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Abstract 

Accurate urban climate modeling is crucial for addressing the growing impacts of urban heat islands (UHI) and climate change. 

Physics-based tools such as the Urban Weather Generator (UWG) are widely used but often limited by high parameterization needs 

and a lack of specialized data. In this study, we develop a hybrid framework combining UWG simulations with deep learning, 

introducing two models: NUWG-Sim (Neural Urban Weather Generator on Simulations), trained solely on simulated data, and 

NUWG-city, which is fine-tuned with ground weather station data. To systematically evaluate model performance across hetero- 

geneous urban contexts, we structure our experiments around Local Climate Zones (LCZs) in Toulouse, France. Our methodology 

involves generating over 3400 UWG initialization files, simulating urban air temperatures time series for diverse surface paramet- 

ers, and training a neural model on these series. We then fine-tune the model with observed data from selected weather stations, 

analyzing how the number and diversity of stations environments impact performance on unseen stations from different LCZs. 

Results show that even limited fine-tuning significantly improves performance, particularly when training includes stations from 

LCZs similar to the test set. The approach highlights the potential of physics-informed neural models for city-specific urban climate 

monitoring. 

1. Introduction

Earth’s climate has naturally fluctuated over millions of years, 

with long periods of warming and cooling, shaping ecosystems 

and life on the planet (Zachos et al., 2001). In contrast, current 

climate change is unfolding at an unprecedented pace, primar- 

ily due to human activities (Trenberth, 2018). A key driver of 

this shift is global warming, a sustained rise in average global 

temperatures with far-reaching consequences. 

Urban areas are particularly vulnerable to climate change im- 

pacts, especially through the Urban Heat Island (UHI) effect. 

The effects of heatwaves are especially severe in urbanised 

areas. These environments, predominantly composed of ar- 

tificial surfaces, amplify rising temperatures and give rise to 

the UHI phenomenon characterized by higher air temperatures 

in cities compared to their rural surroundings (Sobrino et al., 

2013). The intensity of the UHI varies within a city due to its 

heterogeneous urban form (Gao et al., 2022), highlighting the 

need to pinpoint neighbourhoods that are particularly vulner- 

able in order to implement targeted heat mitigation strategies. 

While air temperature is commonly measured in urban settings, 

fixed weather stations cover only limited areas and fall short 

in capturing the fine-scale spatial variability of UHI. Policy- 

makers would greatly benefit from high-resolution air temper- 

ature maps that offer a detailed overview of thermal patterns 

across the city. As (Buttsta¨dt et al., 2011) notes, such spatially 

refined data are crucial for identifying hotspots and understand- 

ing the underlying drivers of urban thermal conditions. 

Modeling urban climates with high spatial and temporal resol- 

ution is key for city planning and mitigation strategies. On one 

hand, tools like the Urban Weather Generator (UWG) offering 

a physics-based approach, are limited by complex parameteriz- 

ation and struggle to adapt to real-time urban heterogeneity due 

to their high computational cost. In contrast, physical models, 

grounded in atmospheric laws, offer greater reliability across 

diverse conditions (Ja¨nicke et al., 2021). On the other hand, 

data-driven models are efficient and scalable for estimating air 

temperatures, making them ideal for real-time and large-scale 

applications. However, they often lack physical interpretability 

and may struggle with rare weather events or unfamiliar envir- 

onments. With the increasing availability of urban climate data 

and advances in machine learning, hybrid models can leverage 

both physics-based model and measured data. 

This study proposes a novel hybrid modeling framework that 

couples UWG with deep learning. We develop two mod- 

els: NUWG-Sim, trained purely on synthetic data from UWG, 

and NUWG-city, fine-tuned using observations from urban 

weather stations. To analyze the influence of urban heterogen- 

eity, we structure the evaluation around Local Climate Zones 

(LCZs) (Stewart and Oke, 2012), a standardized classification 

of urban and natural landscapes based on both their physical 

characteristics and their thermal behavior. The main contribu- 

tions of this study are: 

• A neural network trained to simulate UWG outputs by

varying key surface parameters : NUWG-Sim

• A neural network trained on UWG simulations, then fine- 

tuned on real observations: NUWG-City

• A systematic evaluation of fine-tuning strategies based on

LCZ composition.

2. Methodology

2.1 Simulated Data Generation with UWG 

The generation of simulated data is crucial for training the 

neural model, as it provides a foundational dataset with con- 
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trolled conditions. To ensure that the model is trained effect- 

ively and can generalize across a range of urban environments, 

we adopted a detailed experimental framework using the UWG, 

a widely recognized tool for simulating urban microclimates. It 

is particularly well-suited for simulating urban air temperatures 

based on urban surface characteristics. Using physically based 

equations, it extrapolates air temperature values in urban areas 

from a well-chosen rural reference station (Bueno et al., 2013). 

This subsection delves into the step-by-step process of how we 

generated the simulated data and highlights the challenges and 

solutions encountered throughout the experiment. 

The first step in generating the simulated data involves defining 

the urban surface characteristics that influence air temperature. 

The key parameters selected for this experiment were build- 

ing density, building height, vertical-to-horizontal ratio (Ver- 

ToHor), grass cover, and tree cover. These parameters were 

chosen based on their significant impact on the urban heat is- 

land effect, which is a primary focus of the study. A compre- 

hensive sensitivity analysis was conducted on these paramet- 

ers to understand their individual contributions to the simulated 

urban air temperatures (Hamdi et al., 2024). The next phase 

involved varying these parameters within the typical ranges ob- 

served in urban environments. These variations were informed 

by real-world data and represented a wide spectrum of urban 

configurations. To simulate diverse urban environments accur- 

ately, a total of 3450 initialization files were generated, each 

corresponding to a unique combination of these surface and 

morphological parameters. Each simulation covered a 3-day 

period between May and September 2020, a timeframe selec- 

ted to capture representative summer conditions that strongly 

influence urban climate dynamics. 

A key challenge in this process was managing the interdepend- 

encies between certain parameters. For example, the vertical- 

to-horizontal (verToHor) ratio cannot be sampled independ- 

ently over a fixed range, as it depends on building height and 

fac¸ade length. Sampling it randomly would lead to many un- 

realistic and physically inconsistent urban configurations. To 

address this, we adopted a more controlled strategy by training 

a linear regression model to predict VerToHor based on other 

parameters, including building height, building density, grass 

cover, and tree cover. This method ensured that all generated 

values remained coherent and representative of actual urban en- 

vironments. 

Additionally, ensuring the physical validity of each parameter 

combination was essential during the simulation process. Given 

the wide range of configurations explored, some led to unreal- 

istic outputs, such as abnormally high or low temperatures. To 

address this, we implemented a set of pre-simulation checks to 

filter out combinations that did not align with physically plaus- 

ible urban conditions. This allowed us to retain only consistent 

and reliable simulations for model training. 

The resulting simulated dataset formed the backbone of the 

training data for the neural model. By systematically varying 

the key urban surface parameters, we ensured that the model 

was exposed to a wide range of urban conditions, increasing 

its ability to generalize to unseen environments. However, the 

simulated data alone was not sufficient. It needed to be com- 

bined with real-world data to ensure that the final model could 

accurately reflect actual urban climates, which we address in 

subsequent sections. 

In conclusion, the simulated data generation process using 

UWG was an essential step in the development of the final 

neural model. It not only provided a large and diverse data- 

set for model training but also highlighted the challenges in- 

volved in simulating urban climates, such as managing para- 

meter dependencies and computational anomalies. The insights 

gained from this simulation process have been invaluable in 

refining the experimental design and preparing the dataset for 

subsequent integration with real-world data. 

2.2 Data Preprocessing 

 

Data preprocessing plays a critical role in preparing the data- 

set for training machine learning models. This step is essential 

for ensuring that the data is clean, complete, and in a suitable 

format for model ingestion. 

Real-world data were preprocessed with careful attention to 

handling missing values, outliers, and temporal consistency, as 

well as aligning data from various sources. The primary goal of 

the preprocessing stage was to make sure that the dataset used 

to train and test the model would accurately represent the un- 

derlying urban weather conditions while minimizing the risk of 

introducing biases that could negatively affect model perform- 

ance. 

Handling Missing Data and Outliers: One of the primary 

challenges in preprocessing was dealing with missing data, 

which is a common occurrence in real-world weather datasets. 

Missing values can arise from sensor malfunctions, data trans- 

mission errors, or simply due to environmental factors that pre- 

vent measurements from being recorded. In the case of both 

rural and urban weather stations, missing data points were iden- 

tified and handled based on the specific characteristics of the 

data and the station. 

For rural stations, data gaps were filled using linear interpol- 

ation, provided that there were no more than five consecutive 

missing data points within a given 15-minute interval. This in- 

terpolation method ensured that the temporal continuity of the 

data was preserved while minimizing the introduction of artifi- 

cial trends. However, in cases where the missing data exceeded 

five consecutive points, no interpolation was applied, and the 

missing values were retained as ‘NaN‘ (Not a Number). This 

cautious approach prevented the imposition of unrealistic data 

points and maintained the integrity of the dataset. 

For urban stations, missing values did not pose a significant 

challenge, as the absence of certain data points merely resul- 

ted in less available data for training, validation, and testing. 

No interpolation was performed for urban stations; instead, the 

missing values were simply ignored during model training, and 

the model was trained with the available data. This approach 

was consistent with the general principle that real-world urban 

weather data often have gaps, and machine learning models 

should be capable of handling such scenarios without overfit- 

ting or biasing the results. 

In addition to managing missing values, we addressed outliers 

in both observed and simulated temperature data. For rural and 

urban stations, outliers were identified using fixed thresholds, 

set to missing, and interpolated. Simulated data from UWG 

often exhibit early morning anomalies caused by instabilities 

during the night-to-day transition. These were corrected by de- 

tecting abrupt slope changes using first and second derivatives; 

affected values and their neighbors were masked and interpol- 

ated with a second-degree polynomial. This preprocessing step 

improves data continuity and enhances the quality of inputs for 

the neural model training. 
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Temporal Aggregation: Weather station data, originally re- 

corded at 15-minute intervals, were aggregated to hourly inter- 

vals to match the temporal resolution used by UWG. This ag- 

gregation ensured consistency across datasets. Variable-specific 

methods were applied: 

For variables like temperature, humidity, and pressure, which 

are continuous and typically show gradual changes, the data 

were aggregated by computing the average value over the 15- 

minute intervals. This method ensured that the temporal resol- 

ution of the data was reduced without losing important trends. 

For wind speed and direction, however, the last recorded value 

within the 15-minute window was used. Rainfall, being an ac- 

cumulative variable, was summed over the 15-minute periods to 

obtain a total value for each hour. This aggregation strategy en- 

sured that each variable was treated in a way that preserved its 

underlying characteristics, making the data suitable for model 

training. 

Merging Data from Multiple Sources: One of the unique as- 

pects of this study was the integration of data from multiple 

sources. We merged data from the Meteopole station with each 

rural station studied to create complete input datasets. From the 

Meteopole, we extracted additional variables such as solar ra- 

diation and ground temperature, which were not available at 

the other rural stations. Conversely, the other rural stations 

provided key meteorological variables including air temperat- 

ure, wind speed, humidity, and pressure. This merging was jus- 

tified by the fact that the study focused on the summer period, 

during which sky conditions were mostly clear and cloud cover 

minimal. As a result, it was reasonable to assume that radiation 

data did not vary significantly across different locations within 

the Toulouse area. The merging process involved aligning data- 

sets based on timestamps and ensuring consistency in variable 

formats and units, ultimately allowing us to construct unified 

and coherent datasets for training and evaluating our models. 

Handling Temporal Overlaps: A critical aspect of data pre- 

processing was ensuring that no time-series overlaps existed 

between the training, validation, and test sets. This data split 

was essential for maintaining the integrity of the data split and 

ensuring that the model was evaluated on truly unseen data. 

Any instances where the same data point appeared in both the 

training and test sets were removed. This process helped avoid 

data leakage and ensured that the model’s performance metrics 

were accurate and reflective of its ability to generalize to new, 

unseen time periods. 

2.3 Neural Network Model 

After simulating a large synthetic dataset with UWG and clean- 

ing all datasets (both simulated and observed), a neural network 

model is trained to learn the relationship between rural weather 

conditions, urban morphology, and simulated urban air temper- 

ature. This initial model, NUWG-Sim, leverages the physical 

consistency and broad coverage of UWG outputs. In a second 

step, NUWG-Sim is fine-tuned using real measurements from 

urban weather stations in the target city (Toulouse), yielding 

NUWG-City, which integrates local climate characteristics and 

better captures site-specific microclimate effects. Throughout 

this process, inputs include real-time rural station observations 

and urban surface parameters (e.g., building density, vegetation 

cover). Artificial neural networks (ANN) are particularly well 

suited for simulating air temperatures. For example, (Snell et 

al., 2000) employed a multilayer perceptron to spatially inter- 

polate daily maximum air temperatures and found that the ANN 

outperformed conventional methods (spatial average, nearest 

neighbor, and inverse distance weighting) in 94% of cases. 

 

The neural model is built around a dual-branch architecture 

that separates the processing of temporal meteorological sig- 

nals from static urban surface and morphological descriptors, 

then merges them to produce a 36-hour urban air temperature 

simulation. In the first branch, 72 hours of 16 rural weather 

variables (e.g., air temperature, humidity, pressure, wind speed) 

are fed into a stack of 1D convolutional layers. Each convolu- 

tion is followed by non-linear activations (LeakyReLU), pool- 

ing for dimensionality reduction, and later up-sampling to re- 

cover temporal resolution, allowing the network to learn rich, 

local temporal patterns without relying on longer-term memory 

mechanisms. 

 

Parallel to this, the second branch handles surface and mor- 

phological parameters, such as building density, tree cover, 

and vertical-to-horizontal ratios, as a 1D vector input into a 

multilayer perceptron (MLP). Through successive dense lay- 

ers and activations, the MLP distills spatial features reflective 

of urban morphology. At multiple fusion points, the feature 

maps from both branches are concatenated, then further pro- 

cessed via convolutional and up-sampling blocks, enabling the 

model to jointly leverage temporal trends and spatial hetero- 

geneity when generating hourly temperature estimates. Convo- 

lutional neural networks (CNNs) were selected over alternat- 

ives such as LSTMs or GRUs due to their versatility and strong 

track record in the literature. CNNs are particularly well-suited 

for processing both time series data (Pelletier et al., 2019) and 

imagery (Maggiori et al., 2016), making them an ideal choice 

for this study and for future extensions. Their flexible archi- 

tecture facilitates the integration of remote sensing imagery or 

digital terrain models, ensuring that the core model can scale to 

accommodate richer geospatial inputs over time. 

 

Custom Loss Function: Our neural network is trained to sim- 

ulate hourly air temperature from the surface parameters and 

time. We present in this section the custom loss function de- 

veloped to train the neural network for simulating urban air 

temperature. The model is trained by minimising a loss that 

combines three complementary components to improve predic- 

tion performance. 

First, the Mean Absolute Error (MAE) is used to quantify the 

average absolute difference between predicted and observed 

temperatures. As a standard choice in regression tasks, MAE 

ensures overall accuracy by encouraging the model to minim- 

ize deviations from the actual values. 

However, for meteorological time series such as urban air tem- 

perature, it is also essential to capture the temporal dynamics 

and not just pointwise accuracy.This motivates the inclusion of 

a second component: the MAE on the gradient, which com- 

pares the rate of change (i.e., the slope) of the predicted and true 

temperature series. This term enhances the model’s sensitivity 

to sudden variations, such as those caused by atmospheric pro- 

cesses like changes in wind or cloud cover, and helps the net- 

work learn more realistic temperature evolution patterns over 

time. 

The third component, the cosine loss, addresses a different but 

equally important aspect. It measures the directional similarity 

between predicted and observed temperature vectors and is par- 

ticularly useful in detecting whether the model correctly cap- 

tures the general shape of temperature trends, even in the pres- 

ence of time shifts. As shown in previous work on hyperspectral 

data analysis (Zhang et al., 2012), cosine similarity is effective 
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when the direction of variation is more relevant than the mag- 

nitude. In this context, it helps the model better align its outputs 

with the overall trend of the observed time series. 

The final loss function is defined as a weighted sum of these 

three components, with coefficients controlling their respective 

contributions. This combined approach ensures that the model 

not only achieves good numerical accuracy but also learns to 

reproduce realistic temporal behaviors and directional patterns, 

features that are particularly important when modeling air tem- 

perature dynamics in urban environments. 

In conclusion, the custom loss function designed is combining 

three components: 

 

• Mean Absolute Error (MAE) 

• Gradient MAE to emphasize changes 

• Cosine loss to encourage correct temporal patterns 

The final loss is a weighted sum: 

L = α · MAE + β · MAE∇ + γ · Cosine (1) 

 

where   α = 0.9 
β = 0.1 
γ = 0.5 
 

 
2.4 Model Training and Evaluation 

The model fine-tuning and evaluation process is crucial to ad- 

apt the neural network model to the specific urban conditions 

and ensure its ability to generalize to unseen environments. 

The primary objective of fine-tuning is to optimize the model’s 

performance on real-world weather data while maintaining the 

physical consistency introduced by the simulated UWG data. 

In this section, we describe the steps taken to fine-tune the 

NUWG-Sim model using observed weather station data and 

how the model’s performance was evaluated through multiple 

experiments. 

Fine-Tuning NUWG-Sim Model: The NUWG-Sim model 

was first trained on simulated data generated by the UWG 

model. This step was essential for providing the model with 

a general understanding of urban climate dynamics and ensur- 

ing that it could simulate temperature variations based on key 

urban surface parameters. However, since simulated data alone 

may not fully capture the complexities of real-world urban en- 

vironments, fine-tuning the pre-trained model on actual weather 

station data is necessary. 

Fine-tuning involves adjusting the weights of the pre-trained 

model by training it on a smaller, real-world dataset.  In 

our case, we used observed air temperature data from various 

weather stations in Toulouse. Fine-tuning allows the model to 

adapt its internal representations to the specific conditions of 

the city, improving its ability to simulate local weather patterns 

more accurately. 

To fine-tune the model, we used a strategy where the learning 

rate was adjusted to prevent the model from overfitting to the 

real station data. A lower learning rate was used to preserve 

the knowledge learned during pre-training, while allowing the 

model to gradually adjust its parameters to fit the real data. 

Evaluation of Model Performance: The evaluation process is 

designed to test how well the fine-tuned model generalizes to 

new, unseen data. Evaluation metrics such as Mean Absolute 

Error (MAE), Root Mean Squared Error (RMSE) and Standard 

Deviation (STD) were used to assess the model’s accuracy and 

predictive power. These metrics provide a comprehensive un- 

derstanding of how close the model’s predictions are to the true 

observed values, with lower MAE and RMSE values indicat- 

ing better model performance. These evaluation metrics were 

calculated for each station, with particular emphasis placed on 

stations that had more challenging conditions or higher variabil- 

ity, such as urban parks with dense vegetation (e.g., Compans- 

Cafarelli) or areas with limited station data. 

 

The temporal coherence of the data splits was ensured by align- 

ing the data from both simulated and real weather stations, ap- 

plying the same time period split across both types of data. This 

process ensured that the model was evaluated on novel data that 

had never been seen during training or validation. This strategy 

was critical for testing the generalization ability of the model 

and ensuring that it could effectively predict temperature values 

for future, unseen time periods. 

 

Cross-Station Evaluation and Generalization: To assess the 

generalization ability of the fine-tuned model, it was evalu- 

ated on a set of stations that were not included in the train- 

ing process. This cross-station evaluation allowed us to de- 

termine whether the model was able to adapt to different LCZs 

(Local Climate Zones) and provide reliable predictions across 

diverse urban configurations. For instance, urban parks with 

high vegetation density, like Compans-Cafarelli, were com- 

pared against more built-up areas, such as Avenue de Grande 

Bretagne, to evaluate how well the model performed across 

different LCZs. 

 

Model Validation Across LCZs: One of the key objectives 

of this study was to investigate how well the model general- 

izes across different LCZs. As part of the fine-tuning process, 

we performed experiments to evaluate the impact of training on 

stations with different LCZs. We trained the model on stations 

located within similar LCZs and tested it on stations located 

in different LCZs to examine the model’s ability to generalize 

across diverse urban environments. The results were compared 

to determine the optimal number of stations needed for robust 

model performance and whether training on multiple stations 

with different LCZs improved the model’s ability to adapt to 

new environments. 

 

Fine-Tuning Strategies: Different fine-tuning strategies were 

explored to determine the optimal configuration for the model. 

These strategies included: 

 

• Single-Station Fine-Tuning: In this setup, the model was 

fine-tuned using data from one station at a time. This ap- 

proach was useful for investigating how well the model 

could adapt to the characteristics of individual stations and 

how much information could be extracted from a single 

source. 

• Pairwise Fine-Tuning (Extreme LCZs): In this case, the 

model was fine-tuned using data from two stations located 

in ”extreme” LCZs, such as areas with high building dens- 

ity or dense vegetation. This setup aimed to assess whether 

training on contrasting LCZs improved the model’s robust- 

ness to different urban conditions. 
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• Multi-Station Fine-Tuning (Extreme + Average LCZs): 

This strategy involved fine-tuning the model on a combin- 

ation of extreme LCZs and a middle-range LCZ, such as 

stations located in moderately built-up areas. This setup 

aimed to strike a balance between the extremes of urban 

environments and typical city conditions. 

• All-Station Fine-Tuning: This final strategy involved 

training the model on data from all available stations, re- 

gardless of their LCZ classification. This approach tested 

the model’s ability to generalize across all types of urban 

environments and maximize the diversity of training data. 

It also aimed to evaluate the overall contribution of com- 

bining all stations in improving predictive performance. 

 

3. Results 

 

3.1 Evaluation of NUWG-Sim 

 

The baseline NUWG-Sim model, trained solely on 

UWG-generated data, was evaluated on 6 held-out urban 

stations in Toulouse.  Overall, its accuracy varies with 

local morphology: in densely built areas (LCZ 2 and 8) it 

achieves acceptable errors, but performance degrades markedly 

in heavily vegetated, low-density zones. For instance, at 

Compans-Cafarelli (6% tree cover) NUWG-Sim yields an 

RMSE of 2.19 °C, while at Cote Pavée (13% building 

density, 29% tree cover) it achieves 1.85°C versus 2.22°C at 

Parc Maourine (5% building density, 21% tree cover) (See 

Table 1). Compared to raw UWG simulations, NUWG-Sim 

shows a modest RMSE increase of about 0.2 °C (mean RMSE: 

1.81°C for UWG vs. 2.02°C for NUWG-Sim), but delivers 

a 33% speedup, simulating a three-day series in 0.7s instead 

of 1.06s. These results establish a physically consistent yet 

computationally efficient baseline, highlighting the need to in- 

corporate real-world data, particularly from LCZs, where UWG 

struggles to simulate accurate air temepetaures, to improve 

generalization across heterogeneous urban microclimates. 
 

Trained on 

(data points) 

Tested on 

Metrics 
(STD) in 

◦  C 

Simulated data 

from UWG 

(101520) 

Carmes MAE 1.46 (0.03) 
 RMSE 1.88 (0.07) 
 STD 1.84 (0.09) 

Thibaud MAE 1.53 (0.03) 
 RMSE 2.00 (0.04) 
 STD 1.97 (0.05) 

Sabatier MAE 1.48 (0.09) 
 RMSE 1.93 (0.13) 
 STD 1.92 (0.14) 

St-Exupery MAE 1.58 (0.05) 
 RMSE 2.08 (0.09) 
 STD 2.07 (0.10) 

Busca MAE 1.67 (0.02) 
 RMSE 2.05 (0.02) 
 STD 1.89 (0.07) 

Compans-Cafarelli MAE 1.70 (0.03) 
 RMSE 2.19 (0.07) 
 STD 2.19 (0.06) 

Mean ± std MAE 1.57 ± 0.10 

RMSE 2.02 ± 0.11 

STD 1.98 ± 0.13 

Table 1. Comparison of results of models trained on UWG 

simulated data solely, tested on test set stations in Toulouse. 

3.2 NUWG-City Evaluation : Fine-Tuning Experiments 

with observed data 

We fine-tune NUWG-Sim on observed data collected from 

urban weather stations in Toulouse. These stations are grouped 

into two sets covering diverse LCZs (a training/validation set 

and a test set) and several strategies are tested: 

• Fine-tuning on a single station 

• Using two stations with extreme LCZs 

• Adding an average LCZ to the extreme pair 

• Using all stations from the training group 

Each fine-tuned model is evaluated on the evaluate group to 

test generalizability across LCZs. 

 

Model Performance and Analysis: After fine-tuning and eval- 

uation, the results were analyzed to determine the impact of dif- 

ferent fine-tuning strategies on model performance. The results 

indicated that the best performance was achieved by training the 

model on a combination of stations from various LCZs, as this 

approach allowed the model to learn from a more diverse range 

of urban conditions. The performance metrics showed that the 

model was able to generalize well to stations located in differ- 

ent LCZs, with a significant reduction in error compared to the 

baseline model trained solely on simulated data. The results 

confirmed that including diverse LCZs in the training set not- 

ably improved model performance. The best results were ob- 

tained when training included stations from both extreme LCZs 

(Valade and Parc Maourine) along with an intermediate one 

(Avenue de Grande Bretagne). This combination achieved 

the lowest average MAE of 0.87°C and RMSE of 1.25°C across 

test stations. For instance, at Sabatier, this strategy reduced the 

MAE from 0.94°C (using only extreme LCZs) to 0.82°C, and 

at Busca from 1.10°C to 0.89°C (see Table 2). 

In summary, the fine-tuning and evaluation process was essen- 

tial for adapting the NUWG model to real-world urban con- 

ditions. By adjusting the model’s weights using real weather 

station data and evaluating it across various LCZs, we ensured 

that the model was able to generalize effectively to unseen en- 

vironments. The combination of simulated data pre-training 

and real-world data fine-tuning provided a powerful approach 

to simulating urban weather conditions, and the evaluation res- 

ults confirmed that the model can successfully predict air tem- 

peratures in diverse urban settings. While training on all avail- 

able stations yielded comparable performance (average MAE 

of 0.89°C), it did not consistently outperform the more stra- 

tegic LCZ selection. This suggests that LCZ diversity is more 

important than simply increasing the volume of training data. 

Overall, these results underscore the importance of thoughtful 

fine-tuning. Incorporating stations with contrasting LCZs en- 

hances the model’s ability to generalize across different urban 

environments, while training solely on green zones or parks 

(e.g., Compans-Cafarelli or Parc Maourine) limits generaliza- 

tion to denser urban fabrics, and vice versa. 

Our results show that NUWG-city significantly outperforms 

NUWG-Sim on test stations, especially when training includes 

LCZs similar to the test site. Training on extreme LCZs plus 

one middle LCZ often yields the best compromise. Models 

trained on very green urban parks (e.g., with high tree cover) 

generalize poorly to denser zones and vice versa, confirming 

the need to consider LCZ diversity in fine-tuning. 
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Table 2. Results of models trained on UWG simulations and 

fine-tuned with combinations of training set stations data and 

tested on test set stations. MAE (Mean Absolute Error), RMSE 

(Root Mean Square Error), STD (Standard Deviation) of errors 

are performance metrics of a certain trained model. The STD 

values in brackets represent the standard deviations across 

model training runs, while the ± std values indicate the standard 

deviations across stations. 

4. Discussion and Conclusion 

 

To date, techniques for mapping urban air temperature at fine 

spatial resolutions generally fall into two main categories: data- 

driven approaches, which rely on interpolation and statistical 

inference, and physics-based approaches, which simulate tem- 

perature using physical principles (Taheri-Shahraiyni and Sod- 

oudi, 2017). 

We propose a robust framework combining physics-based and 

data-driven models for urban climate simulation. By leveraging 

simulated data for pre-training and real data for fine-tuning, 

our approach adapts well to heterogeneous urban environments. 

LCZ-based strategies offer a promising path for guiding data 

collection and optimizing neural model performance in data- 

sparse cities. 

This reasearch demonstrates that combining physics-based mi- 

croclimate simulations with deep learning yields robust, accur- 

ate urban temperature models. Key findings include a 30–35% 

reduction in RMSE compared to UWG and NUWG-Sim 

baselines, improved stability through multi-station fine-tuning, 

and a 33% speedup in simulation runtime. These results high- 

light the value of judiciously integrating simulated and ob- 

served data to capture the spectrum of urban microclimates. 

The evaluation of NUWG-City across Toulouse weather sta- 

tions reveals that pretraining on UWG simulations followed 

by targeted fine-tuning with real data delivers the most reli- 

able air temperature estimates. Models trained exclusively on 

UWG outputs (NUWG-Sim) exhibited the largest errors, es- 

pecially in heterogeneous microclimates such as dense, veget- 

ated areas, underscoring UWG’s limited sensitivity to fine-scale 

urban features when used without calibration. Fine-tuning 

NUWG-Sim on data from a single, well-chosen station signi- 

ficantly reduced error—achieving RMSEs near 1.3°C, but per- 

formance varied widely depending on the station’s representat- 

iveness. By contrast, multi-station fine-tuning (combining two 

extreme LCZs and one average LCZ) not only matched or ex- 

ceeded the best single-station results but also halved the vari- 

ability in error across runs and sites. In quantitative terms, the 

best NUWG-City configuration outperformed NUWG-Sim by 

approximately 35% and raw UWG by 30%, while maintaining 

a computational speed roughly 33% faster than UWG itself. 

Despite these advances, several limitations temper the ap- 

proach’s broader applicability. First, UWG was used “out 

of the box,” without tuning its physical parameters or code, 

which constrained the fidelity of its synthetic data. Second, 

our fine-tuning leveraged only 12 of the 39 available stations 

in Toulouse metropolis, limiting the diversity of urban con- 

texts represented in training. Third, NUWG-City’s reliance 

on both rural meteorological data and radiative flux measure- 

ments restricts its use in locations lacking such inputs, and the 

model omits the influence of water bodies on local temperat- 

ure dynamics. Finally, although pretraining on UWG embeds 

an implicit physical framework, NUWG does not enforce ex- 

plicit physical laws—making expert post-hoc analysis essen- 

tial to validate its outputs. Looking forward, several aven- 

ues can further strengthen NUWG-City. Enhancing the train- 

ing database with more advanced or calibrated physical mod- 

els could improve baseline fidelity. Expanding validation to 

longer time periods and additional years would test temporal 

robustness. Transferring the model to other cities, via direct 

retraining, domain adaptation, or knowledge distillation, could 

establish its generality across climatic and urban forms. Finally, 

Trained on 

(data points) 

Tested on 

 
Metrics 

(◦C) 

Valade 

& Parc 

Maour- 

ine 

Valade 

& P. 

Maour- 

ine & 

Av. Gd 

Bretagne 

All 

sta- 

tions 

Carmes MAE 0.83 

(0.02) 

0.80 

(0.04) 

0.78 

(0.02) 

 RMSE 1.21 

(0.01) 

1.17 

(0.04) 

1.16 

(0.02) 

 STD 1.20 

(0.01) 

1.16 

(0.02) 

1.16 

(0.02) 

Thibaud MAE 0.93 

(0.02) 

0.85 

(0.02) 

0.86 

(0.03) 

 RMSE 1.35 

(0.02) 

1.22 

(0.03) 

1.23 

(0.06) 

 STD 1.35 

(0.02) 

1.22 

(0.02) 

1.20 

(0.01) 

Sabatier MAE 0.94 

(0.03) 

0.82 

(0.02) 

1.04 

(0.18) 

 RMSE 1.35 

(0.04) 

1.22 

(0.02) 

1.43 

(0.17) 

 STD 1.31 

(0.02) 

1.22 

(0.02) 

1.37 

(0.14) 

St-Exupery MAE 0.97 

(0.02) 

1.00 

(0.02) 

0.89 

(0.03) 

 RMSE 1.38 

(0.03) 

1.41 

(0.03) 

1.29 

(0.03) 

 STD 1.38 

(0.03) 

1.37 

(0.05) 

1.29 

(0.03) 

Busca MAE 1.10 

(0.06) 

0.89 

(0.08) 

0.93 

(0.08) 

 RMSE 1.47 

(0.05) 

1.27 

(0.07) 

1.29 

(0.07) 

 STD 1.26 

(0.01) 

1.20 

(0.03) 

1.17 

(0.02) 

Compans-Cafarelli MAE 1.02 

(0.02) 

0.99 

(0.02) 

0.99 

(0.03) 

 RMSE 1.42 

(0.02) 

1.38 

(0.03) 

1.37 

(0.04) 

 STD 1.41 

(0.02) 

1.35 

(0.04) 

1.37 

(0.04) 

Mean MAE 0.95 ± 
0.09 

0.87 ± 
0.07 

0.89 ± 
0.09 

 RMSE 1.35 ± 
0.08 

1.25 ± 
0.08 

1.27 ± 
0.09 

 STD 1.31 ± 
0.07 

1.23 ± 
0.07 

1.23 ± 
0.08 
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integrating remote-sensing imagery (from surface parameter 

maps to high-resolution Sentinel-2 and future thermal missions) 

promises to automate feature extraction, enrich spatial con- 

text, and potentially enable end-to-end temperature mapping 

directly from satellite data. Such developments would broaden 

NUWG-City’s applicability as a decision-support tool for urban 

planners confronting the challenges of heat mitigation and sus- 

tainable city design. 
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