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Abstract

Accurate urban climate modeling is crucial for addressing the growing impacts of urban heat islands (UHI) and climate change.
Physics-based tools such as the Urban Weather Generator (UWG) are widely used but often limited by high parameterization needs
and a lack of specialized data. In this study, we develop a hybrid framework combining UWG simulations with deep learning,
introducing two models: NUWG-Sim (Neural Urban Weather Generator on Simulations), trained solely on simulated data, and
NUWG-city, which is fine-tuned with ground weather station data. To systematically evaluate model performance across hetero-
geneous urban contexts, we structure our experiments around Local Climate Zones (LCZs) in Toulouse, France. Our methodology
involves generating over 3400 UWG initialization files, simulating urban air temperatures time series for diverse surface paramet-
ers, and training a neural model on these series. We then fine-tune the model with observed data from selected weather stations,
analyzing how the number and diversity of stations environments impact performance on unseen stations from different LCZs.
Results show that even limited fine-tuning significantly improves performance, particularly when training includes stations from
LCZs similar to the test set. The approach highlights the potential of physics-informed neural models for city-specific urban climate

monitoring.

1. Introduction

Earth’s climate has naturally fluctuated over millions of years,
with long periods of warming and cooling, shaping ecosystems
and life on the planet (Zachos et al., 2001). In contrast, current
climate change is unfolding at an unprecedented pace, primar-
ily due to human activities (Trenberth, 2018). A key driver of
this shift is global warming, a sustained rise in average global
temperatures with far-reaching consequences.

Urban areas are particularly vulnerable to climate change im-
pacts, especially through the Urban Heat Island (UHI) effect.
The effects of heatwaves are especially severe in urbanised
areas. These environments, predominantly composed of ar-
tificial surfaces, amplify rising temperatures and give rise to
the UHI phenomenon characterized by higher air temperatures
in cities compared to their rural surroundings (Sobrino et al.,
2013). The intensity of the UHI varies within a city due to its
heterogeneous urban form (Gao et al., 2022), highlighting the
need to pinpoint neighbourhoods that are particularly vulner-
able in order to implement targeted heat mitigation strategies.
While air temperature is commonly measured in urban settings,
fixed weather stations cover only limited areas and fall short
in capturing the fine-scale spatial variability of UHI. Policy-
makers would greatly benefit from high-resolution air temper-
ature maps that offer a detailed overview of thermal patterns
across the city. As (Buttsta’dt et al., 2011) notes, such spatially
refined data are crucial for identifying hotspots and understand-
ing the underlying drivers of urban thermal conditions.

Modeling urban climates with high spatial and temporal resol-
ution is key for city planning and mitigation strategies. On one
hand, tools like the Urban Weather Generator (UWG) offering
a physics-based approach, are limited by complex parameteriz-
ation and struggle to adapt to real-time urban heterogeneity due
to their high computational cost. In contrast, physical models,

grounded in atmospheric laws, offer greater reliability across
diverse conditions (Ja'nicke et al., 2021). On the other hand,
data-driven models are efficient and scalable for estimating air
temperatures, making them ideal for real-time and large-scale
applications. However, they often lack physical interpretability
and may struggle with rare weather events or unfamiliar envir-
onments. With the increasing availability of urban climate data
and advances in machine learning, hybrid models can leverage
both physics-based model and measured data.

This study proposes a novel hybrid modeling framework that
couples UWG with deep learning. We develop two mod-
els: NUWG-Sim, trained purely on synthetic data from UWG,
and NUWG-city, fine-tuned using observations from urban
weather stations. To analyze the influence of urban heterogen-
eity, we structure the evaluation around Local Climate Zones
(LCZs) (Stewart and Oke, 2012), a standardized classification
of urban and natural landscapes based on both their physical
characteristics and their thermal behavior. The main contribu-
tions of this study are:

e A neural network trained to simulate UWG outputs by
varying key surface parameters : NUWG-Sim

¢ A neural network trained on UWG simulations, then fine-
tuned on real observations: NUWG-City

¢ A systematic evaluation of fine-tuning strategies based on
LCZ composition.

2. Methodology
2.1 Simulated Data Generation with UWG

The generation of simulated data is crucial for training the
neural model, as it provides a foundational dataset with con-
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trolled conditions. To ensure that the model is trained effect-
ively and can generalize across a range of urban environments,
we adopted a detailed experimental framework using the UWG,
a widely recognized tool for simulating urban microclimates. It
is particularly well-suited for simulating urban air temperatures
based on urban surface characteristics. Using physically based
equations, it extrapolates air temperature values in urban areas
from a well-chosen rural reference station (Bueno et al., 2013).
This subsection delves into the step-by-step process of how we
generated the simulated data and highlights the challenges and
solutions encountered throughout the experiment.

The first step in generating the simulated data involves defining
the urban surface characteristics that influence air temperature.
The key parameters selected for this experiment were build-
ing density, building height, vertical-to-horizontal ratio (Ver-
ToHor), grass cover, and tree cover. These parameters were
chosen based on their significant impact on the urban heat is-
land effect, which is a primary focus of the study. A compre-
hensive sensitivity analysis was conducted on these paramet-
ers to understand their individual contributions to the simulated
urban air temperatures (Hamdi et al., 2024). The next phase
involved varying these parameters within the typical ranges ob-
served in urban environments. These variations were informed
by real-world data and represented a wide spectrum of urban
configurations. To simulate diverse urban environments accur-
ately, a total of 3450 initialization files were generated, each
corresponding to a unique combination of these surface and
morphological parameters. Each simulation covered a 3-day
period between May and September 2020, a timeframe selec-
ted to capture representative summer conditions that strongly
influence urban climate dynamics.

A key challenge in this process was managing the interdepend-
encies between certain parameters. For example, the vertical-
to-horizontal (verToHor) ratio cannot be sampled independ-
ently over a fixed range, as it depends on building height and
fac,ade length. Sampling it randomly would lead to many un-
realistic and physically inconsistent urban configurations. To
address this, we adopted a more controlled strategy by training
a linear regression model to predict VerToHor based on other
parameters, including building height, building density, grass
cover, and tree cover. This method ensured that all generated
values remained coherent and representative of actual urban en-
vironments.

Additionally, ensuring the physical validity of each parameter
combination was essential during the simulation process. Given
the wide range of configurations explored, some led to unreal-
istic outputs, such as abnormally high or low temperatures. To
address this, we implemented a set of pre-simulation checks to
filter out combinations that did not align with physically plaus-
ible urban conditions. This allowed us to retain only consistent
and reliable simulations for model training.

The resulting simulated dataset formed the backbone of the
training data for the neural model. By systematically varying
the key urban surface parameters, we ensured that the model
was exposed to a wide range of urban conditions, increasing
its ability to generalize to unseen environments. However, the
simulated data alone was not sufficient. It needed to be com-
bined with real-world data to ensure that the final model could
accurately reflect actual urban climates, which we address in
subsequent sections.

In conclusion, the simulated data generation process using
UWG was an essential step in the development of the final

neural model. It not only provided a large and diverse data-
set for model training but also highlighted the challenges in-
volved in simulating urban climates, such as managing para-
meter dependencies and computational anomalies. The insights
gained from this simulation process have been invaluable in
refining the experimental design and preparing the dataset for
subsequent integration with real-world data.

2.2 Data Preprocessing

Data preprocessing plays a critical role in preparing the data-
set for training machine learning models. This step is essential
for ensuring that the data is clean, complete, and in a suitable
format for model ingestion.

Real-world data were preprocessed with careful attention to
handling missing values, outliers, and temporal consistency, as
well as aligning data from various sources. The primary goal of
the preprocessing stage was to make sure that the dataset used
to train and test the model would accurately represent the un-
derlying urban weather conditions while minimizing the risk of
introducing biases that could negatively affect model perform-
ance.

Handling Missing Data and Outliers: One of the primary
challenges in preprocessing was dealing with missing data,
which is a common occurrence in real-world weather datasets.
Missing values can arise from sensor malfunctions, data trans-
mission errors, or simply due to environmental factors that pre-
vent measurements from being recorded. In the case of both
rural and urban weather stations, missing data points were iden-
tified and handled based on the specific characteristics of the
data and the station.

For rural stations, data gaps were filled using linear interpol-
ation, provided that there were no more than five consecutive
missing data points within a given 15-minute interval. This in-
terpolation method ensured that the temporal continuity of the
data was preserved while minimizing the introduction of artifi-
cial trends. However, in cases where the missing data exceeded
five consecutive points, no interpolation was applied, and the
missing values were retained as ‘NaN‘ (Not a Number). This
cautious approach prevented the imposition of unrealistic data
points and maintained the integrity of the dataset.

For urban stations, missing values did not pose a significant
challenge, as the absence of certain data points merely resul-
ted in less available data for training, validation, and testing.
No interpolation was performed for urban stations; instead, the
missing values were simply ignored during model training, and
the model was trained with the available data. This approach
was consistent with the general principle that real-world urban
weather data often have gaps, and machine learning models
should be capable of handling such scenarios without overfit-
ting or biasing the results.

In addition to managing missing values, we addressed outliers
in both observed and simulated temperature data. For rural and
urban stations, outliers were identified using fixed thresholds,
set to missing, and interpolated. Simulated data from UWG
often exhibit early morning anomalies caused by instabilities
during the night-to-day transition. These were corrected by de-
tecting abrupt slope changes using first and second derivatives;
affected values and their neighbors were masked and interpol-
ated with a second-degree polynomial. This preprocessing step
improves data continuity and enhances the quality of inputs for
the neural model training.
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Temporal Aggregation: Weather station data, originally re-
corded at 15-minute intervals, were aggregated to hourly inter-
vals to match the temporal resolution used by UWG. This ag-
gregation ensured consistency across datasets. Variable-specific
methods were applied:

For variables like temperature, humidity, and pressure, which
are continuous and typically show gradual changes, the data
were aggregated by computing the average value over the 15-
minute intervals. This method ensured that the temporal resol-
ution of the data was reduced without losing important trends.
For wind speed and direction, however, the last recorded value
within the 15-minute window was used. Rainfall, being an ac-
cumulative variable, was summed over the 15-minute periods to
obtain a total value for each hour. This aggregation strategy en-
sured that each variable was treated in a way that preserved its
underlying characteristics, making the data suitable for model
training.

Merging Data from Multiple Sources: One of the unique as-
pects of this study was the integration of data from multiple
sources. We merged data from the Meteopole station with each
rural station studied to create complete input datasets. From the
Meteopole, we extracted additional variables such as solar ra-
diation and ground temperature, which were not available at
the other rural stations. Conversely, the other rural stations
provided key meteorological variables including air temperat-
ure, wind speed, humidity, and pressure. This merging was jus-
tified by the fact that the study focused on the summer period,
during which sky conditions were mostly clear and cloud cover
minimal. As a result, it was reasonable to assume that radiation
data did not vary significantly across different locations within
the Toulouse area. The merging process involved aligning data-
sets based on timestamps and ensuring consistency in variable
formats and units, ultimately allowing us to construct unified
and coherent datasets for training and evaluating our models.

Handling Temporal Overlaps: A critical aspect of data pre-
processing was ensuring that no time-series overlaps existed
between the training, validation, and test sets. This data split
was essential for maintaining the integrity of the data split and
ensuring that the model was evaluated on truly unseen data.
Any instances where the same data point appeared in both the
training and test sets were removed. This process helped avoid
data leakage and ensured that the model’s performance metrics
were accurate and reflective of its ability to generalize to new,
unseen time periods.

2.3 Neural Network Model

After simulating a large synthetic dataset with UWG and clean-
ing all datasets (both simulated and observed), a neural network
model is trained to learn the relationship between rural weather
conditions, urban morphology, and simulated urban air temper-
ature. This initial model, NUWG-Sim, leverages the physical
consistency and broad coverage of UWG outputs. In a second
step, NUWG-Sim is fine-tuned using real measurements from
urban weather stations in the target city (Toulouse), yielding
NUWG-City, which integrates local climate characteristics and
better captures site-specific microclimate effects. Throughout
this process, inputs include real-time rural station observations
and urban surface parameters (e.g., building density, vegetation
cover). Atrtificial neural networks (ANN) are particularly well
suited for simulating air temperatures. For example, (Snell et
al., 2000) employed a multilayer perceptron to spatially inter-
polate daily maximum air temperatures and found that the ANN

outperformed conventional methods (spatial average, nearest
neighbor, and inverse distance weighting) in 94% of cases.

The neural model is built around a dual-branch architecture
that separates the processing of temporal meteorological sig-
nals from static urban surface and morphological descriptors,
then merges them to produce a 36-hour urban air temperature
simulation. In the first branch, 72 hours of 16 rural weather
variables (e.g., air temperature, humidity, pressure, wind speed)
are fed into a stack of 1D convolutional layers. Each convolu-
tion is followed by non-linear activations (LeakyRelLU), pool-
ing for dimensionality reduction, and later up-sampling to re-
cover temporal resolution, allowing the network to learn rich,
local temporal patterns without relying on longer-term memory
mechanisms.

Parallel to this, the second branch handles surface and mor-
phological parameters, such as building density, tree cover,
and vertical-to-horizontal ratios, as a 1D vector input into a
multilayer perceptron (MLP). Through successive dense lay-
ers and activations, the MLP distills spatial features reflective
of urban morphology. At multiple fusion points, the feature
maps from both branches are concatenated, then further pro-
cessed via convolutional and up-sampling blocks, enabling the
model to jointly leverage temporal trends and spatial hetero-
geneity when generating hourly temperature estimates. Convo-
lutional neural networks (CNNs) were selected over alternat-
ives such as LSTMs or GRUs due to their versatility and strong
track record in the literature. CNNSs are particularly well-suited
for processing both time series data (Pelletier et al., 2019) and
imagery (Maggiori et al., 2016), making them an ideal choice
for this study and for future extensions. Their flexible archi-
tecture facilitates the integration of remote sensing imagery or
digital terrain models, ensuring that the core model can scale to
accommodate richer geospatial inputs over time.

Custom Loss Function: Our neural network is trained to sim-
ulate hourly air temperature from the surface parameters and
time. We present in this section the custom loss function de-
veloped to train the neural network for simulating urban air
temperature. The model is trained by minimising a loss that
combines three complementary components to improve predic-
tion performance.

First, the Mean Absolute Error (MAE) is used to quantify the
average absolute difference between predicted and observed
temperatures. As a standard choice in regression tasks, MAE
ensures overall accuracy by encouraging the model to minim-
ize deviations from the actual values.

However, for meteorological time series such as urban air tem-
perature, it is also essential to capture the temporal dynamics
and not just pointwise accuracy.This motivates the inclusion of
a second component: the MAE on the gradient, which com-
pares the rate of change (i.e., the slope) of the predicted and true
temperature series. This term enhances the model’s sensitivity
to sudden variations, such as those caused by atmospheric pro-
cesses like changes in wind or cloud cover, and helps the net-
work learn more realistic temperature evolution patterns over
time.

The third component, the cosine loss, addresses a different but
equally important aspect. It measures the directional similarity
between predicted and observed temperature vectors and is par-
ticularly useful in detecting whether the model correctly cap-
tures the general shape of temperature trends, even in the pres-
ence of time shifts. As shown in previous work on hyperspectral
data analysis (Zhang et al., 2012), cosine similarity is effective
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when the direction of variation is more relevant than the mag-
nitude. In this context, it helps the model better align its outputs
with the overall trend of the observed time series.

The final loss function is defined as a weighted sum of these
three components, with coefficients controlling their respective
contributions. This combined approach ensures that the model
not only achieves good numerical accuracy but also learns to
reproduce realistic temporal behaviors and directional patterns,
features that are particularly important when modeling air tem-
perature dynamics in urban environments.

In conclusion, the custom loss function designed is combining
three components:

¢ Mean Absolute Error (MAE)
¢ Gradient MAE to emphasize changes

o Cosine loss to encourage correct temporal patterns

The final loss is a weighted sum:

L =oa-MAE + 8 - MAEy + y - Cosine @)
where a=0.9
68 =0.1
y = 0.5

2.4 Model Training and Evaluation

The model fine-tuning and evaluation process is crucial to ad-
apt the neural network model to the specific urban conditions
and ensure its ability to generalize to unseen environments.
The primary objective of fine-tuning is to optimize the model’s
performance on real-world weather data while maintaining the
physical consistency introduced by the simulated UWG data.
In this section, we describe the steps taken to fine-tune the
NUWG-Sim model using observed weather station data and
how the model’s performance was evaluated through multiple
experiments.

Fine-Tuning NUWG-Sim Model: The NUWG-Sim model
was first trained on simulated data generated by the UWG
model. This step was essential for providing the model with
a general understanding of urban climate dynamics and ensur-
ing that it could simulate temperature variations based on key
urban surface parameters. However, since simulated data alone
may not fully capture the complexities of real-world urban en-
vironments, fine-tuning the pre-trained model on actual weather
station data is necessary.

Fine-tuning involves adjusting the weights of the pre-trained
model by training it on a smaller, real-world dataset. In
our case, we used observed air temperature data from various
weather stations in Toulouse. Fine-tuning allows the model to
adapt its internal representations to the specific conditions of
the city, improving its ability to simulate local weather patterns
more accurately.

To fine-tune the model, we used a strategy where the learning
rate was adjusted to prevent the model from overfitting to the
real station data. A lower learning rate was used to preserve
the knowledge learned during pre-training, while allowing the
model to gradually adjust its parameters to fit the real data.

Evaluation of Model Performance: The evaluation process is
designed to test how well the fine-tuned model generalizes to
new, unseen data. Evaluation metrics such as Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE) and Standard
Deviation (STD) were used to assess the model’s accuracy and
predictive power. These metrics provide a comprehensive un-
derstanding of how close the model’s predictions are to the true
observed values, with lower MAE and RMSE values indicat-
ing better model performance. These evaluation metrics were
calculated for each station, with particular emphasis placed on
stations that had more challenging conditions or higher variabil-
ity, such as urban parks with dense vegetation (e.g., Compans-
Cafarelli) or areas with limited station data.

The temporal coherence of the data splits was ensured by align-
ing the data from both simulated and real weather stations, ap-
plying the same time period split across both types of data. This
process ensured that the model was evaluated on novel data that
had never been seen during training or validation. This strategy
was critical for testing the generalization ability of the model
and ensuring that it could effectively predict temperature values
for future, unseen time periods.

Cross-Station Evaluation and Generalization: To assess the
generalization ability of the fine-tuned model, it was evalu-
ated on a set of stations that were not included in the train-
ing process. This cross-station evaluation allowed us to de-
termine whether the model was able to adapt to different LCZs
(Local Climate Zones) and provide reliable predictions across
diverse urban configurations. For instance, urban parks with
high vegetation density, like Compans-Cafarelli, were com-
pared against more built-up areas, such as Avenue de Grande
Bretagne, to evaluate how well the model performed across
different LCZs.

Model Validation Across LCZs: One of the key objectives
of this study was to investigate how well the model general-
izes across different LCZs. As part of the fine-tuning process,
we performed experiments to evaluate the impact of training on
stations with different LCZs. We trained the model on stations
located within similar LCZs and tested it on stations located
in different LCZs to examine the model’s ability to generalize
across diverse urban environments. The results were compared
to determine the optimal number of stations needed for robust
model performance and whether training on multiple stations
with different LCZs improved the model’s ability to adapt to
new environments.

Fine-Tuning Strategies: Different fine-tuning strategies were
explored to determine the optimal configuration for the model.
These strategies included:

¢ Single-Station Fine-Tuning: In this setup, the model was
fine-tuned using data from one station at a time. This ap-
proach was useful for investigating how well the model
could adapt to the characteristics of individual stations and
how much information could be extracted from a single
source.

e Pairwise Fine-Tuning (Extreme LCZs): In this case, the
model was fine-tuned using data from two stations located
in “extreme” LCZs, such as areas with high building dens-
ity or dense vegetation. This setup aimed to assess whether
training on contrasting LCZs improved the model’s robust-
ness to different urban conditions.
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¢ Multi-Station Fine-Tuning (Extreme + Average LCZs):
This strategy involved fine-tuning the model on a combin-
ation of extreme LCZs and a middle-range LCZ, such as
stations located in moderately built-up areas. This setup
aimed to strike a balance between the extremes of urban
environments and typical city conditions.

e All-Station Fine-Tuning: This final strategy involved
training the model on data from all available stations, re-
gardless of their LCZ classification. This approach tested
the model’s ability to generalize across all types of urban
environments and maximize the diversity of training data.
It also aimed to evaluate the overall contribution of com-
bining all stations in improving predictive performance.

3. Results
3.1 Evaluation of NUWG-Sim

The baseline NUWG-Sim model, trained solely on
UWG-generated data, was evaluated on 6 held-out urban
stations in Toulouse.  Overall, its accuracy varies with
local morphology: in densely built areas (LCZ 2 and 8) it
achieves acceptable errors, but performance degrades markedly
in heavily vegetated, low-density zones. For instance, at
Compans-Cafarelli (6% tree cover) NUWG-Sim vyields an
RMSE of 2.19 °C, while at Cote Pavée (13% building
density, 29% tree cover) it achieves 1.85°C versus 2.22°C at
Parc Maourine (5% building density, 21% tree cover) (See
Table 1). Compared to raw UWG simulations, NUWG-Sim
shows a modest RMSE increase of about 0.2 °C (mean RMSE:
1.81°C for UWG vs. 2.02°C for NUWG-Sim), but delivers
a 33% speedup, simulating a three-day series in 0.7s instead
of 1.06s. These results establish a physically consistent yet
computationally efficient baseline, highlighting the need to in-
corporate real-world data, particularly from LCZs, where UWG
struggles to simulate accurate air temepetaures, to improve
generalization across heterogeneous urban microclimates.

Trained on
data points) Metrics Simulated data
Tested on (STD) in from UWG
-C (101520)
Carmes MAE 1.46 (0.03)
RMSE 1.88 (0.07)
STD 1.84 (0.09)
Thibaud MAE 1.53(0.03)
RMSE 2.00 (0.04)
STD 1.97 (0.05)
Sabatier MAE 1.48 (0.09)
RMSE 1.93 (0.13)
STD 1.92 (0.14)
St-Exupery MAE 1.58 (0.05)
RMSE 2.08 (0.09)
STD 2.07 (0.10)
Busca MAE 1.67 (0.02)
RMSE 2.05 (0.02)
STD 1.89 (0.07)
Compans-Cafarelli MAE 1.70 (0.03)
RMSE 2.19 (0.07)
STD 2.19 (0.06)
Mean = std MAE 157 £0.10
RMSE 2.02 £0.11
STD 1.98 £0.13

Table 1. Comparison of results of models trained on UWG
simulated data solely, tested on test set stations in Toulouse.

3.2 NUWG-City Evaluation :
with observed data

Fine-Tuning Experiments

We fine-tune NUWG-Sim on observed data collected from
urban weather stations in Toulouse. These stations are grouped
into two sets covering diverse LCZs (a training/validation set
and a test set) and several strategies are tested:

¢ Fine-tuning on a single station
¢ Using two stations with extreme LCZs
¢ Adding an average LCZ to the extreme pair

¢ Using all stations from the training group

Each fine-tuned model is evaluated on the evaluate group to
test generalizability across LCZs.

Model Performance and Analysis: After fine-tuning and eval-
uation, the results were analyzed to determine the impact of dif-
ferent fine-tuning strategies on model performance. The results
indicated that the best performance was achieved by training the
model on a combination of stations from various LCZs, as this
approach allowed the model to learn from a more diverse range
of urban conditions. The performance metrics showed that the
model was able to generalize well to stations located in differ-
ent LCZs, with a significant reduction in error compared to the
baseline model trained solely on simulated data. The results
confirmed that including diverse LCZs in the training set not-
ably improved model performance. The best results were ob-
tained when training included stations from both extreme LCZs
(Valade and Parc Maourine) along with an intermediate one
(Avenue de Grande Bretagne). This combination achieved
the lowest average MAE of 0.87°C and RMSE of 1.25°C across
test stations. For instance, at Sabatier, this strategy reduced the
MAE from 0.94°C (using only extreme LCZs) to 0.82°C, and
at Busca from 1.10°C to 0.89°C (see Table 2).

In summary, the fine-tuning and evaluation process was essen-
tial for adapting the NUWG model to real-world urban con-
ditions. By adjusting the model’s weights using real weather
station data and evaluating it across various LCZs, we ensured
that the model was able to generalize effectively to unseen en-
vironments. The combination of simulated data pre-training
and real-world data fine-tuning provided a powerful approach
to simulating urban weather conditions, and the evaluation res-
ults confirmed that the model can successfully predict air tem-
peratures in diverse urban settings. While training on all avail-
able stations yielded comparable performance (average MAE
of 0.89°C), it did not consistently outperform the more stra-
tegic LCZ selection. This suggests that LCZ diversity is more
important than simply increasing the volume of training data.
Overall, these results underscore the importance of thoughtful
fine-tuning. Incorporating stations with contrasting LCZs en-
hances the model’s ability to generalize across different urban
environments, while training solely on green zones or parks
(e.g., Compans-Cafarelli or Parc Maourine) limits generaliza-
tion to denser urban fabrics, and vice versa.

Our results show that NUWG-city significantly outperforms
NUWG-Sim on test stations, especially when training includes
LCZs similar to the test site. Training on extreme LCZs plus
one middle LCZ often yields the best compromise. Models
trained on very green urban parks (e.g., with high tree cover)
generalize poorly to denser zones and vice versa, confirming
the need to consider LCZ diversity in fine-tuning.
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Trained OJ

data points| Metricsl Valade Valade All

Tested on (O & Parc &P. sta-
Maour- Maour- tions

ine ine &
Av. Gd
Bretagne

Carmes MAE 0.83 0.80 0.78
(0.02) (0.04) (0.02)

RMSE 121 117 1.16
(0.01) (0.04) (0.02)

STD 1.20 1.16 1.16
(0.01) (0.02) (0.02)

Thibaud MAE 0.93 0.85 0.86
(0.02) (0.02) (0.03)

RMSE 135 122 1.23
(0.02) (0.03) (0.06)

STD 1.35 122 1.20
(0.02) (0.02) (0.01)

Sabatier MAE 0.94 0.82 1.04
(0.03) (0.02) (0.18)

RMSE 135 122 143
(0.04) (0.02) 0.17)

STD 131 122 137
(0.02) (0.02) (0.14)

St-Exupery MAE 0.97 1.00 0.89
(0.02) (0.02) (0.03)

RMSE 1.38 141 1.29
(0.03) (0.03) (0.03)

STD 1.38 137 1.29
(0.03) (0.05) (0.03)

Busca MAE 1.10 0.89 0.93
(0.06) (0.08) (0.08)

RMSE 147 127 1.29
(0.05) (0.07) 0.07)

STD 1.26 1.20 117
(0.01) (0.03) (0.02)

Compans-Cafarelli MAE 1.02 0.99 0.99
(0.02) (0.02) (0.03)

RMSE 142 1.38 137
(0.02) (0.03) (0.04)

STD 141 1.35 137
(0.02) (0.04) (0.04)
Mean MAE 0.95 £ 0.87 0.89 £
0.09 0.07 0.09
RMSE 135+ 125+ 127+

0.08 0.08 0.09
STD 131 £ 123+ 123+

0.07 0.07 0.08

Table 2. Results of models trained on UWG simulations and
fine-tuned with combinations of training set stations data and
tested on test set stations. MAE (Mean Absolute Error), RMSE
(Root Mean Square Error), STD (Standard Deviation) of errors
are performance metrics of a certain trained model. The STD
values in brackets represent the standard deviations across
model training runs, while the £ std values indicate the standard
deviations across stations.

4. Discussion and Conclusion

To date, techniques for mapping urban air temperature at fine
spatial resolutions generally fall into two main categories: data-
driven approaches, which rely on interpolation and statistical
inference, and physics-based approaches, which simulate tem-
perature using physical principles (Taheri-Shahraiyni and Sod-
oudi, 2017).

We propose a robust framework combining physics-based and
data-driven models for urban climate simulation. By leveraging
simulated data for pre-training and real data for fine-tuning,
our approach adapts well to heterogeneous urban environments.
LCZ-based strategies offer a promising path for guiding data
collection and optimizing neural model performance in data-
sparse cities.

This reasearch demonstrates that combining physics-based mi-
croclimate simulations with deep learning yields robust, accur-
ate urban temperature models. Key findings include a 30-35%
reduction in RMSE compared to UWG and NUWG-Sim
baselines, improved stability through multi-station fine-tuning,
and a 33% speedup in simulation runtime. These results high-
light the value of judiciously integrating simulated and ob-
served data to capture the spectrum of urban microclimates.

The evaluation of NUWG-City across Toulouse weather sta-
tions reveals that pretraining on UWG simulations followed
by targeted fine-tuning with real data delivers the most reli-
able air temperature estimates. Models trained exclusively on
UWG outputs (NUWG-Sim) exhibited the largest errors, es-
pecially in heterogeneous microclimates such as dense, veget-
ated areas, underscoring UWG’s limited sensitivity to fine-scale
urban features when used without calibration. Fine-tuning
NUWG-Sim on data from a single, well-chosen station signi-
ficantly reduced error—achieving RMSEs near 1.3°C, but per-
formance varied widely depending on the station’s representat-
iveness. By contrast, multi-station fine-tuning (combining two
extreme LCZs and one average LCZ) not only matched or ex-
ceeded the best single-station results but also halved the vari-
ability in error across runs and sites. In quantitative terms, the
best NUWG-City configuration outperformed NUWG-Sim by
approximately 35% and raw UWG by 30%, while maintaining
a computational speed roughly 33% faster than UWG itself.

Despite these advances, several limitations temper the ap-
proach’s broader applicability. First, UWG was used “out
of the box,” without tuning its physical parameters or code,
which constrained the fidelity of its synthetic data. Second,
our fine-tuning leveraged only 12 of the 39 available stations
in Toulouse metropolis, limiting the diversity of urban con-
texts represented in training. Third, NUWG-City’s reliance
on both rural meteorological data and radiative flux measure-
ments restricts its use in locations lacking such inputs, and the
model omits the influence of water bodies on local temperat-
ure dynamics. Finally, although pretraining on UWG embeds
an implicit physical framework, NUWG does not enforce ex-
plicit physical laws—making expert post-hoc analysis essen-
tial to validate its outputs. Looking forward, several aven-
ues can further strengthen NUWG-City. Enhancing the train-
ing database with more advanced or calibrated physical mod-
els could improve baseline fidelity. Expanding validation to
longer time periods and additional years would test temporal
robustness. Transferring the model to other cities, via direct
retraining, domain adaptation, or knowledge distillation, could
establish its generality across climatic and urban forms. Finally,
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integrating remote-sensing imagery (from surface parameter
maps to high-resolution Sentinel-2 and future thermal missions)
promises to automate feature extraction, enrich spatial con-
text, and potentially enable end-to-end temperature mapping
directly from satellite data. Such developments would broaden
NUWG-City’s applicability as a decision-support tool for urban
planners confronting the challenges of heat mitigation and sus-
tainable city design.
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