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Abstract 

Agricultural parcel delineation is critical for generating cadastral maps that underpin sustainable land management, precision ag- 

riculture, and data-driven policymaking. While satellite imaging provides a scalable solution, most existing approaches rely on 

static RGB or single-date spectral data, neglecting the temporal dynamics of agricultural landscapes. This study introduces Tem- 

pAgriBound, a novel temporal multispectral dataset designed to advance parcel boundary detection by capturing both spectral 

and phenological features. The dataset comprises a dense time-series of Sentinel-2 multispectral imagery (10 bands at 10m res- 

olution) and derived spectral indices (NDVI, NDWI, SAVI, etc.), spanning the entire 2023 growing season in Brittany, France (a 

region characterized by diverse crop rotations and fragmented landholdings). We propose a 3D U-Net architecture optimized for 

spatiotemporal feature extraction, which processes multi-spectral time stacks to exploit crop growth stages and seasonal spectral 

variations. For comparison, a 2D U-Net baseline using single-date RGB composites was implemented. By systematically evaluat- 

ing these models, we aim to determine the differential effects of temporal spectral information on parcel boundary detection. These 

findings underscore the synergistic value of temporal resolution and spectral diversity in automated parcel mapping, particularly in 

regions with complex crop patterns. The study advances scalable precision agriculture tools and provides actionable insights for 

integrating temporal-spectral data into national land registries. 

1. Introduction

Cartographic delimitation of agricultural land parcels historic- 

ally represented a complex and resource-intensive cartograph- 

ical challenge based on manual geospatial measurement meth- 

odologies. Before the emergence of computational visual re- 

cognition and machine learning algorithmic approaches, agri- 

cultural land boundary delineation required extensive human 

intervention and sophisticated geodetic instrumentation, includ- 

ing precision technologies such as theodolites, total stations, 

and Global Positioning System (GPS) receivers (van der Molen, 

2002). 

Remote Sensing Images (RSI), with its improved spatial and 

spectral resolution capabilities alongside consistent temporal 

sampling frequencies, is vital in providing the required multi- 

dimensional information for this objective. Modern satellite 

constellations deliver systematic revisit capabilities ranging from 

daily to biweekly coverage, creating dense time series that cap- 

ture both abrupt and gradual boundary transitions. Spectral in- 

formation, captured across multiple wavelength bands, offers 

unique insights by differentiating vegetation types, crop health, 

soil moisture, and land use characteristics, thereby enabling 

more precise and automated boundary identification beyond tra- 

ditional visual mapping techniques (Yu et al., 2024). When 

combined with multi-temporal analysis frameworks, these spec- 

tral signatures can be traced through time to reveal persistent 

boundary features while filtering ephemeral patterns, signific- 

antly enhancing delineation accuracy and consistency. 

The diversity in agricultural parcel complexity presents a unique 

challenge in the field. In Europe, particularly in countries like 

France, agricultural landscapes are characterized by intricate 

patterns of fragmented parcels, shaped by centuries of inherit- 

ance laws and traditional farming practices (Bartels et al., 2024). 

This contrasts sharply with regions such as North America or 

Australia, where industrial farming techniques have led to lar- 

ger and more consolidated parcels. These regional variations, 

rooted in historical, legal and geographical factors, significantly 

influence the effectiveness of parcel delineation methods and 

underscore the importance of developing robust and adaptable 

approaches. 

The temporal dimension adds critical depth to this analysis, 

such as boundary delineation, crop rotation patterns, and long- 

term land use transitions occurring at multiple timescales. Agri- 

cultural boundaries experience both cyclical changes (seasonal 

crop patterns) and linear transformations (gradual field expan- 

sions or consolidations), creating a four-dimensional problem 

that static mapping approaches fail to address (Aung et al., 2020). 

When properly quantified, this temporality can be leveraged as 

a force multiplier in boundary detection accuracy, enabling de- 

tection of subtle boundary shifts that would otherwise remain 

imperceptible in single-timepoint analyses. 

In the evolving technical landscape, deep convolutional neural 

networks (CNNs) have revolutionized the field of computer vis- 

ion, demonstrating unprecedented performance across diverse 

applications including image classification (Adegun et al., 2023, 

Gupta et al., 2021), object detection (Gui et al., 2024, Zhang et 

al., 2023), semantic segmentation (Hadir et al., 2024, Li et al., 

2024), and land cover/land use mapping (Sertel et al., 2022, 

Fayaz et al., 2024). The domain of agricultural parcel delin- 

eation has been particularly transformed by these advances, where 

deep learning methodologies have exhibited exceptional prowess 

in automatically extracting and defining field boundaries through 

sophisticated learning of multidimensional representations, spec- 

tral signatures, textural patterns, temporal dynamics, and spatial 

relationships, from remote sensing imaging (RSI). 

The architectural evolution in this domain began with the ground- 

breaking U-Net (Ronneberger et al., 2015) framework, which 
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established fundamental encoding-decoding principles with skip 

connections. This foundation was subsequently refined through 

architectures like ResUNet-a (Wagner et al., 2020), which in- 

corporated critical innovations including atrous convolutions for 

multi-scale feature extraction and pyramid scene parsing pool- 

ing to enhance contextual awareness. Authors propose new de- 

rivatives of ResUNet architectures are Recurrent Residual UNet, 

Adversarial ResUNet. For the Recurrent Residual UNet, we 

find recurrent connections in a neural network allow the net- 

work to maintain a form of “memory” by using its output as 

an additional input for the next step. This is particularly use- 

ful when dealing with sequential data, where the order of data 

points is important. In the context of image segmentation, re- 

current connections can help the model capture temporal de- 

pendencies in image sequences, such as changes in an agricul- 

tural field over time. The progression continued with the intro- 

duction of computationally efficient FracTALResUNet (Wald- 

ner et al., 2021), which implemented blocks inspired by the 

fractal network (?) as a backbone, that dramatically improved 

feature extraction capabilities while maintaining computational 

efficiency. Complementing these advances, object-centric frame- 

works such as the adapted Mask R-CNN (He et al., 2017, Meyer 

et al., 2020) have pushed boundaries by elegantly integrating 

instance detection with pixel-precise segmentation, resulting in 

closed topologically sound geometries that accurately represent 

field boundaries in real-world agricultural landscapes. 

Temporal dynamics has been addressed through cutting-edge 

segmentation approaches that take advantage of satellite im- 

age time series (SITS) to captute the sutbtle but distinctive crop 

phenology patterns that emerge over growing seasons (Garnot 

and Landrieu, 2021). These temporal models excel at distin- 

guishing adjacent fields with similar crops at single time points 

but divergent developmental trajectories. 

Recently, the latest research is based on Transformers (Vaswani 

et al., 2023), which have been shown to perform well with satel- 

lite images for various tasks. This study (Aleissaee et al., 2023) 

showed that more peer-reviewed studies used transformers in 

Remote Sensing (RS). This paper (Xu et al., 2023) proposes a 

new multi-swin mask transformer (MSMTransformer) method 

based on Vision Transformers (ViT) as backbone phase. In ad- 

dition, it’s worth mentioning the famous Transformers-based 

model, SAM (Segment Any Things) (Kirillov et al., 2023). In 

addition, authors in (Hadir et al., 2025) present a fine-tuning of 

LoRA-SAM for agricultural parcel delineation. 

The paradigm shift in agricultural parcel mapping methodolo- 

gies has catalyzed a fundamental transformation in how we con- 

ceptualize, implement, and automate boundary delineation pro- 

cesses across diverse agricultural landscapes. These advance- 

ments address the multifaceted challenges inherent in agricul- 

tural land monitoring while establishing new benchmarks for 

accuracy, efficiency, and scalability in boundary detection sys- 

tems. Our research focuses specifically on evaluating the crit- 

ical role of temporal spectral information dimensions in ag- 

ricultural field boundary segmentation tasks. To accomplish 

this, we designed a systematic comparative framework utilizing 

variations of the established U-Net architecture—specifically 

contrasting a standard 2D U-Net implementation optimized for 

RGB imagery against a temporally-aware 3D U-Net variant en- 

gineered to process multi-spectral data streams. 

Our selection of U-Net as the foundational architecture for this 

investigation is strategically justified by dual considerations: 

first, its well-established position within the field, evidenced by 

numerous successful implementations and architectural deriv- 

atives specifically tailored for agricultural segmentation chal- 

lenges (Ronneberger et al., 2015, Wagner et al., 2020, Waldner 

et al., 2021); and second, its architectural transparency, which 

provides an ideal experimental tested for isolating and quan- 

tifying the specific contributions of temporal spectral inform- 

ation processing without the confounding influence of overly 

complex architectural components. Furthermore, this choice is 

further supported by the recent study (Hadir et al., 2025), in 

which deep learning models for agricultural parcel delineation 

are categorized into different categories, with particular em- 

phasis placed on U-Net and its derivatives due to their strong 

performance and adaptability across varying levels of parcel 

complexity. 

 

2. Methods 

 

2.1 Data description and generation 

 

TempAgriBound as shown in Figure1, is a multi-temporal and 

multi-spectral dataset constructed from Sentinel-2 RSI collec- 

ted on three distinct dates in 2023: February 15th, June 15th, 

and October 8th. Spectral bands B05, B06, B07, B011 and 

B012 with 20-meter spatial resolution were resample at 10 meter 

using B-Spline interpolation. 

 

The parcel boundaries were derived from the official french 

Graphical Parcel Register (GPR) of 2023. These boundaries, 

representing agricultural plot limits, rasterised to match the spa- 

tial parameters of the RSI — including the 10-meter spatial res- 

olution, coordinate reference system (CRS), and geographic ex- 

tent. 

 

The parcel boundaries were also converted into vector polygons 

to create parcels and then rasterised as above to be combined 

with a cloud mask was generated using the Scene Classification 

Layer (SCL) provided by Sentinel-2. As the SCL is available at 

20m resolution, it was resampled to 10m using nearest-neighbor 

interpolation to align with the resolution of the multispectral 

bands. Only cloud-free areas were retained in the dataset. 

 

Specifically, image patches where at least 87classified as cloud- 

free parcels and where the top-left corner reference pixels were 

spaced at least 20 pixels apart were selected. This spatial separ- 

ation criterion was applied to ensure diverse, non-overlapping 

samples throughout the dataset. 

 

The final dataset consists of 4,005 pairs of samples, each con- 

sisting of a label file (limits X Y) and a multispectral remote 

sensing image (remote X Y). Each RSI patch (remote X Y) is 

a 3-date temporal stack with the shape (3, 9, 224, 224), where: 

 

• The first dimension represents the three acquisition dates 

(February, June, and October), 

 

• The second dimension corresponds to nine Sentinel-2 bands: 

B02 (490nm, Blue), B03 (560nm, Green), B04 (665nm, 

Red), B05, B06 and B07 (705nm, 740nm and 783nm, Red 

Edge bands), B08 (842nm, NIR), B11 and B12 (1,610nm 

and 2,190nm, SWIR) 

 

• The final two dimensions are the spatial size of each thumb- 

nail, covering 2.24 km × 2.24 km at a 10-meter resolution. 
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This dataset provides a rich temporal and spectral representa- 

tion of vegetation dynamics across agricultural parcels and is 

particularly suited for tasks such as crop classification, vegeta- 

tion health assessment, and change detection. Indeed, it gives 

access to a wide range of wavelengths, especially near infrared 

and short-wave infrared, that allow the construction of indicat- 

To accomplish this, evaluation metrics are utilized to measure 

accuracy and effectiveness. We evaluated all models in terms 

of accuracy, F1 score, mIoU (mean intersection over union) and 

BDE (boundary displacement error) metrics. 

ors as NDVI. 

 

2.2 Neural Network architecture 

UNet architectures (U-Net2D for RGB and vegetation bands 

(B04, B08 and B11), while U-Net3D for temporal multispec- 

tral imagery) were selected as baseline models for agricultural 

boundary segmentation due to their architectural transparency 

and proven effectiveness. This deliberate selection of stream- 

lined network designs facilitates our primary research goal: to 

Accuracy = 
TP + TN 

TP + TN + FP + FN 

 
 2TP  

F 1 − Score = 
2TP + FP + FN 

 
 

 
TP 

(1) 

 

 

 

(2) 

isolate and rigorously evaluate the intrinsic capabilities of spectro- 

temporal information in agricultural parcel delineation, without 

architectural complexities masking these fundamental contribu- 

 

 
Or, 

JaccardIndex = (3) 
TP + FP + FN 

tions. The temporal-spectral dimension introduces critical in- 

formation by capturing phenological transitions across grow- 

ing seasons, revealing boundary distinctions through differen- 

IoU = 
Intersection 

Union 
(4) 

tial vegetation response patterns that remain imperceptible in 

single-timepoint analyses. 
Where, True Positives (TP), True Negatives (TN), False Posit- 

ives (FP), and False Negatives (FN). 

The U-Net’s elegant encoder-decoder structure with skip con- BDE = 
1 
, 
 1  Σ Σ  

min{d  
(ps , p t)}+ 

nections provides an ideal experimental platform to examine 
how the fusion of temporal dynamics with spectral signatures 2  |Bs| 

 
pss∈Bs pgt∈Bgt 

E s g 
 (5) 

can significantly enhance boundary detection performance. By  1  Σ 
Σ 

min{d (p t, ps )}

, 

processing both the spatial relationships between pixels and 

the characteristic spectral reflectance patterns across multiple 

wavelengths and time points, we can identify distinctive temporal- 

spectral signatures that emerge at field boundaries. These sig- 

natures often manifest as discontinuities in crop growth cycles, 

 

 

Where: 

|Bgt|  

pgt∈Bgt ps∈Bs 

E  g s 

management practices, and soil characteristics that become pro- 

nounced when analyzed across the temporal dimension. This 

methodological approach ensures that performance improve- 

ments can be directly attributed to the spectro-temporal inform- 

ation’s inherent discriminative power, unobscured by complex 

neural network architectures. 

 

All UNet implementations were developed using PyTorch frame- 

work. Training was conducted with Adam Optimizer at a learn- 

ing rate of 1e-3, utilizing a batch size of 8 across 100 epochs on 

NVIDIA TITAN V GPU hardware. Binary cross entropy (BCE) 

served as the loss function for all model variants. The data- 

set underwent random distribution splitting with proportions of 

80/10/10 for training, validation, and testing respectively. 

 

2.3 Metrics 

 

In the context of land parcel delineation, evaluating methods 

performance is important and a crucial point. Whereas global 

metrics such as accuracy, F1 score and mIoU assess global per- 

formance, boundary metrics like BDE (Boundary Displacement 

Error) focusing on pixels close to the limits can offer more rel- 

evant information about method performances in the case of 

parcel delineation(Unnikrishnan et al., 2007). 

 

BDE measures specifically the average displacement between 

the predicted parcel boundary and the ground truth boundary. It 

quantifies the spatial accuracy of the delineated parcel bound- 

aries. Lower BDE values indicate a closer match between pre- 

dicted and actual boundaries, which means better precision in 

boundary delineation. 

• the distance (dE ) between a boundary pixel (bs) in the 

obtained boundary image (Bs) and the closest pixel (bgt) 
in the ground truth boundary image (Bgt) is used to define 

the disagreement (error) of each boundary pixel. 

• The lower the BDE value, the more accurate the segment- 

ation results. By minimizing BDE, parcel delineation al- 

gorithms can improve the accuracy and reliability of the 

resulting parcel boundaries (Garcia-Pedrero et al., 2019). 

 

3. Results & Discussion 

 

TThe experimental results presented in Table 1 demonstrate 

the significant impact of both architectural choices and input 

data configurations on agricultural parcel delineation perform- 

ance. Our analysis reveals clear patterns across the different 

U-Net variants tested. The 3D U-Net models consistently out- 

perform their 2D counterparts across all evaluation metrics by 

a substantial margin. The four 3D implementations achieve 

F1-Scores ranging from 0.80-0.85 compared to 0.42-0.63 for 

2D models—a performance improvement of approximately 35- 

50%. This substantial difference highlights the critical import- 

ance of the 3D architecture’s ability to effectively process spa- 

tial information. 

Among the 3D implementations, the variant using temporal and 

spectral dimensions achieves exceptional boundary delineation 

with a minimal BDE of 0.17 alongside strong segmentation 

metrics (F1-Score: 0.84, Accuracy: 0.95). Similarly, the U- 

Net3D processing temporal and MSI data shows excellent per- 

formance with the highest F1-Score (0.85) while maintaining 
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(a) February (RGB) (b) June (RGB) (c) October (RGB) (d) B02 (490nm) 
 

(e) B03 (560nm) (f) B04 (665nm) (g) B05 (705nm) (h) B06 (705nm) 
 

(i) B07 (705nm) (j) B08 (705nm) (k) B11 (705nm) (l) B12 (705nm) 
 

(m) NDVI (n) Veg bands (B04,B08,B11) (o) Parcels limits (p) Cloudless parcels 

 

Figure 1. A sample of patch with the RGB image for the three dates, all bands, NDVI and veg. bands for october, and its 

corresponding parcel limits used in the experiences 
 

a competitive BDE (0.18). Interestingly, the U-Net3D using 

only MSI data without temporal information still performs re- 

markably well (F1-Score: 0.84, Accuracy: 0.95), challenging 

our initial assumption about the critical importance of temporal 

data. This suggests that the architectural advantages of 3D U- 

Net for spatial processing may be more significant than previ- 

ously thought, even when temporal information is absent. 

 

For 2D architectures, we observe that input band selection sig- 

nificantly impacts performance. The configuration incorpor- 

ating vegetation bands with NDVI demonstrates the strongest 

performance among 2D variants (F1-Score: 0.63, mIoU: 0.70), 

suggesting that NDVI provides valuable discriminative inform- 

ation. In contrast, the RGB-based U-Net2D model shows poor 

boundary precision with the highest BDE (1.57) despite reas- 

onable overall accuracy (0.80), indicating a tradeoff between 

global classification and boundary precision. The U-Net2D with 

spectral dimension performs particularly poorly in accuracy (0.063), 

suggesting potential issues with this specific configuration. 

 

The technical necessity of reshaping multi-dimensional inputs 

for U-Net2D models (from (3,4,224,224) to (3*4,224,224) for 

vegetation bands + NDVI) likely contributes to their reduced 

effectiveness, as this flattening may disrupt the natural relation- 
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Figure 2. U-Net2D architectures 
 

Figure 3. U-Net3D architectures 
 

Method BDE mIoU F1-Score Accuracy 

U-Net2D [stack temporal and RGB dim] 1.57 0.40 0.50 0.80 

U-Net2D [stack temporal and spectral dim] 0.89 0.62 0.46 0.0.63 

U-Net2D [stack temporal and veg bands: B04, B08, B11] 0.89 0.59 0.42 0.69 

U-Net2D [stack temporal and veg bands (add NDVI)] 0.88 0.70 0.63 0.70 

U-Net3D temporal and veg bands (add NDVI) 0.26 0.67 0.80 0.93 

U-Net3D temporal and MSI 0.18 0.70 0.85 0.97 

U-Net3D [stack temporal and spectral dim] 0.17 0.73 0.84 0.95 

U-Net3D MSI no tempral 0.25 0.73 0.84 0.95 

Table 1. Performance comparison of U-Net variants for parcel delineation, evaluated using metrics such as Accuracy, F1-Score, Mean 

Intersection over Union (mIoU), and Boundary Displacement Error (BDE) across different dataset types. 
 

ship between spectral bands. Conversely, 3D U-Net architec- 

tures can directly process the data in its native multi-dimensional 

structure, preserving these important spatial relationships. Bound- 

ary Displacement Error values demonstrate that 3D architec- 

tures (BDE range: 0.17-0.26) achieve substantially more pre- 

cise boundary localization compared to 2D approaches (BDE 

range: 0.88-1.57), regardless of whether temporal information 

is included. 
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The superior performance of 3D U-Net variants can be attrib- 

uted to their ability to directly model spatial relationships rather 

than flattening dimensions. While we previously emphasized 

the importance of temporal modeling, the strong performance 

of the non-temporal 3D MSI model suggests that the archi- 

tectural benefits of 3D convolutions extend beyond temporal 

modeling to better spatial feature extraction. The U-Net archi- 

tecture’s skip connections effectively transfer spatial details in 

both implementations, but the 3D variants appear to maintain 

better context through these connections. 

Our findings demonstrate that the architectural capacity to pro- 

cess spatial relationships in their native three-dimensional struc- 

ture represents the dominant factor determining overall perform- 

ance in agricultural parcel delineation. While input band selec- 

tion produces measurable variations within each architectural 

group (with vegetation bands + NDVI consistently outperform- 

ing other band combinations in 2D models), the dimensional 

handling of data creates a more substantial performance gap 

between model families. The comparable performance between 

temporal and non-temporal 3D models suggests that future re- 

search should carefully evaluate whether the increased com- 

plexity of temporal data processing is justified by performance 

gains in specific agricultural monitoring applications. 

 

4. Conclusion 

 

This study presents TempAgriBound, a novel temporal multis- 

pectral dataset for agricultural parcel delineation, along with 

comprehensive performance evaluations of 2D and 3D U-Net 

architectures. Our experiments demonstrate that incorporat- 

ing temporal information significantly enhances boundary de- 

tection accuracy in agricultural settings, with 3D U-Net mod- 

els consistently outperforming their 2D counterparts across all 

evaluation metrics. 

The experimental results clearly illustrate that the 3D U-Net 

architecture leveraging both temporal and spectral dimensions 

achieves superior performance with a minimal Boundary Dis- 

placement Error of 0.17 and strong segmentation metrics (F1- 

Score of 0.84, Accuracy of 0.95). This marked improvement 

over the 2D U-Net variants (where the best model achieved 

only 0.63 F1-Score with a BDE of 0.88) underscores the crit- 

ical importance of capturing phenological changes throughout 

the growing season for precise parcel delineation. 

We observe that while spectral band selection contributes to 

performance variations, the architectural capacity to process 

temporal relationships represents the dominant factor determ- 

ining overall performance. The substantial performance gap 

between 2D and 3D architectures (with 3D models achieving 

F1-Scores approximately 20-40% higher) confirms our hypo- 

thesis that temporal dynamics provide essential contextual in- 

formation that significantly enhances both overall segmentation 

quality and boundary precision. 

The TempAgriBound dataset and our optimized 3D U-Net ap- 

proach offer several practical advantages for agricultural monit- 

oring systems. First, they enable more accurate cadastral map- 

ping in regions with complex crop rotations and fragmented 

landholdings, such as Brittany, France. Second, the improved 

boundary detection precision supports fine-grained analysis for 

precision agriculture applications. Finally, the methodology’s 

ability to leverage freely available Sentinel-2 imagery ensures 

scalability and accessibility across diverse agricultural landscapes 

globally. Future work should explore the transferability of our 

approach to other regions with different agricultural practices 

and seasonal patterns. 

Additionally, incorporating auxiliary data sources such as di- 

gital elevation models or soil maps could further enhance bound- 

ary detection in challenging scenarios where spectral-temporal 

information alone may be insufficient. 

In conclusion, this study advances the field of agricultural par- 

cel delineation by demonstrating the synergistic value of tem- 

poral resolution and spectral diversity in automated mapping. 

The proposed methodology provides a foundation for develop- 

ing more robust land monitoring systems that can support sus- 

tainable agricultural practices, environmental conservation ef- 

forts, and evidence-based policy decisions. 
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