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Abstract

Agricultural parcel delineation is critical for generating cadastral maps that underpin sustainable land management, precision ag-
riculture, and data-driven policymaking. While satellite imaging provides a scalable solution, most existing approaches rely on
static RGB or single-date spectral data, neglecting the temporal dynamics of agricultural landscapes. This study introduces Tem-
pAgriBound, a novel temporal multispectral dataset designed to advance parcel boundary detection by capturing both spectral
and phenological features. The dataset comprises a dense time-series of Sentinel-2 multispectral imagery (10 bands at 10m res-
olution) and derived spectral indices (NDVI, NDWI, SAVI, etc.), spanning the entire 2023 growing season in Brittany, France (a
region characterized by diverse crop rotations and fragmented landholdings). We propose a 3D U-Net architecture optimized for
spatiotemporal feature extraction, which processes multi-spectral time stacks to exploit crop growth stages and seasonal spectral
variations. For comparison, a 2D U-Net baseline using single-date RGB composites was implemented. By systematically evaluat-
ing these models, we aim to determine the differential effects of temporal spectral information on parcel boundary detection. These
findings underscore the synergistic value of temporal resolution and spectral diversity in automated parcel mapping, particularly in
regions with complex crop patterns. The study advances scalable precision agriculture tools and provides actionable insights for

integrating temporal-spectral data into national land registries.
1. Introduction

Cartographic delimitation of agricultural land parcels historic-
ally represented a complex and resource-intensive cartograph-
ical challenge based on manual geospatial measurement meth-
odologies. Before the emergence of computational visual re-
cognition and machine learning algorithmic approaches, agri-
cultural land boundary delineation required extensive human
intervention and sophisticated geodetic instrumentation, includ-
ing precision technologies such as theodolites, total stations,
and Global Positioning System (GPS) receivers (van der Molen,
2002).

Remote Sensing Images (RSI), with its improved spatial and
spectral resolution capabilities alongside consistent temporal
sampling frequencies, is vital in providing the required multi-
dimensional information for this objective. Modern satellite
constellations deliver systematic revisit capabilities ranging from
daily to biweekly coverage, creating dense time series that cap-
ture both abrupt and gradual boundary transitions. Spectral in-
formation, captured across multiple wavelength bands, offers
unique insights by differentiating vegetation types, crop health,
soil moisture, and land use characteristics, thereby enabling
more precise and automated boundary identification beyond tra-
ditional visual mapping techniques (Yu et al., 2024). When
combined with multi-temporal analysis frameworks, these spec-
tral signatures can be traced through time to reveal persistent
boundary features while filtering ephemeral patterns, signific-
antly enhancing delineation accuracy and consistency.

The diversity in agricultural parcel complexity presents a unique
challenge in the field. In Europe, particularly in countries like
France, agricultural landscapes are characterized by intricate
patterns of fragmented parcels, shaped by centuries of inherit-
ance laws and traditional farming practices (Bartels et al., 2024).
This contrasts sharply with regions such as North America or

Awustralia, where industrial farming techniques have led to lar-
ger and more consolidated parcels. These regional variations,
rooted in historical, legal and geographical factors, significantly
influence the effectiveness of parcel delineation methods and
underscore the importance of developing robust and adaptable
approaches.

The temporal dimension adds critical depth to this analysis,
such as boundary delineation, crop rotation patterns, and long-
term land use transitions occurring at multiple timescales. Agri-
cultural boundaries experience hoth cyclical changes (seasonal
crop patterns) and linear transformations (gradual field expan-
sions or consolidations), creating a four-dimensional problem
that static mapping approaches fail to address (Aung et al., 2020).
When properly quantified, this temporality can be leveraged as
a force multiplier in boundary detection accuracy, enabling de-
tection of subtle boundary shifts that would otherwise remain
imperceptible in single-timepoint analyses.

In the evolving technical landscape, deep convolutional neural
networks (CNNs) have revolutionized the field of computer vis-
ion, demonstrating unprecedented performance across diverse
applications including image classification (Adegun et al., 2023,
Gupta et al., 2021), object detection (Gui et al., 2024, Zhang et
al., 2023), semantic segmentation (Hadir et al., 2024, Li et al.,
2024), and land cover/land use mapping (Sertel et al., 2022,
Fayaz et al., 2024). The domain of agricultural parcel delin-
eation has been particularly transformed by these advances, where
deep learning methodologies have exhibited exceptional prowess
in automatically extracting and defining field boundaries through
sophisticated learning of multidimensional representations, spec-
tral signatures, textural patterns, temporal dynamics, and spatial
relationships, from remote sensing imaging (RSI).

The architectural evolution in this domain began with the ground-
breaking U-Net (Ronneberger et al., 2015) framework, which
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established fundamental encoding-decoding principles with skip
connections. This foundation was subsequently refined through
architectures like ResUNet-a (Wagner et al., 2020), which in-
corporated critical innovations including atrous convolutions for
multi-scale feature extraction and pyramid scene parsing pool-
ing to enhance contextual awareness. Authors propose new de-
rivatives of ResUNet architectures are Recurrent Residual UNet,
Adversarial ResUNet. For the Recurrent Residual UNet, we
find recurrent connections in a neural network allow the net-
work to maintain a form of “memory” by using its output as
an additional input for the next step. This is particularly use-
ful when dealing with sequential data, where the order of data
points is important. In the context of image segmentation, re-
current connections can help the model capture temporal de-
pendencies in image sequences, such as changes in an agricul-
tural field over time. The progression continued with the intro-
duction of computationally efficient FracTALResUNet (Wald-
ner et al., 2021), which implemented blocks inspired by the
fractal network (?) as a backbone, that dramatically improved
feature extraction capabilities while maintaining computational
efficiency. Complementing these advances, object-centric frame-
works such as the adapted Mask R-CNN (He et al., 2017, Meyer
et al., 2020) have pushed boundaries by elegantly integrating
instance detection with pixel-precise segmentation, resulting in
closed topologically sound geometries that accurately represent
field boundaries in real-world agricultural landscapes.

Temporal dynamics has been addressed through cutting-edge
segmentation approaches that take advantage of satellite im-
age time series (SITS) to captute the sutbtle but distinctive crop
phenology patterns that emerge over growing seasons (Garnot
and Landrieu, 2021). These temporal models excel at distin-
guishing adjacent fields with similar crops at single time points
but divergent developmental trajectories.

Recently, the latest research is based on Transformers (Vaswani
et al., 2023), which have been shown to perform well with satel-
lite images for various tasks. This study (Aleissaee et al., 2023)
showed that more peer-reviewed studies used transformers in
Remote Sensing (RS). This paper (Xu et al., 2023) proposes a
new multi-swin mask transformer (MSMTransformer) method
based on Vision Transformers (ViT) as backbone phase. In ad-
dition, it’s worth mentioning the famous Transformers-based
model, SAM (Segment Any Things) (Kirillov et al., 2023). In
addition, authors in (Hadir et al., 2025) present a fine-tuning of
LoRA-SAM for agricultural parcel delineation.

The paradigm shift in agricultural parcel mapping methodolo-
gies has catalyzed a fundamental transformation in how we con-
ceptualize, implement, and automate boundary delineation pro-
cesses across diverse agricultural landscapes. These advance-
ments address the multifaceted challenges inherent in agricul-
tural land monitoring while establishing new benchmarks for
accuracy, efficiency, and scalability in boundary detection sys-
tems. Our research focuses specifically on evaluating the crit-
ical role of temporal spectral information dimensions in ag-
ricultural field boundary segmentation tasks. To accomplish
this, we designed a systematic comparative framework utilizing
variations of the established U-Net architecture—specifically
contrasting a standard 2D U-Net implementation optimized for
RGB imagery against a temporally-aware 3D U-Net variant en-
gineered to process multi-spectral data streams.

Our selection of U-Net as the foundational architecture for this
investigation is strategically justified by dual considerations:
first, its well-established position within the field, evidenced by

numerous successful implementations and architectural deriv-
atives specifically tailored for agricultural segmentation chal-
lenges (Ronneberger et al., 2015, Wagner et al., 2020, Waldner
et al., 2021); and second, its architectural transparency, which
provides an ideal experimental tested for isolating and quan-
tifying the specific contributions of temporal spectral inform-
ation processing without the confounding influence of overly
complex architectural components. Furthermore, this choice is
further supported by the recent study (Hadir et al., 2025), in
which deep learning models for agricultural parcel delineation
are categorized into different categories, with particular em-
phasis placed on U-Net and its derivatives due to their strong
performance and adaptability across varying levels of parcel
complexity.

2. Methods

2.1 Data description and generation

TempAgriBound as shown in Figurel, is a multi-temporal and
multi-spectral dataset constructed from Sentinel-2 RSI collec-
ted on three distinct dates in 2023: February 15th, June 15th,
and October 8th. Spectral bands B05, B06, B07, BO11 and
B012 with 20-meter spatial resolution were resample at 10 meter
using B-Spline interpolation.

The parcel boundaries were derived from the official french
Graphical Parcel Register (GPR) of 2023. These boundaries,
representing agricultural plot limits, rasterised to match the spa-
tial parameters of the RSl — including the 10-meter spatial res-
olution, coordinate reference system (CRS), and geographic ex-
tent.

The parcel boundaries were also converted into vector polygons
to create parcels and then rasterised as above to be combined
with a cloud mask was generated using the Scene Classification
Layer (SCL) provided by Sentinel-2. As the SCL is available at
20m resolution, it was resampled to 10m using nearest-neighbor
interpolation to align with the resolution of the multispectral
bands. Only cloud-free areas were retained in the dataset.

Specifically, image patches where at least 87classified as cloud-
free parcels and where the top-left corner reference pixels were
spaced at least 20 pixels apart were selected. This spatial separ-
ation criterion was applied to ensure diverse, non-overlapping
samples throughout the dataset.

The final dataset consists of 4,005 pairs of samples, each con-
sisting of a label file (limits_X_Y) and a multispectral remote
sensing image (remote_X_Y). Each RSI patch (remote_X_Y) is
a 3-date temporal stack with the shape (3, 9, 224, 224), where:

= The first dimension represents the three acquisition dates
(February, June, and October),

< The second dimension corresponds to nine Sentinel-2 bands:
B02 (490nm, Blue), B03 (560nm, Green), B04 (665nm,
Red), B05, B06 and BO7 (705nm, 740nm and 783nm, Red
Edge bands), B08 (842nm, NIR), B11 and B12 (1,610nm
and 2,190nm, SWIR)

= The final two dimensions are the spatial size of each thumb-
nail, covering 2.24 km x 2.24 km at a 10-meter resolution.
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This dataset provides a rich temporal and spectral representa-
tion of vegetation dynamics across agricultural parcels and is
particularly suited for tasks such as crop classification, vegeta-
tion health assessment, and change detection. Indeed, it gives
access to a wide range of wavelengths, especially near infrared
and short-wave infrared, that allow the construction of indicat-

ors as NDVI.

2.2 Neural Network architecture

UNet architectures (U-Net2D for RGB and vegetation bands
(B04, B08 and B11), while U-Net3D for temporal multispec-
tral imagery) were selected as baseline models for agricultural
boundary segmentation due to their architectural transparency
and proven effectiveness. This deliberate selection of stream-
lined network designs facilitates our primary research goal: to

isolate and rigorously evaluate the intrinsic capabilities of spectro-
temporal information in agricultural parcel delineation, without
architectural complexities masking these fundamental contribu-
tions. The temporal-spectral dimension introduces critical in-
formation by capturing phenological transitions across grow-
ing seasons, revealing boundary distinctions through differen-
tial vegetation response patterns that remain imperceptible in
single-timepoint analyses.

The U-Net’s elegant encoder-decoder structure with skip con-
ections provides, an ideal experimental. t%Iatform Ito_examine
ow the fusion of temporal dynamics with spectral signatures

can significantly enhance boundary detection performance. By

processing both the spatial relationships between pixels and
the characteristic spectral reflectance patterns across multiple
wavelengths and time points, we can identify distinctive temporal-
spectral signatures that emerge at field boundaries. These sig-
natures often manifest as discontinuities in crop growth cycles,
management practices, and soil characteristics that become pro-
nounced when analyzed across the temporal dimension. This
methodological approach ensures that performance improve-
ments can be directly attributed to the spectro-temporal inform-
ation’s inherent discriminative power, unobscured by complex
neural network architectures.

All UNet implementations were developed using PyTorch frame-
work. Training was conducted with Adam Optimizer at a learn-
ing rate of 1e-3, utilizing a batch size of 8 across 100 epochs on
NVIDIA TITAN V GPU hardware. Binary cross entropy (BCE)
served as the loss function for all model variants. The data-
set underwent random distribution splitting with proportions of
80/10/10 for training, validation, and testing respectively.

2.3 Metrics

In the context of land parcel delineation, evaluating methods
performance is important and a crucial point. Whereas global
metrics such as accuracy, F1 score and mloU assess global per-
formance, boundary metrics like BDE (Boundary Displacement
Error) focusing on pixels close to the limits can offer more rel-
evant information about method performances in the case of
parcel delineation(Unnikrishnan et al., 2007).

BDE measures specifically the average displacement between
the predicted parcel boundary and the ground truth boundary. It
quantifies the spatial accuracy of the delineated parcel bound-
aries. Lower BDE values indicate a closer match between pre-
dicted and actual boundaries, which means better precision in
boundary delineation.

To accomplish this, evaluation metrics are utilized to measure
accuracy and effectiveness. We evaluated all models in terms
of accuracy, F1 score, mloU (mean intersection over union) and
BDE (boundary displacement error) metrics.

_ TP + TN
Accuracy = (1)

TP +TN + FP +FN

__ 2t
F1 — Score = )
2TP + FP + FN

TP
Jaccardindex = ©)
TP + FP + FN
Or,
loU = Intersc.ectlon @)
Union

Where, True Positives (TP), True Negatives (TN), False Posit-
ives (FP), and False Negatives (FN).
171 = =
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Where:

- the distance (de) between a boundary pixel (bs) in the
obtained boundary image (Bs) and the closest pixel (bgt)
in the ground truth boundary image (Bgt) is used to define
the disagreement (error) of each boundary pixel.

= The lower the BDE value, the more accurate the segment-
ation results. By minimizing BDE, parcel delineation al-
gorithms can improve the accuracy and reliability of the
resulting parcel boundaries (Garcia-Pedrero et al., 2019).

3. Results & Discussion

TThe experimental results presented in Table 1 demonstrate
the significant impact of both architectural choices and input
data configurations on agricultural parcel delineation perform-
ance. Our analysis reveals clear patterns across the different
U-Net variants tested. The 3D U-Net models consistently out-
perform their 2D counterparts across all evaluation metrics by
a substantial margin. The four 3D implementations achieve
F1-Scores ranging from 0.80-0.85 compared to 0.42-0.63 for
2D models—a performance improvement of approximately 35-
50%. This substantial difference highlights the critical import-
ance of the 3D architecture’s ability to effectively process spa-
tial information.

Among the 3D implementations, the variant using temporal and
spectral dimensions achieves exceptional boundary delineation
with a minimal BDE of 0.17 alongside strong segmentation
metrics (F1-Score: 0.84, Accuracy: 0.95). Similarly, the U-
Net3D processing temporal and MSI data shows excellent per-
formance with the highest F1-Score (0.85) while maintaining
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(a) February (RGB)

(b) June (RGB)

(j) BO8 (705nm)

(m) NDVI (n) Veg bands (B04,B08,B11)

(c) October (RGB)

(o) Parcels limits

(p) Cloudless parcels

Figure 1. A sample of patch with the RGB image for the three dates, all bands, NDVI and veg. bands for october, and its
corresponding parcel limits used in the experiences

a competitive BDE (0.18). Interestingly, the U-Net3D using
only MSI data without temporal information still performs re-
markably well (F1-Score: 0.84, Accuracy: 0.95), challenging
our initial assumption about the critical importance of temporal
data. This suggests that the architectural advantages of 3D U-
Net for spatial processing may be more significant than previ-
ously thought, even when temporal information is absent.

For 2D architectures, we observe that input band selection sig-
nificantly impacts performance. The configuration incorpor-
ating vegetation bands with NDVI demonstrates the strongest
performance among 2D variants (F1-Score: 0.63, mloU: 0.70),

suggesting that NDVI provides valuable discriminative inform-
ation. In contrast, the RGB-based U-Net2D model shows poor
boundary precision with the highest BDE (1.57) despite reas-
onable overall accuracy (0.80), indicating a tradeoff between
global classification and boundary precision. The U-Net2D with

spectral dimension performs particularly poorly in accuracy (0.063),

suggesting potential issues with this specific configuration.

The technical necessity of reshaping multi-dimensional inputs
for U-Net2D models (from (3,4,224,224) to (3*4,224,224) for
vegetation bands + NDVI) likely contributes to their reduced
effectiveness, as this flattening may disrupt the natural relation-
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Figure 3. U-Net3D architectures
Method BDE | mloU | F1-Score | Accuracy
U-Net2D [stack temporal and RGB dim] 157 0.40 0.50 0.80
U-Net2D [stack temporal and spectral dim] 0.89 0.62 0.46 0.0.63
U-Net2D [stack temporal and veg bands: B04, B08, B11] | 0.89 0.59 0.42 0.69
U-Net2D [stack temporal and veg bands (add NDVI)] 0.88 0.70 0.63 0.70
U-Net3D temporal and veg bands (add NDVI) 0.26 0.67 0.80 0.93
U-Net3D temporal and MSI 0.18 0.70 0.85 0.97
U-Net3D [stack temporal and spectral dim] 0.17 0.73 0.84 0.95
U-Net3D MSI no tempral 0.25 0.73 0.84 0.95

Table 1. Performance comparison of U-Net variants for parcel delineation, evaluated using metrics such as Accuracy, F1-Score, Mean
Intersection over Union (mloU), and Boundary Displacement Error (BDE) across different dataset types.

ship between spectral bands. Conversely, 3D U-Net architec- tures (BDE range: 0.17-0.26) achieve substantially more pre-
tures can directly process the data in its native multi-dimensional  cise boundary localization compared to 2D approaches (BDE
structure, preserving these important spatial relationships. Bound- range: 0.88-1.57), regardless of whether temporal information
ary Displacement Error values demonstrate that 3D architec- is included.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-143-2026 | © Author(s) 2026. CC BY 4.0 License. 147



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 — 10th International Conference on Geolnformation Advances, 29-30 May 2025, Marrakech, Morocco

The superior performance of 3D U-Net variants can be attrib-
uted to their ability to directly model spatial relationships rather
than flattening dimensions. While we previously emphasized
the importance of temporal modeling, the strong performance
of the non-temporal 3D MSI model suggests that the archi-
tectural benefits of 3D convolutions extend beyond temporal
modeling to better spatial feature extraction. The U-Net archi-
tecture’s skip connections effectively transfer spatial details in
both implementations, but the 3D variants appear to maintain
better context through these connections.

Our findings demonstrate that the architectural capacity to pro-
cess spatial relationships in their native three-dimensional struc-
ture represents the dominant factor determining overall perform-
ance in agricultural parcel delineation. While input band selec-
tion produces measurable variations within each architectural
group (with vegetation bands + NDVI consistently outperform-
ing other band combinations in 2D models), the dimensional
handling of data creates a more substantial performance gap
between model families. The comparable performance between
temporal and non-temporal 3D models suggests that future re-
search should carefully evaluate whether the increased com-
plexity of temporal data processing is justified by performance
gains in specific agricultural monitoring applications.

4. Conclusion

This study presents TempAgriBound, a novel temporal multis-
pectral dataset for agricultural parcel delineation, along with
comprehensive performance evaluations of 2D and 3D U-Net
architectures. Our experiments demonstrate that incorporat-
ing temporal information significantly enhances boundary de-
tection accuracy in agricultural settings, with 3D U-Net mod-
els consistently outperforming their 2D counterparts across all
evaluation metrics.

The experimental results clearly illustrate that the 3D U-Net
architecture leveraging both temporal and spectral dimensions
achieves superior performance with a minimal Boundary Dis-
placement Error of 0.17 and strong segmentation metrics (F1-
Score of 0.84, Accuracy of 0.95). This marked improvement
over the 2D U-Net variants (where the best model achieved
only 0.63 F1-Score with a BDE of 0.88) underscores the crit-
ical importance of capturing phenological changes throughout
the growing season for precise parcel delineation.

We observe that while spectral band selection contributes to
performance variations, the architectural capacity to process
temporal relationships represents the dominant factor determ-
ining overall performance. The substantial performance gap
between 2D and 3D architectures (with 3D models achieving
F1-Scores approximately 20-40% higher) confirms our hypo-
thesis that temporal dynamics provide essential contextual in-
formation that significantly enhances both overall segmentation
quality and boundary precision.

The TempAgriBound dataset and our optimized 3D U-Net ap-
proach offer several practical advantages for agricultural monit-
oring systems. First, they enable more accurate cadastral map-
ping in regions with complex crop rotations and fragmented
landholdings, such as Brittany, France. Second, the improved
boundary detection precision supports fine-grained analysis for
precision agriculture applications. Finally, the methodology’s
ability to leverage freely available Sentinel-2 imagery ensures
scalability and accessibility across diverse agricultural landscapes

globally. Future work should explore the transferability of our
approach to other regions with different agricultural practices
and seasonal patterns.

Additionally, incorporating auxiliary data sources such as di-
gital elevation models or soil maps could further enhance bound-
ary detection in challenging scenarios where spectral-temporal
information alone may be insufficient.

In conclusion, this study advances the field of agricultural par-
cel delineation by demonstrating the synergistic value of tem-
poral resolution and spectral diversity in automated mapping.
The proposed methodology provides a foundation for develop-
ing more robust land monitoring systems that can support sus-
tainable agricultural practices, environmental conservation ef-
forts, and evidence-based policy decisions.
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