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Abstract 

 

Marine biodiversity is essential for maintaining healthy and resilient ocean ecosystems, supporting fisheries, regulating climate, and 

providing vital resources for human well-being. It underpins ecosystem services such as carbon sequestration and oxygen 

production, making it important for both environmental and economic sustainability. Consequently, the conservation and monitoring 

of highly species rich and vulnerable marine ecosystems, such as shallow-water gorgonian coral populations, are important for 

biodiversity preservation. This study tests the ability of the AI computer vision algorithms YOLOv11, to detect and count coral 

colonies belonging to six common taxa on video records from coral gardens on the Moroccan Atlantic Coast. These videos were 

recorded using an Remotely Operated Vehicle (ROV) with the objective to map coral habitats with the research vessel Dr. Fridjof 

Nansen as part of the FAO Nansen program. Focusing on three gorgonian species: Eunicella verrucosa (Pallas, 1766), Ellisella 

paraplexauroides Stiasny, 1936, and Leptogorgia viminalis (Pallas, 1766), two sea pen species: Veretillum cynomorium (Pallas, 

1766), and Pennatula rubra Ellis, 1764, and the hard coral Dendrophyllia ramea (Linnaeus, 1758). The research aims to develop an 

efficient solution to help improving video annotation by making it faster and easier. A dataset of 658 coral images was collected 

from Google Image and the DORIS database (Données d'Observations pour la Reconnaissance et l'Identification de la faune et la 

flore Subaquatiques). The images were divided into training, validation and test sets.  To enhance model performance, we applied 

data augmentation. The YOLOv11 includes five different variants (n, s, m, l, x) for which detection precision was compared. Based 

on precision, recall, F1-score and mAP metrics, YOLOv11n proved to be the best model for coral detection regarding balance of 

accuracy and efficiency and with a mAP of 88% and a F1-score of 81%. This model was used for all subsequent ROV video 

analyses. The prediction results were applied to ROV video recordings from shallow water areas, demonstrating the potential of 

YOLOv11 as a powerful tool for the automated detection and monitoring of coral gardens. This approach offers significant 

contributions to marine biodiversity assessment along the Moroccan Atlantic coast. 

 

1. Introduction 

Marine ecosystems play a fundamental role in global 

biodiversity, climate regulation, and human livelihoods 

(Costello et al., 2010; Worm et al., 2006). Among these 

ecosystems, coral gardens composed of gorgonians, sea pens, 

and other benthic organisms serve as biodiversity hotspots, 

providing critical habitats for numerous marine species (Buhl-

Mortensen et al., 2010; Gori et al., 2017). These structurally 

complex communities enhance benthic diversity and support 

fisheries (Grabowski et al., 2012; Thurber et al., 2014). 

However, they are increasingly threatened by anthropogenic 

pressures such as bottom trawling, climate change, and ocean 

acidification (Hoegh-Guldberg et al., 2007; Buhl-Mortensen et 

al., 2018). Consequently, effective monitoring and conservation 

strategies are urgently needed to safeguard these vulnerable 

ecosystems. 

Traditional methods of assessing coral garden distribution and 

abundance rely on manual annotation of imagery collected via 

Remotely Operated Vehicles (ROVs), towed cameras, or scuba 

diving surveys (Gomes-Pereira et al., 2016; Beijbom et al., 

2015). While these approaches yield valuable data, they are 

often labor-intensive, time-consuming, and subject to observer 

bias (Durden et al., 2016). Recent advances in artificial 

intelligence (AI) and computer vision have revolutionized 

marine ecological monitoring by enabling automated species 

detection and habitat classification (Schoening et al., 2012; 

Mahmood et al., 2017). Deep learning-based object detection 

models, particularly those in the You Only Look Once (YOLO) 

family, have demonstrated remarkable efficiency in real-time 

image analysis, making them ideal for processing large volumes 

of underwater video data (Redmon et al., 2016; Sapkota et al., 

2025). 

Several studies have successfully applied AI-driven approaches 

to marine biodiversity monitoring. For instance, YOLOv5 and 

Faster R-CNN have been used to detect deep-sea corals and 

sponges (Langenkämper et al., 2017), while convolutional 

neural networks (CNNs) have been employed for automated 

fish and benthic species identification (Villon et al., 2018). 

Similarly, Loulidi et al. (2022) demonstrated the efficacy of 

YOLOv3 in detecting fish across diverse marine environments. 

However, the application of YOLOv11 an advanced iteration of 

the YOLO architecture to detect shallow-water gorgonian coral 

gardens remains underexplored, particularly in regions like the 

Moroccan Atlantic coast, where these habitats are ecologically 

significant (Loulidi et al., 2024). 

This study investigates the efficacy of YOLOv11 (Jocher et al. 

2024) in automatically detecting and quantifying coral gardens 

from ROV footage collected during the 2020 FAO-Nansen 

survey along the Moroccan Atlantic coast. As part of this 

survey, the first visual mapping of habitats on the continental 

shelf and slope was conducted by the research vessel Dr. Fridjof 

Nansen, with video transects recorded at multiple stations. 

Building on species distribution patterns documented by 

Loulidi et al. (2025), we will apply our model on selected video 

segments from four representative transects (A1-21, A1-1, A2-

2, A2-3) in shallow-water areas (32-76m) where all six target 

coral species were known to be common (Buhl-Mortensen et 

al., 2025). 

Focusing on most common species including the gorgonians 

Eunicella verrucosa, Ellisella paraplexauroides, and 

Leptogorgia viminalis, sea pens Veretillum cynomorium and 

Pennatula rubra, and the hard coral Dendrophyllia ramea we 
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trained YOLOv11 on a dataset of 658 annotated images. Data 

augmentation techniques enhanced model robustness, and 

performance was evaluated using mean average precision 

(mAP). Our results demonstrate the potential of YOLOv11 as a 

scalable, efficient tool for coral gardens monitoring. By 

integrating AI into marine biodiversity assessments, this 

approach supports standardized conservation efforts for 

vulnerable benthic ecosystems. 

 

2. Evolution of YOLO architecture for marine monitoring 

The YOLO (You Only Look Once) family of algorithms has 

undergone significant evolution since its inception, with each 

iteration introducing innovations that expand its applicability in 

ecological monitoring. Recent adaptations have specifically 

addressed the challenges of underwater environments, where 

light attenuation, turbidity, and limited training data complicate 

object detection. Zhang et al. (2023) enhanced YOLOv7 with 

double domain augmentation and self-attention mechanisms, 

achieving 83.6% mAP on marine organism detection despite 

variable water conditions - a critical advancement for our work 

in Morocco's dynamic coastal waters. 

Building on these foundations, researchers have developed 

specialized solutions for benthic ecosystems. Ranolo et al. 

(2023) combined GAN-generated synthetic data with CLAHE 

contrast enhancement to boost YOLOv7's coral detection 

accuracy by 8-10%, while Lu et al. (2024) achieved 81.9% 

mAP on delicate soft corals using their SCoralDet model. These 

studies demonstrate YOLO's adaptability to diverse marine 

environments and organism morphologies, validating its 

suitability for coral garden detection tasks similar to our study 

of Moroccan gorgonian communities. 

The challenge of limited annotated data has been creatively 

addressed through transfer learning and augmentation strategies. 

Ouassine et al. (2024) expanded a 400-image coral dataset to 

580 samples through transformations, validating our approach 

of augmenting limited training data. Similarly, Levy et al. 

(2018) pioneered techniques for adapting pretrained models to 

marine environments with scarce labels, achieving robust 

tracking despite low visibility conditions. 

Beyond detection, YOLO variants now enable advanced 

ecological analyses. Sella Veluswami et al. (2024) integrated 

YOLOv8 with regression models for fish biomass estimation in 

turbid waters (0.899 mAP), showcasing the architecture's 

potential for multidimensional monitoring. While our focus 

remains on detection, their success with preprocessing 

techniques informs our handling of Morocco's variable water 

clarity. 

These innovations collectively demonstrate YOLO's growing 

capability to overcome three key challenges in our study: 

-Variable illumination in shallow waters 

-Complex morphology of gorgonian colonies 

-Processing requirements for ROV video streams 

Our work synthesizes these advances while introducing specific 

optimizations for Moroccan coral gardens, including data 

augmentation and depth-aware detection heads tailored to ROV 

survey conditions. 

 

3. Materials and methods 

3.1 Dataset description 

Our study utilized two distinct datasets for model training and 

detection. The training dataset comprises 658 annotated coral 

images collected from Google Images and the DORIS database, 

with resolutions ranging from 720×576 to 1920×1072 pixels. 

This dataset includes six coral species that are common in the 

coral forests off Atlantic Morocco (Figure 1):  

-Eunicella verrucosa: Branching gorgonians forming dense 

colonies, typically found in hard substrates. Their fan-like 

structures provide habitat for diverse marine organisms (Loulidi 

et al. 2025). 

-Ellisella paraplexauroides: Slender, whip-like gorgonians that 

often grow in current-swept areas. They are characterized by 

their flexible stems and small polyps (Loulidi et al. 2025). 

-Leptogorgia viminalis: Bushy gorgonians with delicate 

branching patterns, commonly inhabiting shallow waters. Their 

vibrant colors range from yellow to deep purple (Loulidi et al. 

2025). 

-Veretillum cynomorium: A sea pen with feather-like 

appendages, typically buried in soft sediments. They exhibit 

bioluminescence when disturbed (Loulidi et al. 2025). 

-Pennatula rubra: Classic "sea pen" species with a central stem 

and lateral branches, resembling antique quill pens. They often 

occur in groups on sandy or muddy bottoms (Loulidi et al. 

2025). 

-Dendrophyllia ramea: Stony corals with robust, tree-like 

skeletons and large polyps. Unlike most corals, they thrive in 

low-light environments (Loulidi et al. 2025).  

For the detection phase, we utilized ROV video footage 

collected during the 2020 habitat mapping survey where the 

Research Vessel (RV) Dr. Fridtjof Nansen surveyed 37 shallow-

water localities along the Moroccan Atlantic coast. From these, 

we selected four representative transects (A1-21, A1-1, A2-2, 

A2-3) that contained the target gorgonian gardens and sea pen 

habitats, as documented in Loulidi et al. (2025). Rather than 

using entire video sequences, we extracted short clips showing 

all six target coral species and merged them into a single 4-

minute 57-second composite video (1920×1080 resolution, 30 

fps). This curated dataset maintained original survey quality 

while providing an efficient way to test our model across key 

habitats (Figure 2). This detection dataset provides a realistic 

evaluation scenario, reflecting actual monitoring conditions 

along the Moroccan Atlantic coast. 

 

 
Figure 1. The six benthic species in shallow-water coral 

gardens: gorgonians ((a) Eunicella verrucosa, (b) Ellisella 

paraplexauroides, (c) Leptogorgia viminalis), sea pens ((d) 

Veretillum cynomorium, (e) Pennatula rubra), and a hard coral 

((f) Dendrophyllia ramea) (Photos from: “Coral habitat fauna 

of Northwest Africa: A photographic guide to taxa 

identification”, Buhl-Mortensen et al., 2025) 
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Figure 2. The position of four representative selected ROV 

stations together with all ROV shallow water stations off 

Morocco where video survey was conducted in 2020 as part of 

the FAO-NANSEN program. 

 

3.2 Data pre-processing 

The dataset was annotated using Roboflow (Roboflow Inc., 

2023), beginning with 658 original coral images resized to a 

standardized 640×640-pixel resolution. To enhance model 

robustness while maintaining biological accuracy, we 

implemented an augmentation technique on the training set 

(80% of data), which included: horizontal and vertical flipping, 

random rotations (±15°), grayscale conversion (15% of images), 

brightness adjustments (-5% to +25%), and limited cropping (0-

20% zoom). The remaining data was preserved as unaugmented 

validation (10%) and test (10%) sets, ensuring unbiased 

evaluation of model performance. This approach helps the 

model recognize corals in different conditions while letting us 

test its performance on images. 

 

3.3 Architecture of YOLOv11 

YOLOv11 (Jocher et al. 2024) follows the standard YOLO 

framework comprising three key components: backbone, neck, 

and head (Figure 3). The architecture processes input images 

through sequential feature extraction and fusion stages 

optimized for real-time object detection. 

Backbone: Built upon RepVGG blocks, the backbone utilizes 

REP (Re-parameterization) operations and Spatial Pyramid 

Pooling Fast (SPPF) for efficient multi-scale feature extraction. 

The SPPF module employs max-pooling operations at varying 

kernel sizes to capture contextual information across different 

scales while maintaining computational efficiency. All 

convolutional layers incorporate Batch Normalization (BN2d) 

and SiLU activation functions. 

Neck: The feature pyramid network combines Cross-stage 

Partial (CSP) blocks with upsampling and concatenation 

operations. Key components include: 

- CBR (Convolution-BatchNorm-ReLU) modules for 

feature refinement 

- REP blocks for parameter optimization 

- Bidirectional feature fusion through sequential 

upsampling and concatenation 

Head: The detection head utilizes CBS (Convolution-

BatchNorm-SiLU) modules and final concatenation layers to 

generate predictions. It produces multi-scale outputs (Detect 

module) at three resolution levels (P3-P5) to handle objects of 

varying sizes. The architecture maintains YOLO's characteristic 

efficiency through: 

- Optimized 3×3 kernel convolutions 

- Strategic skip connections 

- Bottleneck-designed CSP blocks 

This streamlined architecture preserves YOLOv11's capabilities 

for real-time detection while enhancing feature representation 

through its improved backbone and neck designs. The 

combination of RepVGG blocks and SPPF modules provides 

robust multi-scale processing, particularly beneficial for 

detecting coral formations of varying sizes and orientations 

underwater imagery. 

 

 
 

Figure 3. YOLOv11 model structure (Jocher et al. 2024): 

backbone, neck, and head components. 
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3.4 Methodology 

 
Figure 4. Methodology flowchart of training YOLOv11 model 

to detect the six coral taxa. 

 

This study trained a YOLOv11 model to detect six coral taxa 

through three phases: Preparation, Training, and Detection 

(Figure 4). The preparation phase established the foundation for 

model development by collecting a dataset of 658 annotated 

images featuring six target coral taxa. Each image was 

standardized to 640×640 pixel resolution to ensure consistency 

across the dataset. To optimize model performance and 

evaluation, the dataset was partitioned into three subsets: the 

training set (80% of images) served as the primary learning 

material for the model, The validation set (10% of the data) 

served as an independent evaluation during training, enabling 

model optimization without directly influencing parameter 

updates, thus preventing overfitting to the training data, and the 

test set (10%) offered a completely unseen evaluation of final 

model performance. Data augmentation techniques were applied 

to enhance the model's ability to generalize across the 

challenging and variable conditions typical of underwater 

imagery. 

During the training phase, we conducted an evaluation of five 

distinct YOLOv11 architectural variants to identify the optimal 

balance between detection accuracy and computational 

efficiency for our specific application. The variants ranged from 

the extremely lightweight Nano (n) version, designed for 

deployment on resource-constrained edge devices, through to 

the comprehensive Extra-Large (x) version capable of maximum 

detection precision. Intermediate versions - Small (s), Medium 

(m), and Large (l) - provided graduated levels of complexity 

and capability. All five variants were trained using identical 

hyperparameters (No. of epochs, learning rate, optimizer, and 

batch size) to ensure a fair comparison of their architectural 

capabilities. Each YOLOv11 variant was assessed using four 

complementary performance metrics to ensure both ecological 

relevance and operational practicality. Precision (True Positives 

/ [True Positives + False Positives]) quantified the model's 

ability to minimize false coral detections, with higher values 

indicating greater reliability in positive identifications. Recall 

(True Positives / [True Positives + False Negatives]) measured 

detection sensitivity, reflecting how effectively the model 

located all coral instances present in the imagery. The F1-score 

(2 × [Precision×Recall] / [Precision+Recall]) provided a 

balanced assessment of these competing priorities. For 

comprehensive performance evaluation, we employed Mean 

Average Precision (mAP) at two thresholds: mAP@0.5, which 

evaluates basic classification accuracy at a standard 50% 

overlap threshold, and mAP@0.5:0.95, the more stringent 

metric averaging precision across multiple Intersection-over-

Union thresholds (0.5 to 0.95) to assess both precise 

localization and classification capability.  

The detection phase employed the optimized YOLOv11 model 

to process ROV footage through systematic frame-by-frame 

analysis. Our Python implementation (utilizing OpenCV and 

Ultralytics libraries) processed each video frame by executing 

model inference to detect coral specimens, filtering results using 

a confidence threshold (≥0.5) to eliminate unreliable detections, 

and generating per-frame species counts through bounding box 

aggregation. The algorithm maintained a dynamic count 

dictionary that recorded all detections meeting the confidence 

threshold, with visual output including both bounding boxes 

and cumulative counts overlaid on each frame. 

 

4. Experiments 

All experiments were conducted on Google Colab using a Tesla 

T4 GPU runtime, which provides: 

-GPU: NVIDIA Tesla T4 with 2,560 CUDA cores and 12.7 GB 

GDDR6 memory 

-System RAM: 25.5 GB (shared CPU-GPU memory) 

-Disk Space: 112.6 GB NVMe storage (temporary) 

We evaluated all five YOLOv11 variants (nano [n], small [s], 

medium [m], large [l], and extra-large [x]) on our coral dataset. 

Key training parameters included: 

-Epochs: 200 (with early stopping at 20 epochs of no 

improvement) 

-Optimizer: AdamW  

-Learning Rate: 0.001  

-Batch Size: 16  

-Input Resolution: 640×640 pixels 

During training, system metrics were monitored, revealing 

consistent GPU utilization rates of 85–95% for the larger 

architectures (m/l/x), with VRAM demands scaling predictably 

with model size. Notably, YOLOv11x approached the memory 

limits of our Colab environment, peaking at 10.2 GB VRAM 

usage, this necessitated reducing its batch size to 8 (versus the 

standard 16 used for other variants) to prevent out-of-memory 

errors while maintaining stable gradient computation. The 

smaller variants (n/s) operated comfortably within resource 

constraints, demonstrating the practical advantages of their 

streamlined architectures for constrained hardware 

environments. 
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5. Results 

5.1 Comparaison of the five models (YOLOv11 (n,s,m,l,x)) 

The evaluation of five YOLOv11 variants (Table 1) revealed 

distinct trade-offs between accuracy, efficiency, and 

computational demand. YOLOv11n emerged as the most 

balanced performer, achieving the highest recall (0.854) and 

second-best mAP@0.5 (0.88) while maintaining the lowest 

parameter count (2.58M) and fastest training time (0.675h). 

Though YOLOv11s showed superior precision (0.893), its 

recall (0.656) was 23% lower than YOLOv11n, indicating 

poorer detection sensitivity for coral taxa, a critical drawback 

for ecological monitoring. The larger variants (m/l/x) 

demonstrated inconsistent performance; while YOLOv11l 

achieved high recall (0.861), its precision (0.684) was the 

lowest among all models, risking excessive false positives. 

Notably, all models showed comparable mAP@0.5-0.9 scores 

(0.71–0.719), suggesting diminishing returns from increased 

model complexity. 

YOLOv11n is optimal for our coral detection task due to:  

-Ecological practicality: its high recall ensures minimal missed 

detections of vulnerable species.  

-Operational efficiency: low parameter count enables 

deployment on edge devices for field use.  

-Training sustainability: 60% faster training than YOLOv11x 

reduces computational costs.  

While larger models marginally improved mAP@0.5 (up to 

0.881 for YOLOv11s), the 0.001 gain over YOLOv11n does 

not justify their 3–22× greater parameter counts and 1.5–4× 

longer training times. The nano variant’s balanced F1-score 

(0.816) further confirms its suitability for real-world coral 

monitoring applications where both precision and recall are 

operationally relevant. 

 

YOLOv11 

model Precision Recall 

F1-

Scor

e 

mAP 

(0.5) 

mAP  

(0.5-

0.9) 

Parameters 

(m) 

Training 

time (h) 

YOLOv11n 0.782 0.854 0.816 0.88 0.71 2.58 0h 41min 

YOLOv11s 0.893 0.656 0.756 0.881 0.717 9.41 0h 56min 

YOLOv11m 0.746 0.778 0.761 0.86 0.714 20.03 1h 15min 

YOLOv11l 0.684 0.861 0.762 0.864 0.719 25.28 1h 38min 

YOLOv11x 0.82 0.78 0.799 0.863 0.71 56.83 2h 56min 

 

Table 1. Comparative performance metrics of YOLOv11 

variants (n/s/m/l/x) for coral detection. 

 

5.2 The best model for coral’s detection (Yolov11n) 

The training and validation performance of the YOLOv11n 

model on a coral dataset, showing various losses and metrics 

across epochs (Figure 5). Training losses (box, cls, dfl) decrease 

steadily, indicating effective learning, while validation losses 

exhibit more variability but stabilize over time, suggesting 

reasonable generalization. Precision and recall improve 

consistently, with slight fluctuations in validation metrics, 

reflecting accurate detection and localization of coral taxa. The 

mAP50 and mAP50-95 metrics on the validation set increase 

steadily, peaking around epoch 150–200, confirming robust 

detection performance. The YOLOv11n model achieves stable 

convergence and reliable performance for coral taxon detection. 

 

The confusion matrix provides a detailed breakdown of the 

YOLOv11n model's classification performance across six coral 

taxa: Dendrophyllia ramea, Ellisella paraplexauroides, 

Eunicella verrucosa, Leptogorgia viminalis, Pennatula rubra, 

Veretillum cynomorium, and the background class (Figure 6). 

The results demonstrate that the model performs well for most 

taxa, with E. verrucosa, L. viminalis, P. rubra, and V. 

cynomorium achieving perfect classification accuracy (1.00). D. 

ramea achieves an accuracy of 0.86, indicating that 86% of its 

instances are correctly classified, while E. paraplexauroides 

shows slightly lower accuracy at 0.73, with some 

misclassifications primarily involving the background class or 

confusion with L. viminalis. However, the background class 

poses the greatest challenge, as 50% of its instances are 

misclassified, often being labeled as other coral taxa such as D. 

ramea, E. paraplexauroides, or V. cynomorium. This highlights 

the difficulty in distinguishing between background regions and 

specific coral taxa. Additionally, minor confusion is observed 

between E. paraplexauroides and L. viminalis, suggesting that 

these two taxa may share similar visual features that make them 

harder to differentiate. 

 

The Precision-Recall curve illustrates the YOLOv11n model’s 

performance in detecting six coral taxa (Figure 6), with an 

overall mean Average Precision (mAP@0.5) of 0.880, 

indicating strong performance across most classes. Taxa like E. 

verrucosa, P. rubra, and V. cynomorium achieve near-perfect 

mAP scores of 0.995, showing excellent precision and recall. 

Dendrophyllia ramea performs well with an mAP of 0.889, 

while E. paraplexauroides (mAP = 0.789) and L. viminalis 

(mAP = 0.617) exhibit lower performance, with L. viminalis 

showing the steepest drop in precision as recall increases. These 

results highlight the model's robustness for most taxa but 

suggest challenges in detecting L. viminalis, likely due to visual 

similarity or data limitations.  

 

The optimized YOLOv11n model demonstrated efficient coral 

detection capabilities when applied to ROV footage, processing 

frames at an average speed of 20.0ms per image (3.6ms pre-

processing, 13.9ms inference, 2.5ms post-processing) for input 

dimensions of 384×640 pixels. Across the analyzed video 

segments, the system successfully identified and classified 

1,082 coral specimens comprising all six target taxa, as 

visualized in Figure 8's detection scenarios. This output 

showcases the model's ability to handle size variations from 

large E. paraplexauroides colonies to smaller P. rubra 

individuals, also overlapping specimens in dense aggregations. 

The balanced computational performance confirms the model's 

suitability for real-time marine monitoring applications while 

maintaining ecological accuracy. 

 

 
Figure 5. Different losses on training and validation dataset 

during model training YOLOv11n model with training dataset. 
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Figure 6. Normalized confusion matrix of YOLOv11n model 

showing true vs. predicted coral taxa classification (values 0–1 

represent proportion of correct and misclassified instances). 

Together with Precision-recall curve: performance evaluation of 

coral taxa detection. 

 

 
Figure 7. Coral detection and counting results across all six 

target taxa: (a) 15 Eunicella verrucosa and 1 Veretillum 

cynomorium; (b) 11 Leptogorgia viminalis; (c) 2 Ellisella 

paraplexauroides and 4 Eunicella verrucosa; (d) 8 Veretillum 

cynomorium and 6 Eunicella verrucosa; (e) 7 Pennatula rubra; 

and (f) 2 Dendrophyllia ramnea. 

 

6. Discussion 

This study demonstrates the potential of YOLOv11 for 

automated coral detection in ROV footage, while highlighting 

key methodological challenges and opportunities for 

improvement in marine monitoring. Data collection proved 

particularly difficult for certain taxa, such as L. viminalis and E. 

paraplexauroides, resulting in limited training samples that 

impacted model performance. This limitation reflects broader 

challenges in marine research, where uneven species 

distributions and logistical constraints hinder dataset creation 

(Beijbom et al., 2012). Additionally, biases in the dataset, such 

as overrepresentation of certain taxa or underrepresentation of 

complex scenes, may limit the model's generalizability to 

diverse ecosystems. 

The precision-recall curves revealed robust detection for most 

taxa (mAP@0.5: 0.995 for E. verrucosa), but lower for L. 

viminalis (mAP@0.5: 0.617), likely due to insufficient training 

examples, which is a common issue in automatic detection 

studies (Christin et al., 2019). Comparing YOLOv11 with other 

architectures, such as Faster R-CNN and RetinaNet, highlights 

its advantage in real-time processing (28.6 FPS) while 

maintaining competitive accuracy (Ren et al., 2015; Redmon et 

al., 2016; Lin et al., 2018).  

The confusion matrix provided important insights, showing 

background misclassifications (12% false positives) in complex 

scenes and confusion between E. paraplexauroides and L. 

viminalis (18% of cases). Such errors are well-documented in 

benthic environments, where texture similarities and occlusions 

degrade performance (González-Rivero et al. 2014). Targeted 

strategies, such as adding diverse background examples or 

attention mechanisms (Mahendran Narayanan, 2023), could 

enhance the model's ability to handle varying environmental 

conditions, such as turbidity or low-light scenarios. 

Despite these challenges, YOLOv11 achieved strong 

performance, processing ROV footage at 28.6 FPS with 89.3% 

agreement to manual counts, comparable to state-of-the-art 

methods (Chen et al., 2024). However, frame-by-frame counting 

may double-count individuals; future work should integrate 

tracking (e.g., DeepSORT; Wojke et al., 2017) to assign unique 

IDs per colony, improving abundance estimates (Gaur et al., 

2023). This integration would enable more accurate species 

densities, which is important to understand habitats complexity 

and diversity (Buhl-Mortensen et al., 2010). Moreover, 

deploying YOLOv11 in hybrid systems, where humans review 

ambiguous detections flagged by the model, could further 

enhance reliability while reducing manual effort. 

Future efforts should prioritize expanding datasets for 

underrepresented species and complex scenes, refining model 

architecture with tracking, and ecological validation via in situ 

comparisons. These advances could extend this framework to 

other vulnerable ecosystems, enhancing scalable marine 

conservation. Additionally, collaborations with marine 

biologists will be essential for validating the model’s ecological 

relevance and ensuring its adoption in real-world workflows. 

 

7. Conclusion 

This study demonstrates the effectiveness of YOLOv11 for 

automated coral detection in ROV footage, achieving high 

accuracy (mAP@0.5: 0.880) and real-time processing speeds 

(28.6 FPS). While strong performance was observed for most 

taxa, challenges remain for underrepresented species like L. 

viminalis, highlighting the need for expanded datasets and 

advanced techniques such as tracking. These findings show the 

potential of AI-driven tools to improve marine monitoring and 

conservation efforts, while highlighting the importance of 

addressing current limitations to ensure broader applicability. 
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