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Abstract 

Agriculture is a cornerstone of economic stability and food security, particularly in regions like Morocco, where palm trees are 

vital to the environment and local livelihoods. The Figuig oasis, known for its extensive palm plantations, faces significant 

threats from the spread of palm tree diseases, which can lead to substantial agricultural losses. Early and accurate disease 

detection is critical to mitigating these impacts. This study evaluates the effectiveness of deep learning models YOLOv8 for 

object detection and U-Net for segmentation in detecting and segmenting healthy and diseased palm trees using Unmanned 

Aerial Vehicle (UAV) imagery. A dataset of 400 UAV images was annotated and divided into training (70%), validation (20%), 

and test (10%) sets. YOLOv8 achieved an accuracy of 78.48%, with a precision of 58.38% and a recall of 47.70%, 

demonstrating robust object detection capabilities but highlighting the need for improved recall to reduce false negatives. On 

the other hand, U-Net excelled in segmentation, achieving an overall precision of 0.8746, recall of 0.8713, and F1-score of 

0.8727, with powerful performance in delineating diseased regions. The results underscore the complementary strengths of 

YOLOv8 and U-Net, with YOLOv8 offering efficient detection and U-Net providing detailed segmentation for precise health 

assessment. This study highlights the potential of integrating UAV imagery and deep learning for automated palm tree health 

monitoring, paving the way for early disease detection and sustainable agricultural practices. Future work will focus on 

optimizing model performance, expanding the dataset, and exploring advanced architectures to further enhance accuracy and 

recall. 

1. Introduction

Palm trees play a crucial role in global agriculture (Amuda 

& Alabdulrahman, 2024), particularly in arid and semi-

arid regions, where they serve as essential sources of food, 

income, and ecological balance (Hadji & Petrişor, n.d.). 

However, recent years have seen increased threats to palm 

cultivation due to the spread of diseases and pests (Murphy 

et al., 2021). These health issues pose significant 

challenges to global food security, local economies, and 

environmental stability (Oosterveer et al., 2014). Diseases 

such as Bayoud, caused by the fungus Fusarium 

oxysporum f. sp. Albedinis (Freeman & Maymon, 2000), 

and infestations like the Red Palm Weevil 

(Rhynchophorus ferrugineus) have notably reduced date 

palm productivity across North Africa and the Middle East 

(Al-Dosary et al., 2016). These impacts are further 

exacerbated by climate change, which accelerates disease 

spread and weakens plant resilience through rising 

temperatures, prolonged droughts, and water scarcity 

(Abubakar et al., 2023). 

In Morocco, agriculture is vital to the national economy 

(Abdelmajid et al., 2021), and palm trees are economically 

important and culturally significant, contributing to 

environmental sustainability (Hamriri et al., 2024). Palm 

groves provide livelihood for thousands of rural 

households and serve as barriers against desertification 

(Kabiri & Remini, n.d.). The Figuig oasis, situated in 

eastern Morocco near the Algerian border (Salgot et al., 

2014), exemplifies a traditional oasis system characterized 

by extensive date palm plantations (Houssni et al., 2023). 

This region, known for its biodiversity and unique agro-

ecological practices, relies heavily on palm cultivation for 

survival (Mercha et al., n.d.). Nevertheless, Figuig has not 

been immune to palm diseases, posing serious threats to 

both local livelihoods and ecological balance(Kassem et 

al., 2017). 

Traditional palm disease detection methods involve 

manual inspection, a process that is time-consuming, 

labor-intensive, and susceptible to human error (Ruslan et 

al., 2019). Advances in remote sensing and artificial 

intelligence (AI) present significant opportunities to 

revolutionize agricultural monitoring through automation 

(Fuentes-Peñailillo et al., 2024). Unmanned Aerial 

Vehicles (UAVs), equipped with high-resolution cameras, 

efficiently capture large-scale imagery, while deep 

learning models can accurately analyze these images to 

detect and segment diseased regions (Wu et al., 2019). 

Among the promising deep learning methods, YOLOv8 

excels in object detection due to its real-time capabilities, 

making it ideal for identifying healthy and diseased palm 

trees from UAV imagery (D. Ahmed et al., n.d.). 

Conversely, U-Net, a convolutional neural network (CNN) 

originally developed for biomedical image segmentation 

(Ronneberger et al., 2015), demonstrates outstanding 

performance in delineating precise regions of interest, 

critical for accurately assessing disease severity (Park et 

al., 2019). 

Previous research by Bouthina et al. (2024) highlighted the 

effectiveness of CNNs in palm disease classification, 

achieving accuracy rates of up to 98%. However, these 

studies primarily focused on classification without precise 

disease localization, leading to limited detection of early-

stage infections (Bouthaina et al., 2024). Similarly, Yarak 

et al. (2021) successfully employed deep learning for oil 

palm health monitoring using high-resolution UAV 

imagery, utilizing Faster R-CNN with ResNet-50 and 

VGG-16 backbones (Yarak et al., 2021). Their study 
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achieved F1-scores up to 95.09% for detection and 92.07% 

for classifying healthy trees. Nonetheless, they 

encountered challenges detecting early-stage diseases 

(57.14% F1-score for unhealthy trees) and young palms 

due to limited crown visibility. These limitations 

underscore the necessity of integrated detection and 

segmentation approaches, as addressed in this study. 

Our research directly addresses these gaps by combining 

YOLOv8's object detection capabilities with U-Net’s 

segmentation precision (Elsharkawy et al., 2025). This 

integrated methodology enables effective disease 

identification and precise mapping of affected areas in 

UAV imagery, enhancing early detection accuracy and 

providing spatial information for targeted treatments. 

The primary objective of this study is to evaluate and 

compare YOLOv8 and U-Net in detecting and segmenting 

diseased palm trees using UAV-captured imagery from the 

Figuig oasis. A dataset consisting of 400 annotated UAV 

images was employed, divided into training (70%), 

validation (20%), and test sets (10%) to ensure rigorous 

model assessment. Performance metrics including 

accuracy, precision, recall, and F1-score were analyzed to 

identify the strengths and limitations of each approach. 

The outcomes of this research significantly contribute to 

the expanding domain of AI-driven agricultural 

monitoring, illustrating the potential of deep learning 

models to improve early disease detection and support 

sustainable farming practices (Zhang et al., 2021). 

Integrating UAV technology with advanced AI techniques 

presents automated, scalable, and cost-effective solutions 

for palm health assessments (Liu et al., 2021). Future 

research will aim to further optimize model performance, 

expand the dataset, and investigate advanced architectures 

to enhance detection accuracy and reliability. 

2. Materials And Methods

The Material and Methodology section introduces the 

structured approach employed in this study, initially 

presenting the geographical context of the study area the 

Figuig oasis, Morocco. Subsequently, it outlines the 

comprehensive identification framework (Figure 1), which 

systematically covers all critical phases of the research. 

This framework involves sequential steps, including data 

acquisition, meticulous annotation and labelling, 

preprocessing techniques for enhancing data quality, 

model training procedures, rigorous model evaluation, and 

ultimately, prediction and mapping of diseased palm trees. 

2.1. Study Area 

Figuig, a charming oasis town in the Oriental region of 

Morocco (Figure 1), is situated at approximately 32°06′N, 

1°14′W near the Algerian border (Teixidor-Toneu et al., 

2017). Nestled within the Sahara Desert, it is surrounded 

by arid mountains and features expansive palm groves 

covering around 5,000 hectares (Msanda et al., 2021). 

These groves, vital to the local economy, are sustained by 

ingenious traditional khettara irrigation systems. Figuig’s 

desert climate is marked by hot summers exceeding 40°C 

(104°F), mild winters ranging from 5°C to 20°C (41°F to 

68°F), and scarce rainfall, which averages less than 200 

mm annually (Teixidor-Toneu et al., 2017). 

Home to about 12,000 residents, Figuig thrives on 

agriculture, with date farming as its main activity. The 

town is renowned for producing premium-quality dates, 

including the sought-after “Aziza” variety (Msanda et al., 

2021). The palm trees not only provide economic 

sustenance but also contribute to the town's scenic beauty 

and ecological balance (Talley et al., 2012). 

Figuig is composed of seven historic ksour (fortified 

villages) interconnected by narrow alleys and 

characterized by traditional adobe architecture (Msanda et 

al., 2021). These ksour reflect the town’s deep cultural 

roots and its role as a historic crossroads for trade and 

cultural exchange. Festivals, including the annual date 

celebration, showcase the community’s vibrant heritage 

and agricultural achievements (Teixidor-Toneu et al., 

2017). 

Figuig’s unique combination of natural beauty, historical 

significance, and agricultural wealth makes it a fascinating 

and resilient oasis in Morocco’s desert landscape. 

Figure 1: Geographic Context of the Study Area. 
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2.2. Data Used 

The study utilized two primary forms of data: UAV 

(Unmanned Aerial Vehicle) imagery and annotated 

datasets. These datasets were crucial for achieving the 

study’s objectives, ensuring high accuracy in detecting and 

segmenting diseased palm trees, and enabling robust 

model training and evaluation. 

2.2.1. UAV Imagery 

High-resolution UAV imagery formed the foundation of 

this study. The UAV images were captured over palm 

plantations in the Figuig oasis, Morocco, under consistent 

lighting and altitude conditions to ensure uniformity and 

clarity [[File]]. These images provided detailed views of 

both healthy and diseased palm trees, enabling precise 

analysis of canopy conditions and disease symptoms. The 

UAV platform was equipped with advanced sensors 

capable of capturing RGB and multispectral data, which 

are essential for identifying early signs of palm tree 

diseases (R. S et al., 2024). 

After capturing the UAV images, photogrammetric 

processing was performed using Agisoft Metashape , a 

state-of-the-art software for photogrammetry ,Agisoft 

Metashape aligned the individual drone images to create a 

single cohesive image, resulting in high-resolution 

orthophotos with a ground resolution of 1 cm per pixel 

,This process ensured that the images were geometrically 

corrected and suitable for further analysis. 

2.2.2. Orthophoto Splitting and Dataset 

Preparation 

The orthophotos generated by Agisoft Metashape were 

subsequently split into smaller, manageable tiles using a 

custom Python script. (Pahari, n.d.) This step was 

necessary to divide the large orthophotos into smaller 

sections that could be efficiently processed by the AI 

models. The splitting process also helped standardize the 

dataset for consistent input sizes during training  

Once the orthophotos were split, the resulting images were 

uploaded to Roboflow, a platform designed for managing 

and annotating machine learning datasets. In Roboflow, 

the images were annotated to prepare them for supervised 

learning tasks. 

2.2.3. Annotated Datasets 

To facilitate supervised learning for both YOLOv8 object 

detection and U-Net segmentation, the UAV imagery was 

meticulously annotated using the Roboflow platform (R. S 

et al., 2024). The annotation process involved: 

• Bounding Boxes: For YOLOv8, individual palm trees

were labeled as either "healthy" or "diseased,"

enabling the model to learn localized disease

detection.

• Pixel-wise Masks: For U-Net, precise pixel-level

masks were created to delineate diseased regions

within the tree canopies, supporting accurate

segmentation tasks.

     The annotated dataset was divided into three 

subsets (R. S et al., 2024): 

Training Set (70%): Used to train the AI models. 

Validation Set (20%): Employed for hyperparameter 

tuning and model validation. 

Testing Set (10%): Reserved for final performance 

evaluation, ensuring an unbiased assessment of model 

accuracy and reliability (R. S et al., 2024). 

2.2.4. Metadata 

In addition to the UAV imagery, metadata was collected 

to provide contextual information about the data 

acquisition process. This metadata included: 

• UAV flight parameters such as altitude, speed, and

camera settings.

• Geographical coordinates of the palm plantations

within the Figuig oasis.

• Environmental conditions during image capture,

including weather patterns and lighting

conditions.(Pahari, n.d.)

This metadata played a vital role in understanding the 

conditions under which the data was collected and ensured 

the reproducibility of the study. 

2.2.5. Data Preprocessing 

Before feeding the data into the AI models, several 

preprocessing steps were performed to enhance data 

quality and model performance: 

• Image Cropping: Individual tree crowns were

extracted from UAV imagery to focus on specific

areas of interest.

• Normalization: Pixel values were adjusted to ensure

consistency across images.

• Augmentation: Techniques such as rotation, flipping,

and contrast adjustments were applied to increase

dataset diversity and reduce overfitting.

These preprocessing steps ensured that the models could 

generalize effectively to real-world scenarios.(M. Ahmed 

& Ahmed, 2023) 

2.3. Methodology 

This study follows a structured approach combining data 

acquisition, preprocessing, model training, and evaluation 

to assess the effectiveness of deep learning models in 

detecting and segmenting diseased palm trees in the Figuig 

oasis-Morocco. 

2.3.1. Data Acquisition 

UAV (Unmanned Aerial Vehicle) imagery was collected 

over palm plantations in the Figuig oasis, capturing both 

healthy and diseased palm trees. A total of 400 high-

resolution images were obtained under consistent lighting 

and altitude conditions to ensure uniformity. 

2.3.2. Data Annotation and Preparation 

The dataset was manually annotated using Roboflow 

platform, labeling individual palm trees as either "healthy" 

or "diseased" for object detection tasks (YOLOv8), and 

creating pixel-wise masks for segmentation tasks (U-Net). 

The annotated dataset was then split into training (70%), 

validation (20%), and testing (10%) subsets. 
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2.3.3. Model Selection and Implementation 

Two deep learning architectures were employed: 

• YOLOv8 for object detection, aimed at identifying and

localizing individual palm trees and classifying their

health status.

• U-Net for semantic segmentation, designed to delineate

the exact regions of disease presence within the canopy.

2.3.4. Model Training 

The models were trained on the prepared datasets using 

Python frameworks. Data augmentation techniques such 

as rotation, flipping, and contrast adjustments were applied 

to enhance model generalization. Hyperparameters 

(learning rate, batch size, number of epochs) were 

optimized through experimental tuning. 

2.3.5. Evaluation Metrics 

• For YOLOv8, performance was assessed using

Accuracy, Precision, and Recall to measure detection

quality.

• For U-Net, segmentation performance was evaluated

using Precision, Recall, and F1-score at the pixel

level. Confusion matrices and visual inspection of

predictions were used to validate model outputs.

2.3.6. Analysis and Comparison 

Results from both models were compared to assess their 

strengths and limitations. While YOLOv8 provided 

efficient detection of palm trees, U-Net offered detailed 

segmentation of diseased areas, making the models 

complementary. 

2.3.7. Tools and Platforms 

- Annotation: Roboflow

- Model Training: Google Colab

- Visualization: Matplotlib, OpenCV

Figure 2: Methodology for Palm Tree Disease Detection and Segmentation Using Deep Learning and UAV Imagery. 

This flowchart (Figure 2) outlines a complete deep 

learning workflow for palm tree disease detection and 

segmentation using UAV imagery from the Figuig oasis. 

Two models were implemented: YOLOv8 for object 

detection and U-Net for image segmentation. The 

evaluation results show that YOLOv8 achieved a good 

accuracy of 78.48% but had moderate precision (58.38%) 

and lower recall (47.70%), indicating a tendency to miss 

diseased trees (false negatives). In contrast, U-Net 

delivered strong performance in segmentation with high 

precision (0.8746), recall (0.8713), and F1-score (0.8727), 

making it more effective for detailed health assessment. 

Overall, the models are complementary: YOLOv8 is 

efficient for fast detection, while U-Net offers more 

accurate and fine-grained segmentation. Future 

improvements will focus on enhancing YOLOv8’s recall 

and testing advanced architectures for better overall 

performance. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025 
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-159-2026 | © Author(s) 2026. CC BY 4.0 License.

 
162



3. Results

This section presents the evaluation results of the two deep 

learning models applied in this study: YOLOv8 for object 

detection and U-Net (with a ResNet101 backbone) for 

semantic segmentation. Both models were trained and 

tested on UAV imagery collected from the Figuig oasis, 

with the goal of detecting and segmenting healthy and 

diseased palm trees. Performance metrics such as 

precision, recall, F1-score, and mAP were used to assess 

model accuracy and reliability. 

3.1. YOLOv8 Object Detection Results 

The YOLOv8 model was trained to detect and classify 

healthy and diseased palm trees from UAV imagery 

collected over the Figuig oasis. It achieved a precision of 

58.38%, recall of 47.70%, and an overall accuracy of 

78.48%. The model performed well in identifying healthy 

palm crowns, consistently drawing bounding boxes with 

high confidence scores. However, detecting diseased trees 

proved more challenging due to their lower representation 

in the dataset and the visual similarity between diseased 

and healthy trees. 

As illustrated in Figure 4, the distribution of detected 

instances reveals a strong class imbalance: over 6,000 

healthy instances were annotated compared to fewer than 

1,000 diseased ones. This imbalance likely led to a reduced 

ability to generalize the characteristics of diseased palms, 

resulting in lower recall and missed detections. The 

detection previews also show this limitation—while 

YOLOv8 successfully outlines most healthy palms with 

confidence scores often exceeding 0.70, diseased trees are 

either misclassified or identified with lower confidence 

levels. 

Despite these challenges, YOLOv8 remains a highly 

efficient tool for large-scale palm monitoring. Its speed 

and ability to rapidly assess tree health status make it ideal 

for field deployment. For future improvement, integrating 

class balancing strategies, targeted data augmentation, or 

combining detection with segmentation could significantly 

enhance its performance in detecting rare disease patterns. 

Figure 3: UAV image with YOLOv8 detection of healthy trees and confidence scores 
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Figure 4: Overview of detection results across different UAV scenes.

3.2. U-Net Segmentation Results 

The U-Net model, equipped with a ResNet101 encoder, 

demonstrated strong performance in segmenting palm 

crowns and identifying disease-affected regions across 

various UAV scenes. As illustrated in Figure 5, the model 

effectively distinguishes between healthy and unhealthy 

palm trees, producing clear and spatially coherent 

segmentation masks. In each example, the original UAV 

image is shown alongside its predicted segmentation 

output and the corresponding pixel count for each class. 

The bar charts reveal a consistent class imbalance, with a 

significantly higher number of healthy pixels compared to 

unhealthy ones. Despite this imbalance, U-Net succeeded 

in accurately localizing diseased areas, even in complex 

visual conditions such as overlapping canopies, shadows, 

or partial visibility. These results underscore the model’s 

robustness in pixel-level analysis and its practical utility in 

monitoring disease distribution within dense palm groves. 

The clarity of spatial boundaries and the consistency of 

predictions across diverse environments further confirm 

the model’s reliability for operational use in precision 

agriculture. 
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Figure 5: U-Net Segmentation Results with Pixel Counts

4. Discussion

The performance of both YOLOv8 and U-Net models was 

evaluated on a reserved test set representing 10% of the 

total UAV imagery dataset. The analysis focused on key 

evaluation metrics, including precision, recall, F1-score, 

and accuracy, to determine how well each model could 

detect and segment healthy and diseased palm trees. 

YOLOv8, which was trained for object detection and 

classification, achieved an accuracy of 78.48%, with a 

precision of 58.38% and a recall of 47.70%. These results 

indicate the model’s reliability in identifying palm crowns, 

particularly healthy trees, across diverse scenes. However, 

the comparatively lower recall suggests that some diseased 

trees went undetected, likely due to subtle symptoms, 

overlapping crowns, or the underrepresentation of 

diseased instances in the training dataset. Despite this, 

YOLOv8 offers a significant advantage in terms of speed 

and scalability, making it particularly well suited for real-

time field assessments and rapid monitoring over large 

areas. 

The U-Net model, based on a ResNet101 encoder, 

exhibited stronger segmentation performance. It achieved 

a precision of 87.46%, recall of 87.13%, and an F1-score 

of 87.27%, reflecting the model’s ability to capture the 

spatial extent of disease symptoms within the palm 

canopy. The high precision highlights its strength in 

minimizing false positives, while the balanced recall 

demonstrates that most diseased areas were successfully 

identified. Visual inspections further validated these 

outcomes, with the model accurately segmenting disease-

affected crowns even in visually complex scenes where 

YOLOv8 showed limitations. This makes U-Net 

particularly effective for detailed crown-level analysis and 

supports its use in precision treatment planning. 
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Together, the two models demonstrate complementary 

strengths. YOLOv8 enables rapid detection and initial 

localization of palms, whereas U-Net provides detailed 

semantic segmentation necessary for disease 

quantification and progression analysis. Their integration 

presents a promising two-stage pipeline: initial detection 

using YOLOv8 followed by high-resolution segmentation 

with U-Net. This combined approach enhances both the 

scalability and precision of disease monitoring in palm 

groves. 

Table 1: Comparative Evaluation of YOLOv8 and U-Net Performance in Palm Tree Health Analysis 

While both models delivered strong results (table 1), some 

areas for improvement remain. YOLOv8's recall could 

benefit from more balanced class representation and 

targeted data augmentation. Likewise, improving model 

generalization across different palm varieties and 

environmental contexts requires a more diverse and 

expansive training dataset. Future developments could 

include the use of multispectral or hyperspectral imagery, 

domain-specific pretraining, and hybrid detection-

segmentation models to further enhance performance. 

These findings also align with previous work in the field. 

Bouthina et al. (2024) demonstrated the potential of CNNs 

in palm disease classification, achieving accuracy rates of 

up to 98%. However, their study focused solely on 

classification and lacked spatial disease localization, 

limiting early detection capabilities. Similarly, Yarak et al. 

(2021) employed Faster R-CNN with high-resolution 

UAV imagery, obtaining F1-scores of 95.09% for 

detection and 92.07% for healthy tree classification. Yet, 

the model's performance dropped for unhealthy palms, 

particularly in early disease stages or where crown 

visibility was limited. In contrast, the integrated approach 

in this study addresses both detection and segmentation, 

providing spatially precise, actionable outputs for more 

effective disease monitoring. 

5. Conclusion

This study underscores the transformative potential of 

integrating UAV imagery with advanced deep learning 

models for the early detection and monitoring of palm tree 

diseases in agricultural environments such as the Figuig 

oasis. By comparing YOLOv8 for object detection and U-

Net for semantic segmentation, the research highlights the 

complementary strengths of each model. YOLOv8 

demonstrates high efficiency and real-time detection 

capabilities, making it suitable for large-scale, rapid 

assessments. In contrast, U-Net excels in accurately 

delineating diseased regions, proving to be more effective 

for precise health monitoring and targeted interventions. 

Despite promising results, challenges such as class 

imbalance, limited dataset variability, and moderate recall 

in YOLOv8 detection remain. Addressing these through 

dataset expansion, enhanced augmentation techniques, and 

model fine-tuning will be vital in future research. 

Furthermore, integrating these models into a unified 

pipeline could offer a robust, scalable solution for 

automated palm disease diagnosis, supporting sustainable 

agricultural practices and reinforcing the resilience of 

vulnerable ecosystems like those in Figuig. 

In conclusion, this comparative analysis not only 

demonstrates the viability of AI-powered monitoring 

systems in precision agriculture but also sets a foundation 

for future advancements aimed at increasing accuracy, 

scalability, and field readiness of intelligent crop health 

management systems. 
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