing near windows, where signal 
quality temporarily resembles outdoor conditions. By allowing 
short, localized transitions without splitting the indoor zone, we 
improve robustness against false exits. 
 
Now, the process confirms the segment [𝑒, 𝑙] as a valid indoor 
cluster and assign it a unique ID. However, this signal-based 
heuristic is not infallible. Low GPS accuracy may also occur in 
outdoor settings—such as under dense foliage, in urban canyons, 
or during the warm-up phase of the GPS sensor—leading to 
potential false positives. Furthermore, some technically indoor 
locations, such as underground passages, may serve purely as 
transit spaces and thus are unsuitable targets for storytelling 
content. 
 

 
Figure 3. Cluster merging based on distance buffer radius 𝐷. 
Outdoor points (blue) are merged with the preceding indoor 

cluster (pink) if they remain within the buffer radius 𝐷 from the 
cluster centroid. This accounts for brief indoor GPS accuracy 
improvements, e.g., near windows, and prevents false exits. 

 
3.4 Noise Detection for Indoor Zone 

Although GPS accuracy clustering is effective for identifying 
potential indoor zones, it may also capture irrelevant or transient 
clusters, such as GPS fluctuations in corridors, brief pauses near 
entrances, or signal loss during transitions. To address this, we 
introduce a noise detection step that filters out such spurious 
detections using a supervised binary classification approach. 
 
This study constructs a feature vector for each candidate indoor 
cluster based on smartphone sensor data, aiming to characterize 
both user motion and GPS signal stability during the cluster's 
duration. The selected features include: 
• 𝑎𝑐𝑐𝑒𝑙_𝑎𝑣𝑔: mean acceleration 
• 𝑎𝑐𝑐𝑒𝑙_𝑣𝑎𝑟: variance of acceleration 
• ℎ𝑎𝑐𝑐_𝑎𝑣𝑔: mean horizontal GPS accuracy 
• ℎ𝑎𝑐𝑐_𝑣𝑎𝑟: variance of horizontal GPS accuracy 
• 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡: number of GPS data points in the cluster 
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To compute acceleration-related features, we first derive the 
magnitude of 3-axis acceleration at each time step by computing 
the root sum square of the x-, y-, and z-axis values: 
 

𝑎(𝑡) 	= 	I𝑎((𝑡)) + 𝑎*(𝑡)) + 𝑎+(𝑡)) (3) 
 
To suppress high-frequency noise, a low-pass filter is then 
applied to the resulting time series. The filtered acceleration 
signal is used to compute the average (𝑎𝑐𝑐𝑒𝑙_𝑎𝑣𝑔) and variance 
(𝑎𝑐𝑐𝑒𝑙_𝑣𝑎𝑟) over each cluster. 
 
Each feature is designed to capture a different behavioural or 
technical indicator. 𝑎𝑐𝑐𝑒𝑙_𝑎𝑣𝑔  reflects the overall movement 
level of the user. Lower values typically indicate pausing or 
standing still, which are common during indoor stays. 𝑎𝑐𝑐𝑒𝑙_𝑣𝑎𝑟 
helps distinguish between consistent stillness and fluctuating 
movement. ℎ𝑎𝑐𝑐_𝑎𝑣𝑔  serves as a direct indicator of signal 
quality. Higher values imply degraded GPS precision, which 
often occurs indoors. ℎ𝑎𝑐𝑐_𝑣𝑎𝑟  captures fluctuations in GPS 
signal stability. True indoor clusters may exhibit not only high 
inaccuracy but also unstable readings over time. 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡 
reflects the duration and density of the data. Short-lived clusters 
with few points are more likely to be noise, whereas valid indoor 
probably stays typically span longer periods with consistent 
sampling. Together, these features are expected to form a 
complementary set that balances motion analysis and signal 
reliability, allowing the classifier to effectively separate 
meaningful indoor stays, such as visits to enclosed spaces, from 
noisy clusters caused by incidental movement or unstable GPS 
reception. 
 
Based on exploratory scatter plot analysis and cross-validation 
experiments, this study implements a decision tree classifier to 
predict whether each cluster corresponds to a valid geofence zone. 
The classifier demonstrates high interpretability and is able to 
separate indoor-stay patterns from noise-prone clusters 
effectively. 
 
Clusters classified as valid are retained and passed forward as 
confirmed enclosure-geofences. Clusters classified as invalid are 
discarded to improve the robustness of the geofence detection 
framework. The performance of this classification approach, 
along with the contribution of each feature, is quantitatively 
evaluated in Section 4. 
 

4. Experimental Evaluation 

To validate the effectiveness of the proposed framework for 
geofence classification in smart tourism, we conducted a real-
world data collection study and performed a twofold evaluation. 
First, we assessed the accuracy of the noise detection module 
using a supervised decision tree classifier applied to clustered 
trajectory data. Second, we compared our GPS accuracy-based 
clustering approach with two established spatial clustering 
methods to demonstrate the practical advantages of our method 
in urban tourist environments. 
 
4.1 Experimental Settings and Data Collection 

To support empirical evaluation, we conducted an in-situ data 
collection study in Akita City, Japan. The aim was to gather 
realistic GPS and motion data reflecting typical sightseeing 
patterns such as entering buildings, pausing at landmarks, and 
transitioning through open spaces. 
 

A total of 12 participants took part in the study. Each participant 
was instructed to explore a designated walking route that 
included both indoor and outdoor points of interest—such as 
museums, shrines, plazas, and scenic viewpoints. Participants 
carried an iPhone 11 device equipped with a custom data logging 
application, which recorded: GPS location (latitude, longitude), 
GPS horizontal accuracy data, three-axis accelerometer data, and 
timestamps. On average, each session lasted about 90 minutes, 
resulting in a total of 35 candidate clusters identified via GPS 
accuracy clustering. 
 
After the walks, clusters were manually labelled by comparing 
trajectory maps with known locations of indoor facilities and stop 
points. Among the 35 extracted clusters, 25 were confirmed as 
valid indoor stays, while the remaining 10 were identified as 
noise—caused by GPS drift, underground passage transitions, or 
brief outdoor stops. This dataset serves as the foundation for the 
quantitative and qualitative evaluations described in Sections 4.2 
and 4.3. 
 
4.2 Evaluation of Noise Detection for Indoor Zone 

To assess the effectiveness of our noise detection module, we 
begin by examining the distributions of each individual feature 
across the three cluster types: 
 
• Positive clusters (valid indoor stays) 
• Negative clusters caused by GPS drift 
• Negative clusters caused by underground pass ways 
 
Figure 4 illustrates the kernel density estimation plots for each 
feature, color-coded by cluster class. From the figure, no single 
feature alone can sufficiently separate the true indoor clusters 
(red) from the false detections (blue and green). A single-feature 
threshold is insufficient for reliable classification. Any attempt to 
classify clusters using only one variable would either result in 
high false positives or high false negatives.  
 
To address this, we evaluate combinations of features using a 
decision tree classifier. Given the high correlation observed 
between ℎ𝑎𝑐𝑐_𝑎𝑣𝑔  and ℎ𝑎𝑐𝑐_𝑣𝑎𝑟  (Pearson’s r = 0.87), we 
exclude feature pairs that contain both simultaneously to avoid 
multicollinearity. In total, nine feature pairs are tested, each 
subjected to leave-one-out cross-validation (LOOCV). We 
compute accuracy and 𝐹! -score for each configuration to 
quantify classification performance. Furthermore, we compare 
these pairwise models against a full-feature model using all five 
features except ℎ𝑎𝑐𝑐_𝑣𝑎𝑟.  
 
Table 1 reports the LOOCV Accuracy and 𝐹!-measure for each 
of the nine feature pairs and for the full-feature model (all 
features except ℎ𝑎𝑐𝑐_𝑣𝑎𝑟 ). First, the two-feature model 
consisting of 𝑎𝑐𝑐𝑒𝑙_𝑣𝑎𝑟  and 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡  achieves the highest 
discriminative power, with an overall accuracy of 0.94 and an 𝐹!-
score of 0.96. In our LOOCV experiments, this pair consistently 
produced a clear decision boundary: clusters corresponding to 
prolonged periods of low‐variance motion (high 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡, 
low 𝑎𝑐𝑐𝑒𝑙_𝑣𝑎𝑟) were reliably identified as valid indoor stays, 
whereas both brief, high-jitter noise and stable but instantaneous 
drift clusters fell outside this region. By contrast, the decision tree 
built on the full four‐feature set (all metrics except ℎ𝑎𝑐𝑐_𝑣𝑎𝑟) 
attains only 0.77 for accuracy and 0.85 for 𝐹!-score. Although 
incorporating additional features such as mean acceleration and 
mean GPS error might seem to enrich the model, in practice these 
variables introduce overlap in higher dimensions and weaken 
class separability. Indeed, no other two‐feature combination that 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W16-2025 
9th International Conference on Smart Data and Smart Cities (SDSC), 2–5 September 2025, Kashiwa, Japan

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W16-2025-99-2025 | © Author(s) 2025. CC BY 4.0 License.

 
102



 

omits 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡  surpasses 0.83 accuracy—models relying 
solely on motion or GPS‐accuracy metrics deliver at best 
moderate performance—and the weakest pairings, particularly 
those involving ℎ𝑎𝑐𝑐_𝑣𝑎𝑟, drop to around 0.60, barely above 
random chance. 
 
These findings underscore two key insights: (1) cluster duration, 
as quantified by the number of GPS samples, is the most 
informative feature for distinguishing genuine indoor 
engagement from transient or accidental readings, and (2) 
coupling this temporal indicator with motion variability captures 
the essence of sustained, low-movement behaviour characteristic 
of indoor stays. By focusing on these two dimensions, our 
classifier remains both simple and robust, avoiding the curse of 
dimensionality while delivering superior performance. 
 

 
Figure 4. Density distributions of each feature across three 

cluster classes: valid indoor stays (red), underground passage 
noise (green), and GPS drift noise (blue). None of the individual 

features—𝑎𝑐𝑐𝑒𝑙_𝑎𝑣𝑔, 𝑎𝑐𝑐𝑒𝑙_𝑣𝑎𝑟, ℎ𝑎𝑐𝑐_𝑎𝑣𝑔, ℎ𝑎𝑐𝑐_𝑣𝑎𝑟, or 
𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡—exhibits sufficient class separation on its own, 

highlighting the need for multi-feature classification. 
 

 
Table 1. Classification performance of decision tree models 

using different combinations of feature pairs and a full-feature 
configuration (excluding ℎ𝑎𝑐𝑐_𝑣𝑎𝑟). Each model was evaluated 

using leave-one-out cross-validation (LOOCV). The pair 
(𝑎𝑐𝑐𝑒𝑙_𝑣𝑎𝑟, 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡) achieved the highest accuracy and 𝐹!-

score, indicating that motion variability and cluster duration 
together provide the most reliable basis for distinguishing valid 

indoor stays from noise. 
 
4.3 Comparison with Alternative Clustering Methods 

This study conducted a qualitative comparison between our 
proposed GPS accuracy clustering and two widely used baseline 
methods: HDBSCAN (Campello et al., 2015) and Stay Point 
Detection (Li et al., 2008). Both have been applied in trajectory 
analysis, but their effectiveness in identifying story-relevant 
geofence zones—especially in complex urban tourism settings—
remains limited. 
 
As shown in Figure 5, the methods produce notably different 
clustering outcomes. HDBSCAN (left) tends to form overly large 
clusters that often merge distinct spatial experiences, such as 
entering a building versus pausing nearby. This is due to its 
reliance on local point density, which can cause semantically 
different regions to be absorbed into a single cluster. Such 
overgeneralization reduces its utility for distinguishing nuanced 
tourist behaviours. On the other hand, Stay Point Detection 
(right) identifies clusters only when the user remains stationary 
beyond a certain duration. While this is effective for detecting 
brief stops, it often fails to capture extended indoor stays, 
especially in large buildings where users may move slowly or 
continuously. Consequently, key indoor locations relevant to 
storytelling may be missed entirely. By comparison, our GPS 
accuracy clustering approach can identify indoor zones based on 
degraded signal quality rather than strict immobility, allowing it 
to detect meaningful stays. Furthermore, it supports spatially 
coherent merging and better aligns with enclosure- and 
viewpoint-geofence distinctions. 
 
In summary, while HDBSCAN and Stay Point Detection serve 
general clustering purposes, they are suboptimal for urban 
storytelling applications. Our method offers better spatial 
granularity and interpretability, making it more suitable for real-
world deployment in location-based narrative systems. 
 

Positive
Negative 
(underground pass way)
Negative 
(GPS drift)

Features Accuracy F-Measure
("##$%_"'(, "##$%_'"*) 0.83 0.88
("##$%_"'(, ℎ"##_"'() 0.71 0.80
("##$%_"'(, ℎ"##_'"*) 0.69 0.78
("##$%_"'(, -./_012-3) 0.80 0.86
("##$%_'"*, ℎ"##_"'() 0.60 0.72
("##$%_'"*, ℎ"##_'"*) 0.60 0.71
("##$%_'"*, -./_012-3) 0.86 0.90
(ℎ"##_"'(, -./_012-3) 0.86 0.90
("##$%_'"*, -./_012-3) 0.94 (Best) 0.96 (Best)
All features except ℎ"##_'"* 0.77 0.85
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Figure 5. Comparison of clustering results using HDBSCAN 

(left) and Stay Point Detection (right) on GPS trajectories. 
HDBSCAN tends to produce overly large clusters, while Stay 

Point Detection misses clusters in large indoor areas. 
 

5. Conclusions 

This study proposed a data-driven framework for geofence 
design in smart tourism, distinguishing between enclosure- and 
viewpoint-based storytelling experiences. By combining GPS 
accuracy clustering with motion sensor data-based noise filtering, 
the method enables context-sensitive detection of meaningful 
spatial engagement zones. Field experiments in Akita City 
demonstrated high classification accuracy, highlighting the 
approach’s practical potential. Building on these findings, future 
work will focus on developing a practical workflow for 
determining the specific parameters of enclosure- and viewpoint-
geofences based on sensor data patterns. Additionally, we aim to 
demonstrate the effectiveness of the data-driven geofencing 
approach from a service design perspective, evaluating how it 
enhances the delivery of location-based storytelling in real-world 
tourism applications. 
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