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Abstract 

Sentinel-2 satellites provide multi-spectral images with 13 bands at resolutions of 10, 20, and 60 m/pixel, widely used for various 

applications due to their cost-free access and high revisit frequency. Their open data policy has made them a key resource in remote 

sensing. Nonetheless, the growing need for high-resolution images has highlighted the significance of super-resolution technology 

(SR), which improves spatial detail through enhanced sensor precision and density. Deep learning techniques are an effective 

solution for enhancing Sentinel-2 images through super-resolution, improving low-resolution images by retrieving fine-grained high- 

frequency details. This results in high-resolution outputs from freely available data. In this research, we propose an enhancement of 

single-image resolution model derived from a Generative Adversarial Network, commonly abbreviated as GAN. We implemented 

and trained a model, named GS-SRGAN (Google Sentinel - SRGAN), built on the foundation of the Super-Resolution GAN model 

(SRGAN), using pairs of Google Earth and Sentinel-2 images for generating super-resolved outputs of the RGB bands from the 

multispectral Sentinel-2 data using a 4x scaling factor. The results from our GS-SRGAN model surpass those of current best in class 

models when evaluated using standard metrics such as SSIM (Structural Similarity Index) and PSNR (Peak Signal-to-Noise Ratio), 

enabling the super-resolved Sentinel-2 imagery for use in studies that demand very high spatial resolution. 

1. Introduction

Renewable energies, particularly photovoltaic (PV) solar 

energy, play a vital part in the worldwide shift away from fossil 

fuels, contributing significantly to mitigating climate change 

impacts. Solar photovoltaic systems are regarded as a potential 

of renewable energy sources. Due to their minimal footprint, 

ease of production, and simple maintenance (Selvaraj et al., 

2024) unlike wind energy, which necessitates specific 

geographic conditions, PV solar panels can be deployed in 

diverse settings, offering a flexible solution for sustainable 

energy production (Popovych et al., 2023). 

Solar PV power systems are seen as an important solution for 

the energy crisis and environmental problems (Goyal et al., 

2024). There are various methods to capture solar energy, 

including solar heating, solar photovoltaics (PV), and solar 

hybrid photovoltaic thermal (PVT) systems. Because it can 

transform sunlight directly into electrical power. Owing to its 

ability to transform sunlight directly into electricity, flexibility, 

low cost, and extended lifespan, solar PV has developed 

significantly in recent decades (You, 2022). 

However, a significant challenge is the extensive surface area 

required for effective energy generation. This issue can be 

addressed by harnessing the abundant unused roofs spaces 

available globally, making large-scale solar installations more 

feasible (Saripalli et al., 2024). As the expense of photovoltaic 

systems keeps declining and their efficiency enhances, solar 

energy's role in sustainable development is expected to grow 

(D. Li, 2023). 

(Galagan & Frigerio, 2023) to efficiently identify and analyze 

suitable rooftops for solar panel deployment, satellite imagery, 

specifically Sentinel-2, can be employed. Sentinel-2 is an 

invaluable tool for this purpose due to its free and open-source 

nature, making it accessible for widespread use. Improving 

Sentinel-2 imagery from a spatial resolution of 10 meters per 

pixel to a finer resolution of 2.5 meters per pixel allows for 

more detailed and precise spatial analysis. This enhanced 

resolution is crucial for accurately mapping and assessing 

rooftop spaces. However, the upscaling process also introduces 

certain challenges, such as increased data processing 

requirements and potential inaccuracies in the analysis (Galagan 

& Frigerio, 2023). 

The utilization of Very High Spatial Resolution (VHSR) images 

can be prohibitively expensive, especially for extensive area 

coverage or conducting multi-temporal analyses (L. Salgueiro 

Romero et al., 2020). Therefore, in such cases, it is 

advantageous to consider freely available data with adequate 

spatial quality, such as those provided by satellites like Landsat 

or Sentinel. Specifically, the Copernicus Sentinel-2 mission 

consists of two polar-orbiting satellites. Its multispectral 

instrument (MSI) captures data in 13 spectral bands, from 

visible to short-wave infrared (L. Salgueiro Romero et al., 

2020). More specifically, this sensor captures images with a 

spatial resolution of 10 meters for the red, green, blue, and near- 

infrared bands (L. Salgueiro Romero et al., 2020). 

(Xin Li & Orchard, 2001) Single-image spatial super-resolution 

(SR), which seeks to reconstruct a high spatial resolution image 

from a low spatial resolution one, can overcome the inherent 

spatial resolution limitations of imaging systems without relying 

on any additional prior knowledge or auxiliary information. The 

fundamental approach to single-image spatial super-resolution 

involves using nonlinear interpolators like bilinear and bicubic 

interpolation (Xin Li & Orchard, 2001), which directly utilizes 

the information from neighboring pixels. However, these 

methods often lead to edge blur and ringing effect (Baraskar et 

al., 2023a). To address this challenge, this study integrates 

Geographic Information System (GIS), remote sensing (RS), 

computer vision (CV) and Deep learning (DL) to establish a 

model for predicting a super resolution image. Hence, Super- 

resolution of satellite imagery is important for maximizing the 

utility of the available images (Baraskar et al., 2023b). 

Over the past decade, various supervised super-resolution (SR) 

techniques have emerged, particularly those utilizing dictionary 

approaches. Notable contributions include Yang and al (L. 

Salgueiro Romero et al., 2020) and (Weisheng Dong et al., 

2011), and (Gou et al., 2014), who effectively employed sparse 

coding methods. also, Pan et al. incorporated structural self- 

similarity combined with compressive sensing for SR tasks, 

while other researchers (Y. Zhang et al., 2014); (J. Li et al., 

2016) explored diverse image feature spaces to enhance 

performance. Generally, these methods focus on the low-level 

features of images. 

Recently, deep learning has significantly advanced the SR field 

(Z. Wang et al., 2019). High-level features from optical data 
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have notably improved performance through convolutional 

neural networks (CNNs) for image SR. Dong et al. introduced 

SRCNN (Dong et al., 2014), a pioneering three-layer CNN, 

which spurred the development of numerous other CNN 

approaches (Dong et al., 2014). 

Generative Adversarial Networks (GANs) have recently 

attracted significant attention. Ledig et al. proposed SRGAN, 

which produces more photo-realistic outputs despite lower 

quantitative metrics, representing a seminal perceptual approach 

in super-resolution. SRGAN's generator comprises 16 residual 

blocks and 2 up-sampling layers to achieve a scaling factor of 4. 

The training process is divided into phases: initially training the 

generator and subsequently combining adversarial and 

perceptual losses (Johnson et al., n.d.); (X. Wang et al., n.d.) 

The enhancement of SRGAN through denser residual layers and 

the elimination of batch normalization layers to reduce artifacts, 

along with the use of a relativistic GAN, represents a major 

advancement in image super-resolution techniques. Significant 

work in this field includes "ESRGAN: Enhanced Super- 

Resolution Generative Adversarial Networks", which introduces 

the Residual-in-Residual Dense Block (RRDB) without batch 

normalization and uses a relativistic discriminator to boost 

visual quality. Moreover, the study "A Super-Resolution 

Generative Adversarial Network with Simplified Gradient 

Penalty and Relativistic Discriminator" proposes a streamlined 

residual network without batch normalization layers and 

improves the GAN using a relativistic discriminator for sharper 

image reconstruction (X. Wang et al., 2019). The "RBDN: 

ReRRDBsidual Bottleneck Dense Network for Image Super- 

Resolution" further optimizes SRGAN by employing dense 

cascading connections and a residual-in-residual bottleneck 

block, eliminating batch normalization to reduce negative 

effects and improve convergence (X. Wang et al., 2019). These 

advancements collectively enhance the super-resolution 

capabilities by improving feature utilization, reducing 

computational costs, and stabilizing training for higher quality 

image outputs. 

CNN-based SR models encounter challenges in remote sensing 

due to insufficient training datasets. (Ma et al., 2018) introduced 

TGAN (Transferred Generative Adversarial Network) to 

address this issue. (Haut, Paoletti, et al., 2019); (Haut, 

Fernandez-Beltran, et al., 2019) and (Lei et al., 2017) 

synthesized LR-HR pairs from public remote sensing images 

and tested various network architectures. However, models 

trained solely on synthetic LR-HR pairs often fail to generalize 

due to the complex nature of LR images, which result from 

more than just Gaussian noise, blurring, or compression artifacts 

(Bulat et al., 2018). More recently, Ma et al. proposed DRGAN 

(Dense Residual Generative Adversarial Network) for remote 

sensing SR. Pouliot et al. utilized Landsat (30 m GSD) and 

Sentinel-2 (10m GSD) imagery to train CNN architectures for 

SR of Landsat imagery. Beaulieu et al. experimented with 

various CNNs and GANs using Sentinel-2 (10m GSD) and 

WorldView (2.5 m GSD) images, achieving a scaling factor of 

4. These models, trained with red, green, and NIR channels,

showed promising results, particularly with GAN-based

networks. They speculated that geometric and radiometric

disparities between satellite images contributed to lower metric

values. Several researchers have also applied ESRGAN

architectures to various remote sensing SR applications (Chen et

al., 2019); (L. F. Salgueiro Romero et al., 2020).

For the purpose of expanding the work of super-resolution to be

employed on geographical satellite imagery, the proposed work

has adopted the approach of generative models to create

visually appealing images, generative models, also known as

GANs, work to enhance perceptual quality. SRGAN, for

instance, uses a GAN-based architecture to produce visually

appealing images. It employs the SRResnet network 

architecture as the backend and leverages a multi-task loss 

function to improve the results. Three terms make up the loss: 

MSE loss capturing pixel similarity, Perceptual similarity loss 

used to capture high-level information by using a deep net- 

work. Adversarial loss from the discriminator. The current study 

employs the Real ESRGAN technique, leveraging the 

advantages of a standard SRGAN, and presents the algorithm's 

results through a user-friendly GUI developed with Flask on the 

backend (Baraskar et al., 2023b). 

2. Satellite Images

Satellite images are digital images of the Earth's surface 

captured by sensors aboard satellites circling the Earth. These 

images provide valuable data across various spectral bands, 

such as visible, infrared, and thermal wavelengths (Roy et al., 

2014a). Satellite imagery is essential for monitoring Earth's 

environmental changes, (Drusch et al., 2012a); (Wulder et al., 

2019). The Landsat 8 and 9 satellites offer images with a spatial 

resolution of 30 meters, making them ideal for monitoring 

environmental changes, land use, and natural disasters (Roy et 

al., 2014b). Sentinel-2, part of the European Space Agency's 

Copernicus program, captures high-resolution optical imagery 

with a spatial resolution of up to 10 meters (Fernández-Manso 

et al., 2012). Super-resolution applications in Sentinel-2 

imagery further enhance the detection of small-scale features, 

supporting precision agriculture and urban planning. Google 

Earth, known for its very high-resolution imagery (VHR) from 

various commercial sources, offers spatial resolutions as fine as 

30 centimeters (Vuolo et al., 2015). This makes it particularly 

useful for detailed urban planning and infrastructure monitoring. 

In our case, we will apply super-resolution techniques to 

Sentinel-2 imagery. Together, if these satellite platforms are 

enhanced by super-resolution, they will represent powerful tools 

for roofs observation and analysis. 

2.1. Sentinel-2 

Sentinel-2 is part of the Copernicus program, an initiative by the 

European Space Agency (ESA), the European Environment 

Agency (EEA), and the European Commission (EC) aimed at 

delivering operational data about our planet for environmental 

and safety applications. The mission includes two twin 

satellites, named Sentinel-2A and Sentinel-2B, launched in June 

2015 and March 2017, respectively. These satellites share the 

same orbit but are spaced 180° apart, allowing ensuring a 

frequent revisit cycle of 5 days at the Equator. Each satellite is 

equipped with a multispectral instrument (MSI) capable of 

capturing 13 spectral bands spanning from visible and near 

infrared (VISNIR) to shortwave infrared (SWIR). Among these 

bands, four (B2, B3, B4, and B8) have a spatial resolution of 10 

meters, six bands have a 20-meter resolution, and three bands 

have a 60-meter resolution. The lower resolution bands are 

primarily used for assessing vegetation health, differentiating 

snow, ice, and clouds, and gathering data on aerosols, water 

vapor, and cirrus clouds (Drusch et al., 2012b; Gascon et al., 

2017a). 

To enhance the spatial resolution of the Sentinel-2 10-meter 

bands through super-resolution techniques, data from the 

multispectral Worldview satellites was utilized to create the LR- 

HR training dataset. WorldView-2, launched in October 2009, 

was the first commercial satellite to offer high-resolution 8-band 

multispectral imaging, operating at an altitude of 770 km and 

providing a 1.84-meter resolution for VISNIR bands and a 46 

cm panchromatic band. WorldView-3, launched in August 

2014, operates at approximately 617 km altitude and delivers 

1.24-meter resolution for VISNIR bands, along with additional 

SWIR bands at 3.7 meters and a 31 cm panchromatic band 
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(Drusch et al., 2012b); (Gascon et al., 2017b). Table 1 below 

presents the technical specifications of Sentinel-2's 

spectralbands in the visible and the near-infrared (VIS-NIR) 

range. 

Wavebands Spectral 

Band Edges 

Spatial 

Resolution 

B1 Coastal Aerosol 443 nm 60m 

B2 Blue band 490 nm 10m 

B3 Green band 560 nm 10m 

B4 Red band 665 nm 10m 

B5 Red-edge 1 705 nm 20m 

B6 Red-edge 2 740 nm 20m 

B7 Red-edge 3 783 nm 20m 

B8 Near-infrared 842 nm 10m 

B8A Near-infrared 

narrow 

865 nm 20m 

B9 Water Vapor 945 nm 60m 

B10 SWIR-Cirrus 1375 nm 60m 

B11 SWIR-1 1610 nm 20m 

B12 SWIR-2 2190 nm 20m 

Table 1. Technical Specifications of Sentinel-2's Spectral Bands 

in the Visible and the Near-Infrared Spectrum. 

2.2. High-Resolution Imagery Sources 

In this study, the high-resolution imagery utilized is derived 

from the Google basemap and Bing basemap in QGIS software, 

also known collectively as Google Earth and Bing Maps 

Imagery. This type of imagery is classified as Very High 

Resolution (VHR) satellite imagery, which typically offers a 

ground sample distance (GSD) ranging from less than 1 meter 

to 5 meters. VHR imagery is essential for detailed analysis and 

is commonly used in applications such as mapping, urban 

planning, and environmental monitoring (Gómez et al., 2016); 

(J. Zhang et al., 2020). Key providers of VHR satellite imagery 

include Maxar Technologies (formerly DigitalGlobe), which 

operates satellites like WorldView-3, WorldView-4, GeoEye-1, 

and QuickBird; Airbus Defence and Space with Pleiades-1A, 

Pleiades-1B, SPOT 6, and SPOT 7; and Planet Labs’ SkySat 

constellation. 

The high-resolution images from the Google basemap and Bing 

basemap are composites sourced from multiple satellite and 

aerial imagery providers. These composites often include data 

from DigitalGlobe/Maxar’s satellite constellation (WorldView, 

GeoEye, QuickBird), Landsat (with enhanced products), 

Sentinel-2 (offering 10m GSD optical imagery), and Airbus 

(through Pleiades and SPOT satellites), alongside various high- 

resolution aerial photographs (Hu et al., 2019); (Wulder et al., 

2016). Such integrated imagery ensures extensive and detailed 

coverage, which is vital for the accuracy and reliability of our 

super-resolution analysis. The use of these high-quality 

composites is key for enhancing the spatial resolution of 

satellite data and supports the objectives of this project (Gómez 

et al., 2016); (J. Zhang et al., 2020). 

Figure 1. High-Resolution Satellite Imagery from Google and 

Bing Basemaps for Various Cities. 

3. Data preparation

The preparation of traditional RGB imagery differs significantly 

from that of satellite images, especially when using deep 

learning algorithms like SRGAN. In models such as CNNs with 

fixed input sizes, for instance, 512×512×3, RGB images can be 

simply resized to this dimension. Due to the small range of 

pixel values (0 to 255), the average values do not change 

drastically during resizing. 

On the other hand, satellite images require a more intricate 

approach. Firstly, they need to be georeferenced, ensuring 

accurate spatial representation. Secondly, resizing satellite 

images can result in significant changes to pixel values because 

of their larger bit depth. For example, pixel values in Sentinel- 

2A images are 16-bit compared to the 8-bit depth in traditional 

RGB images. This greater range means that averaging pixel 

values during resizing can lead to substantial changes, 

potentially affecting the output inference. 

In our experiment, we set up two different test cases, as 

illustrated in the accompanying graphs, to address these 

challenges in preparing satellite imagery for the SRGAN model. 

These test cases involved creating high-resolution and low- 

resolution image pairs from Sentinel-2 and Google Earth data, 

accounting for the unique properties of satellite images to 

ensure accurate model training and evaluation. 
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Figure 4. High-Resolution and Low-Resolution Satellite Image 

Pairs. 

Figure 2. Super-Resolution Image Processing and Dataset Creation. 

The graph illustrates in Figure 2 a data preparation workflow for 

generating high-resolution (HR) and low-resolution (LR) image 

pairs used in super-resolution modeling. The process begins 

with acquiring satellite imagery from Sentinel-2 and Google 

Earth. Sentinel-2 images, with a 10-meter ground sample 

distance (GSD), undergo interpolation to enhance their 

resolution, creating 2048×2048-pixel patches that offer greater 

detail. Interpolation methods such as bicubic or spline 

interpolation are used to estimate unknown pixel values, 

maintaining spatial properties while increasing resolution. High- 

resolution patches from Google Earth (2.5m GSD) are extracted 

directly. These patches are resized into smaller LR versions, 

such as 128×128 for Sentinel-2 and 512×512 for Google 

Imagery, allowing the model to learn the upsampling process. 

The image patches are converted from TIFF to JPG and paired 

to form HR/LR datasets, which are then split into 70% of 

training, 20% of testing, and 10% of validation sets. This 

comprehensive preparation ensures the model learns effectively 

from detailed and accurately represented data, enhancing its 

capability to perform super-resolution tasks for applications in 

urban planning and environmental monitoring. 

Figure 3. Visualizing 2x2 to 8x8 Pixel Upsampling. 

Figure 3 illustrates the pixel relationship between a 2×2 tile and 

its corresponding 4x up-sampled 8×8 tile. Directly resizing 

images to dimensions like 32×32 or 128×128 can disrupt their 

spatial properties, so it's not an ideal approach. Instead, the 

optimal method is to crop sections from the original tile using 

dimensions that are multiples of 32 and 128. This approach 

preserves the pixel relationships, allowing the model to 

effectively learn the 4x up-sampling of each pixel. By 

employing data augmentation methods such as rotating and 

flipping the images, we were able to generate thousands of 

samples for our model. 

These images illustrate the final output of the data preparation 

process, showcasing the visual differences between low- 

resolution and high-resolution images used in the study. On the 

left portion of each pair, the larger image provides a broader 

geographic context, while the red box highlights the specific 

area of interest. The right portion of each pair presents a 

zoomed-in comparison between the low-resolution and high- 

resolution versions of the same area. The low-resolution images 

display noticeable blurring and loss of detail, which underscores 

the necessity for super-resolution techniques. In contrast, the 

high-resolution images reveal finer details and sharper features, 

demonstrating the value of high-resolution imagery in detailed 

analysis and applications. These prepared image pairs serve as 

the foundation for training and evaluating the GS-SRGAN 

model. 

4. Methodology

To enhance the resolution of satellite imagery, we will utilize 

the Super-Resolution Generative Adversarial Network 

(SRGAN) model, a state-of-the-art approach in the field of 

image super-resolution. GS-SRGAN employs a deep learning 

framework that generates high-resolution images from low- 

resolution inputs by training a generator network to produce 

realistic textures and details. In general, the SRGAN model is 

composed of two primary components: a generator that creates 

the super-resolved images and a discriminator that distinguishes 

between generated and real images, thus driving the generator to 

improve its outputs continually (Huang et al., 2017a). This 

adversarial process results in images that not only have higher 

pixel density but also capture fine details and complex 

structures, making them visually convincing. The application of 

SRGAN to satellite images, such as those from Sentinel-2 and 

Landsat, allows for significant improvements in spatial 

resolution, which enhances the ability to analyze and interpret 

subtle features in environmental monitoring, urban planning, 

and resource management (Bauer-Marschallinger et al., 2019). 

Moreover, the SRGAN model's ability to reconstruct fine details 

is particularly beneficial for high-resolution platforms such as 

Google Earth, where precision is paramount for applications 

such as infrastructure assessment and disaster management 

(Mushkin et al., 2020). Overall, GS-SRGAN's innovative 

architecture and capability to produce realistic super-resolved 

images make it an invaluable tool in the ongoing efforts to 

maximize the utility of satellite imagery across various 

domains. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025 
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-123-2026 | © Author(s) 2026. CC BY 4.0 License.

 
126



Figure 5. Google-Sentinel Super-Resolution Generative 

Adversarial Network (GS-SRGAN) architecture. 

As depicted in Figure 5, the use of our Google-Sentinel Super- 

Resolution Generative Adversarial Network (GS-SRGAN) for 

enhancing and analysing satellite images. The process begins 

with low-resolution satellite images that are fed into the GS- 

SRGAN, where the generator component enhances the spatial 

resolution, producing high-resolution outputs with finer details 

and improved clarity. These enhanced images are then 

processed through a classification and feature extraction 

pipeline. The classifier categorizes the high-resolution images 

into predefined classes, useful for applications such as land use 

classification and urban planning, while the feature extractor 

identifies meaningful patterns and details for further analysis, 

such as object detection and change detection. This workflow 

demonstrates the capability of GS-SRGAN to significantly 

improve the quality of satellite imagery, enabling more accurate 

and detailed analysis for various practical applications. 

4.1. Generator 

The generator in the Google Sentinel Super-Resolution 

Generative Adversarial Network (GS-SRGAN) plays a crucial 

role in transforming low-resolution images into high-resolution 

outputs. It uses a deep neural network architecture that consists 

of multiple convolutional layers, which work together to learn 

and reconstruct high-frequency details lost in lower-resolution 

images. The generator begins with a convolutional layer 

followed by a Parametric ReLU (PReLU) activation function, 

which introduces non-linearity and allows for more complex 

mappings from input to output (Huang et al., 2017b). 

Subsequent layers are organized into residual blocks, which are 

instrumental in improving image quality by preserving essential 

information and refining image features progresses through a 

sequence of skip connections. These connections mitigate issues 

like vanishing gradients, which are common in deep networks, 

by allowing the gradient to bypass some layers and reach earlier 

layers directly (He et al., 2016). Batch normalization layers are 

also used to stabilize learning and enhance convergence speed, 

ensuring that the output maintains high visual fidelity. Finally, 

the generator incorporates deconvolution layers, also referred to 

as transposed convolutional layers, which upscale the image to 

the desired high resolution by effectively learning how to fill in 

missing details and textures (Lu et al., 2018). Overall, the GS- 

SRGAN generator is designed to produce visually appealing 

images that are close to natural photographs, making it highly 

effective for applications that require high-quality image 

reconstruction from low-resolution inputs. 

Figure 6. GS-SRGAN Generator Architecture for Super- 

Resolution. 

This schematic illustrates the architecture of the generator 

within the Super-Resolution Generative Adversarial Network 

(GS-SRGAN) as presented in Figure 6. It visually depicts the 

data flow through the generator, starting from a low-resolution 

input image and culminating in a high-resolution output. Key 

components of the architecture are highlighted, including the 

initial convolutional layer, which processes the input image, and 

the series of residual blocks, which enhance the image quality 

through    deep 

learning techniques. Each residual block is depicted with its 

convolutional layers and activation functions, illustrating how 

they contribute to refining the image details. The architecture 

also shows the use of batch normalization to maintain stable 

learning conditions and the final transposed convolutional 

layers responsible for upscaling the image. This comprehensive 

structure allows the GS-SRGAN generator to excel in producing 

detailed, high-resolution images from lower-quality inputs. 

4.2. Discriminator 

The discriminator in the GS Super-Resolution Generative 

Adversarial Network (GS-SRGAN) serves a critical function in 

distinguishing between real high-resolution images and those 

generated by the network, thereby guiding the generator to 

improve its output. The discriminator uses a deep convolutional 

neural network (CNN) architecture, consisting of multiple 

convolutional layers followed by leaky ReLU (Rectified Linear 

Unit) activations, which introduce non-linearity and allow the 

network to capture complex patterns and textures in the image 

data. This architecture effectively extracts hierarchical features 

at varying scales, making it adept at detecting discrepancies 

between generated images and real ones (Huang et al., 2017c). 

As the generator produces images, the discriminator evaluates 

them alongside actual high-resolution images, learning to 

classify them as either real or fake. This adversarial process 

creates a feedback loop in which the generator iteratively 

improves  its  image  quality  to  fool  the  discriminator 

(Goodfellow et al., 2014).To stabilize training and enhance 

performance, batch normalization layers are incorporated within 

the discriminator to normalize the feature maps and promote 

faster convergence (Radford et al., 2015). The discriminator’s 

ability to accurately differentiate between high-quality and low- 

quality images is indispensable for refining the super-resolution 

output, ultimately leading to visually convincing results that 

closely resemble real photographs. This mechanism enhances 

the realism and fidelity of images produced by GS-SRGAN, 

making it a powerful tool in applications requiring high- 

resolution image reconstruction from low-resolution inputs. 

Figure 7. GS-SRGAN Discriminator Architecture with Real and 

Generated Image Pair Evaluation. 

The Figure 7 showcased the architecture of the discriminator 

component within the Google-Sentinel Super-Resolution 

Generative Adversarial Network (GS-SRGAN). The 

discriminator is designed to distinguish between real high- 

resolution images and the ones generated by the GS-SRGAN 

model. At the input, the discriminator receives pairs of images, 

one real and one generated, which are fed through a series of 
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convolutional layers. These layers, highlighted as the feature 

extractor, play an essential role in a role in analyzing and 

evaluating the authenticity of the images by capturing intricate 

details and patterns. 

The feature extractor is integral to the discriminator’s ability to 

differentiate image quality, and it functions similarly to well- 

known CNN architectures like VGG16 and VGG19. Both 

VGG16 and VGG19 are deep convolutional neural networks 

used for image classification, and they serve as powerful feature 

extractors by processing images through multiple layers of 

convolutions, pooling, and activation functions to extract 

hierarchical features. Within the scope of GS-SRGAN, such 

feature extractors are often pre-trained on extensive datasets 

such as ImageNet to ensure they can effectively recognize 

complex textures and structures in the image (Simonyan & 

Zisserman, 2014a). 

In this architecture, each convolutional layer is succeeded by a 

Leaky ReLU activation function, which introduces non-linearity 

and helps model complex patterns. Batch normalization (BN) 

layers are used to stabilize the learning process by normalizing 

the feature maps, which improves convergence speed. After the 

feature extraction layers, the network includes dense (fully 

connected) layers, culminating in a sigmoid activation that 

outputs a binary classification. This final step indicates whether 

an image is classified as real (check mark) or fake (cross). 

4.2.1. VGG16 Feature Extractor: 

VGG16 is a well-known deep convolutional neural network 

architecture created by the Visual Geometry Group at the 

University of Oxford. It is recognized for its straightforward yet 

powerful design, comprising 16 layers, including 13 

convolutional layers with 3×3 filters and 3 fully connected 

layers. This uniform architecture allows VGG16 to effectively 

capture hierarchical features, ranging from edges to complex 

textures, making it highly effective for image classification 

tasks. The network utilizes ReLU (Rectified Linear Unit) 

activation functions after each convolutional layer to introduce 

non-linearity and mitigate the vanishing gradient problem 

(Simonyan & Zisserman, 2014b). 

Figure 8. VGG16 Convolutional Neural Network Architecture 

Diagram. 

The diagram portrays the flow of data through VGG16, starting 

with an input image of size 224×224×3, followed by 

convolutional and max-pooling layers, which reduce the size of 

the feature maps while retaining essential information. The 

network concludes with fully connected layers and a softmax 

layer, which outputs class probabilities for image classification. 

VGG16's straightforward architecture, along with its strong 

performance in benchmark competitions like ImageNet, makes 

it a popular choice for transfer learning, serving as a robust 

feature extractor for various tasks beyond image classification, 

including object detection and segmentation. The softmax layer, 

indicated by S in the diagram, transforms network outputs into a 

probability distribution across classes, enabling classification by 

choosing the class with the highest probability. Overall, 

VGG16's depth and uniform design allow it to efficiently learn 

and represent complex visual features, solidifying its role as a 

foundational model in deep learning research and applications. 

4.2.2. VGG19 Feature Extractor: 

VGG19 is an enhanced version of the VGG16 architecture, also 

created by the Visual Geometry Group from the University of 

Oxford. Known for its simple and consistent design, VGG19 

consists of 19 layers with learnable parameters, including 16 

convolutional layers and 3 fully connected layers, while VGG16 

includes just 13 convolutional layers and 3 fully connected 

layers. The additional convolutional layers in VGG19, 

particularly in the last three blocks, enable it to capture finer 

details and more intricate patterns, offering enhanced feature 

learning capabilities. Both architectures utilize small 3×3 filters 

in convolutional layers and 2×2 max-pooling layers for down- 

sampling, preserving spatial hierarchies and allowing deep 

feature extraction across scales (Simonyan & Zisserman, 

2014c). 

Figure 9. VGG19 Convolutional Neural Network Architecture 

Diagram. 

The VGG19 diagram as revealed in Figure 9 highlights these 

convolutional layers, with ReLU activation functions, denoted 

by R, adding non-linearity to facilitate complex feature 

learning. The architecture concludes with fully connected layers 

and a softmax activation, indicated by S, to output class 

probabilities. While VGG19's increased depth allows for 

improved performance in tasks requiring detailed feature 

representation, it demands more computational resources and 

longer training times compared to VGG16. Therefore, the 

choice between VGG16 and VGG19 typically depends on the 

specific task requirements, balancing computational efficiency 

against the need for deeper feature extraction. Both models 

remain effective for image classification and transfer learning, 

with pre-trained versions available on large datasets such as 

ImageNet, making them valuable tools for deep learning 

applications. In our model, we will use VGG19. 

We chose VGG19 over VGG16 due to its deeper architecture, 

which includes three additional convolutional layers. These 

extra layers allow VGG19 to learn more complex features and 

representations, crucial for tasks like perceptual loss in SRGAN. 

The richer feature maps provided by VGG19 improve the 
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quality of generated images, capturing subtle details and 

textures, resulting in more realistic and visually appealing 

super-resolved images. 

5. Quantitative Metrics

To evaluate the accuracy of the generator's results, denoted as 

G(I), using the input low-resolution (LR) image I from the test 

set, we compare them to the corresponding high-resolution 

(HR) target image J. The quantitative assessment of the super- 

resolved (SR) bands involves calculating several parameters, 

including the Root Mean Square Error (RMSE), Peak Signal-to- 

Noise Ratio (PSNR), and Structural Similarity Index Measure 

(SSIM). 

• The Root Mean Square Error (RMSE) quantifies the

average deviation between the predicted pixel values

and the actual pixel values in an image, offering a

measure of the average error in the pixel-value space.

𝑅𝑀𝑆𝐸(𝐼, 𝐽) = √𝐸[(𝐼 − 𝐽)2] (1) 

Where I = the predicted pixel values, 

J = the actual pixel values, 

E = the expected value 

• Peak Signal to Noise Ratio (PSNR): is a standard

metric used to assess the quality of a reconstructed

image. In this context, MaxVal represents the

maximum value of the high-resolution (HR) image

(J).

• MSE stands for Mean Squared Error. It is a

commonly used loss function that measures the

average of the squares of the differences between

predicted and actual values. In the context of neural

networks and machine learning, MSE is used to

quantify the error between the predicted output and

the true target.

MSE = 
1 
∑n (I − J )² (4) 

n 

Where 𝑛 = number of data points, 

𝐼𝑖 = the predicted value for the 𝑖-th data point, 

𝐽𝑖 = the actual value for the 𝑖-th data point. 

• The adversarial loss (𝐿𝑜𝑠𝑠𝐺𝐴𝑁) is crucial in training

the generator in GS-SRGAN framework. It measures

how well the generator produces high-resolution

images that the discriminator mistakenly classifies as

real. This loss is calculated using the Mean Squared

Error (MSE) between the discriminator's output on

generated images and a label indicating "real". The

generator aims to minimize this loss to improve its

ability to create images that convincingly resemble

real high-resolution images, effectively fooling the

discriminator.

LossGAN = MSE(discriminator(gen_hr), valid) (5) 

𝑃𝑆𝑁𝑅(𝐺(𝐼), 𝐽) = 20. 𝑙𝑜𝑔 (  
𝑀𝑎𝑥𝑉𝑎𝑙 ) (2) 

10 𝑅𝑀𝑆𝐸[𝐺(𝐼),𝐽] 

• The Structural Similarity Index Measure (SSIM) is a

metric that evaluates the similarity between two

images by considering three essential components:

luminance, contrast, and structure. The SSIM value

ranges from -1 to 1, where a value of 1 indicates that

the images are identical. The metric includes two

constants, 𝐶1 = 𝑘1𝐿 and 𝐶2 = 𝑘2𝐿, which are depend

on the dynamic range 𝐿 of the pixel values, with

default values 𝑘1 = 0.01 and 𝑘2 = 0.03 (Z. Wang et

al., 2004).

• The content loss (𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑡𝑒𝑛𝑡) measures the

perceptual difference between the generated image

and the real high-resolution image. This loss is

calculated using the 𝐿1 loss between the features of

the generated image (𝑔𝑒𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) and the real image

(𝑟𝑒𝑎𝑙𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠). These features are typically extracted

from a pretrained VGG network, which captures high- 

level details important for human perception. The

primary purpose of content loss is to ensure that the

generated images retain the same perceptual content

as the real images, making them visually similar in

terms of structure and details that are significant for

𝑆𝑆𝐼𝑀(𝐺(𝐼), 𝐽) = 
 (2𝜇𝐼×𝜇𝐽+𝐶1)(2σ𝐼𝐽+𝐶2) 
(𝜇2+𝜇2+𝐶1)(σ2×σ2+𝐶2) (3) 

human observers.

𝐼 𝐽 𝐼 𝐽 

Losscontent = L1(genfeatures, realfeatures)  (6)

Where  I ,  J= the mean intensities of images I and 

J, 
σ2 , σ2= the variances, 

• The 𝐿𝑜𝑠𝑠𝐺 is the total loss for the generator,

calculated  by combining  the  adversarial  loss
I J 

(𝐿𝑜𝑠𝑠𝐺𝐴𝑁) and the content loss (𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑡𝑒𝑛𝑡), where

σI,J = the covariance between the two images. 

6. Loss functions in GS-SRGAN

In this section, we delve into the various loss functions used in 

our GS-SRGAN (GS - Super-Resolution Generative 

Adversarial Network) training process. Each loss function plays 

a crucial role in ensuring the generator and discriminator 

networks learn effectively to produce high-quality super- 

resolution images. The following are detailed descriptions and 

purposes of each loss function: 

λ is a weight factor, typically set to 1e-3, that balances

the two components. The purpose of 𝐿𝑜𝑠𝑠𝐺 is to

guide the generator in producing high-resolution

images that are indistinguishable from real ones. The

adversarial loss component ensures that the generated

images can successfully deceive the discriminator,

while the content loss component guarantees that

these images retain important visual features, making

them perceptually similar to the high-resolution

originals. By minimizing 𝐿𝑜𝑠𝑠𝐺, the generator learns
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to create images that are both realistic and true to the 

content of the original images. 

LossG = Losscontent + λ × LossGAN  (7) 

• The 𝐿𝑜𝑠𝑠𝑟𝑒𝑎𝑙 measures the performance of the

discriminator when evaluating real high-resolution

images. It is calculated using the Mean Squared Error

(MSE) between the discriminator's output for real

images (discriminator(imgs_hr)) and the label

indicating "real" (typically a tensor of ones,

represented as valid). This loss quantifies how

accurately the discriminator identifies real images as

authentic. A lower 𝐿𝑜𝑠𝑠𝑟𝑒𝑎𝑙 indicates that the

discriminator is effectively recognizing real images as

real, contributing to the overall training dynamics

between the generator and discriminator in the GS- 

SRGAN framework.

Lossreal = MSE(discriminator(imgs_hr), valid) (8) 

• The 𝐿𝑜𝑠𝑠𝑓𝑎𝑘𝑒 is the loss associated with the

discriminator's performance on fake (generated)

images. It is calculated using the Mean Squared Error

(MSE) between the discriminator's output for

generated images (discriminator(gen_hr.detach()))

and the label indicating "fake" (typically a tensor of

zeros, represented as fake). This loss measures how

well the discriminator can identify generated images

as fake. By reducing 𝐿𝑜𝑠𝑠𝑓𝑎𝑘𝑒, the discriminator

becomes more effective at distinguishing generated

images from real ones, which in turn encourages the

generator to improve the realism of its output to better

fool the discriminator.

Lossfake = 

MSE(discriminator(gen_hr. detach( )), fake) (9) 

• The 𝐿𝑜𝑠𝑠𝐷 is the total loss for the discriminator,

representing its performance in distinguishing

between real and fake images. This loss is calculated 

by averaging the losses from classifying both real

(𝐿𝑜𝑠𝑠𝑟𝑒𝑎𝑙) and fake (𝐿𝑜𝑠𝑠𝑓𝑎𝑘𝑒) images. The purpose

of 𝐿𝑜𝑠𝑠𝐷 is to ensure that the discriminator can

accurately differentiate between authentic high- 

resolution images and those generated by the

generator. By minimizing this loss, the discriminator

improves its ability to correctly classify real and fake

images, maintaining the balance in the adversarial

training process between the generator and

discriminator.

7.1. GS-SRGAN with Learning Rate Decay 

In this experiment, we trained the GS-SRGAN model with a 

learning rate decay strategy. This approach aims to stabilize the 

training process and enhance the quality of generated high- 

resolution images over time. 

Figure 10. Training Progress with Learning Rate Decay. 

As presented in Figure 10, the content loss decreases steadily 

over epochs, indicating that the generator is learning to produce 

images that are closer to the ground truth high-resolution 

images in terms of content. The discriminator loss shows 

fluctuations but generally decreases, indicating that the 

discriminator is improving in distinguishing between real and 

generated images. Similarly, the fake loss, which measures the 

discriminator's ability to identify generated images as fake, also 

fluctuates but generally decreases, showing improvement in the 

discriminator's performance. The generator loss decreases 

steadily, indicating that the generator is improving in producing 

realistic high-resolution images. Although the GAN loss shows 

some fluctuations, it remains relatively high, which might 

indicate that the adversarial training is challenging, but the 

generator is still improving. Lastly, the real loss, which 

LossD = 
Lossreal+Loss𝐹ake 

2 
(10) measures the discriminator's ability to identify real images as 

real, shows fluctuations but generally decreases, indicating 

improvement in the discriminator's performance. 

7. Experiments and Results

In this section, we present the experimental setup and results of 

training the GS-SRGAN model with and without learning rate 

decay. The effectiveness of the model is evaluated using various 

loss metrics and image quality metrics such as PSNR and SSIM. 

Additionally, we provide visual comparisons of the generated 

super-resolution images against the low-resolution and high- 

resolution ground truth images. 

Figure 11. Image Quality Metrics with Learning Rate Decay. 

In Figure 11, the PSNR (Peak Signal-to-Noise Ratio) 

demonstrates a steady increase, indicating that the quality of the 

generated images is improving over epochs. Likewise, the SSIM 

(Structural Similarity Index) exhibits a consistent upward trend, 

suggesting that the structural similarity between the generated 

and real high-resolution images is progressively enhancing. 
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7.2. GS-SRGAN without Learning Rate Decay 

In this experiment, we trained the GS-SRGAN model without a 

learning rate decay strategy. This approach helps in 

understanding the importance of learning rate decay in 

stabilizing the training process. 

Figure 12. Training Progress without Learning Rate Decay. 

Without Learning Rate Decay, as shown in Figure 12, the 

content loss decreases over epochs, but there are noticeable 

spikes, indicating instability during training. The discriminator 

loss is more erratic, suggesting that the discriminator struggles 

to learn consistently without learning rate decay. Similarly, the 

fake loss, which measures the discriminator's ability to identify 

generated images as fake, shows significant spikes, reflecting 

instability in training the discriminator. The generator loss 

decreases, but like the content loss, it has multiple spikes 

indicating instability. The GAN loss is fairly stable with minor 

fluctuations, suggesting that the adversarial training remains 

challenging. The real loss shows erratic behaviour, similar to 

other discriminator-related losses, further indicating instability 

in the training process. 

Figure 13. Image Quality Metrics without learning rate decay. 

Without Learning Rate Decay, as illustrated in Figure 13, PSNR 

increases over epochs but with noticeable drops. This indicates 

that while image quality improves, it does so inconsistently. 

Similarly, SSIM also increases with fluctuations, suggesting 

that structural similarity improves but remains unstable. 

The comparison of results between the two training approaches 

highlights the importance of learning rate decay in stabilizing 

the training process and achieving consistent improvements in 

image quality. The model trained with learning rate decay 

exhibits smoother loss curves and more stable improvements in 

PSNR and SSIM, indicating better overall performance. 

7.3. Visual Comparison 

Figure 14. Results and Visual Comparison of Images Quality 

Figure 14 shows a comparison between low-resolution 

(LowRes), super-resolved (GS-SRGAN) generated by the GS- 

SRGAN model, and high-resolution (HighRes) images. The 

super-resolved images demonstrate a significant improvement 

in visual quality over the low-resolution images, with finer 

details and reduced artifacts, closely resembling the high- 

resolution ground truth images. 

8. Discussion

The analysis of training GS-SRGAN with and without learning 

rate decay, as summarized in Table 2, reveals central insights 

into model performance and training stability. With learning 

rate decay, the training process is significantly more stable, as 

evidenced by steady decreases in content and generator losses 

and smoother declines in discriminator-related losses. 

Conversely, without learning rate decay, the training process 

shows noticeable spikes and erratic behavior across various loss 

metrics, indicating instability and the discriminator's struggle to 

adapt consistently. Image quality metrics, such as PSNR and 

SSIM, also show more consistent improvements with learning 

rate decay, reflecting the model's effective learning of high- 

quality, structurally similar images. 

Although the GAN loss remains relatively high with learning 

rate decay, indicating the ongoing challenge of adversarial 

training, the overall improvements in other metrics suggest the 

generator's progressive enhancement. In contrast, the stable 

GAN loss without decay, coupled with erratic behaviour in 

other losses, highlights the necessity of learning rate decay for 

consistent refinement. Thus, learning rate decay proves vital for 

stable, consistent training and superior image quality in GS- 

SRGAN. Additional research could explore adaptive learning 

rates, gradient clipping, and advanced regularization methods to 

further enhance the performance and stability of GS-SRGAN. 

Metric With LR 

Decay (Epoch 

100) 

With LR 

Decay 

Without LR 

Decay 

(Epoch 100) 

Without 

LR Decay 

Loss 

Content 

0.0411766 Steady 

decrease 

0.0205375 Decrease 

s with 

spikes 

Discrim 

inator 

Loss 

3.96541655e- 

05 

Fluctuations, 

generally 

decreases 

8.3210883e 

-05 

More 

erratic 

Fake 

Loss 

3.30387001e- 

05 

Fluctuates, 

generally 

6.6042612e 

-05 

Significa 

nt spikes 
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decreases 

Genera 0.0421767 Steady 0.0215375 Decrease 
tor Loss decrease s with 

multiple 

spikes 

GAN 1.0000285 Fluctuates, 1.0000235 Fairly 
Loss remains high stable, 

minor 

fluctuatio 

ns 

Real 

Loss 

4.6269630e- 

05 

Fluctuations, 

generally 

0.0001003 Erratic 

behavior 

decreases 

PSNR 16.7754355 Steady 

increase 

18.6049153 Increases 

with 

noticeabl 

e drops 

SSIM 0.5160742 Steady 

increase 

0.6022491 Increases 

with 

fluctuatio 

ns 

Table 2. Comparison of Losses and Metrics Between Training 

Results with and without Learning Rate Decay. 

9. Conclusion

In conclusion, this study demonstrates the effectiveness of the 

GS-SRGAN model in the super-resolution of satellite images, 

establishing a significant relationship between Geographic 

Information Systems (GIS) and deep learning (DL). The 

integration of these fields facilitates a more detailed and 

accurate spatial analysis, crucial for various environmental and 

urban planning applications. 

One of the primary obstacles in spatial analysis lies in the 

inherent limitations of satellite image resolution, which can 

obscure fine details and complicate the extraction of precise 

information. By employing the GS-SRGAN model, we 

successfully upscaled Sentinel-2 images, significantly 

enhancing their resolution and enabling more detailed analysis. 

The ultimate aim of this research is to accurately identify and 

delineate rooftops in urban green cities. By estimating their 

surface areas, we can analyze the potential for solar 

installations, thereby promoting the utilization of renewable 

energy sources. This approach not only supports sustainable 

energy initiatives but also contributes to more efficient urban 

planning and resource management. 

The findings of this study underscore the importance of 

advanced image processing techniques in overcoming the 

limitations of traditional satellite imagery. The enhanced 

resolution achieved through GS-SRGAN not only improves the 

accuracy of spatial analyses but also opens new avenues for 

research and application in the fields of GIS (Geographic 

Information System), DL (Deep learning), and PV 

(photovoltaic) technology. Future work will focus on refining 

these methods and exploring their broader implications for 

environmental sustainability and urban development. 
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