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Abstract

Marine biodiversity is essential for maintaining healthy and resilient ocean ecosystems, supporting fisheries, regulating climate, and
providing vital resources for human well-being. It underpins ecosystem services such as carbon sequestration and oxygen
production, making it important for both environmental and economic sustainability. Consequently, the conservation and monitoring
of highly species rich and vulnerable marine ecosystems, such as shallow-water gorgonian coral populations, are important for
biodiversity preservation. This study tests the ability of the Al computer vision algorithms YOLOvV11, to detect and count coral
colonies belonging to six common taxa on video records from coral gardens on the Moroccan Atlantic Coast. These videos were
recorded using an Remotely Operated Vehicle (ROV) with the objective to map coral habitats with the research vessel Dr. Fridjof
Nansen as part of the FAO Nansen program. Focusing on three gorgonian species: Eunicella verrucosa (Pallas, 1766), Ellisella
paraplexauroides Stiasny, 1936, and Leptogorgia viminalis (Pallas, 1766), two sea pen species: Veretillum cynomorium (Pallas,
1766), and Pennatula rubra Ellis, 1764, and the hard coral Dendrophyllia ramea (Linnaeus, 1758). The research aims to develop an
efficient solution to help improving video annotation by making it faster and easier. A dataset of 658 coral images was collected
from Google Image and the DORIS database (Données d'Observations pour la Reconnaissance et I'ldentification de la faune et la
flore Subaquatiques). The images were divided into training, validation and test sets. To enhance model performance, we applied
data augmentation. The YOLOV11 includes five different variants (n, s, m, I, x) for which detection precision was compared. Based
on precision, recall, F1-score and mAP metrics, YOLOv11n proved to be the best model for coral detection regarding balance of
accuracy and efficiency and with a mAP of 88% and a F1-score of 81%. This model was used for all subsequent ROV video
analyses. The prediction results were applied to ROV video recordings from shallow water areas, demonstrating the potential of
YOLOvV11 as a powerful tool for the automated detection and monitoring of coral gardens. This approach offers significant

contributions to marine biodiversity assessment along the Moroccan Atlantic coast.

1. Introduction

Marine ecosystems play a fundamental role in global
biodiversity, climate regulation, and human livelihoods
(Costello et al., 2010; Worm et al., 2006). Among these
ecosystems, coral gardens composed of gorgonians, sea pens,
and other benthic organisms serve as biodiversity hotspots,
providing critical habitats for numerous marine species (Buhl-
Mortensen et al., 2010; Gori et al., 2017). These structurally
complex communities enhance benthic diversity and support
fisheries (Grabowski et al., 2012; Thurber et al., 2014).
However, they are increasingly threatened by anthropogenic
pressures such as bottom trawling, climate change, and ocean
acidification (Hoegh-Guldberg et al., 2007; Buhl-Mortensen et
al., 2018). Consequently, effective monitoring and conservation
strategies are urgently needed to safeguard these vulnerable
ecosystems.

Traditional methods of assessing coral garden distribution and
abundance rely on manual annotation of imagery collected via
Remotely Operated Vehicles (ROVs), towed cameras, or scuba
diving surveys (Gomes-Pereira et al., 2016; Beijbom et al.,
2015). While these approaches yield valuable data, they are
often labor-intensive, time-consuming, and subject to observer
bias (Durden et al., 2016). Recent advances in artificial
intelligence (Al) and computer vision have revolutionized
marine ecological monitoring by enabling automated species
detection and habitat classification (Schoening et al., 2012;
Mahmood et al., 2017). Deep learning-based object detection
models, particularly those in the You Only Look Once (YOLO)
family, have demonstrated remarkable efficiency in real-time
image analysis, making them ideal for processing large volumes

of underwater video data (Redmon et al., 2016; Sapkota et al.,
2025).

Several studies have successfully applied Al-driven approaches
to marine biodiversity monitoring. For instance, YOLOV5 and
Faster R-CNN have been used to detect deep-sea corals and
sponges (Langenkdmper et al., 2017), while convolutional
neural networks (CNNs) have been employed for automated
fish and benthic species identification (Villon et al., 2018).
Similarly, Loulidi et al. (2022) demonstrated the efficacy of
YOLOv3 in detecting fish across diverse marine environments.
However, the application of YOLOvV11 an advanced iteration of
the YOLO architecture to detect shallow-water gorgonian coral
gardens remains underexplored, particularly in regions like the
Moroccan Atlantic coast, where these habitats are ecologically
significant (Loulidi et al., 2024).

This study investigates the efficacy of YOLOv11 (Jocher et al.
2024) in automatically detecting and quantifying coral gardens
from ROV footage collected during the 2020 FAO-Nansen
survey along the Moroccan Atlantic coast. As part of this
survey, the first visual mapping of habitats on the continental
shelf and slope was conducted by the research vessel Dr. Fridjof
Nansen, with video transects recorded at multiple stations.
Building on species distribution patterns documented by
Loulidi et al. (2025), we will apply our model on selected video
segments from four representative transects (Al-21, Al-1, A2-
2, A2-3) in shallow-water areas (32-76m) where all six target
coral species were known to be common (Buhl-Mortensen et
al., 2025).

Focusing on most common species including the gorgonians
Eunicella  verrucosa, Ellisella paraplexauroides, and
Leptogorgia viminalis, sea pens Veretillum cynomorium and
Pennatula rubra, and the hard coral Dendrophyllia ramea we
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trained YOLOV11 on a dataset of 658 annotated images. Data
augmentation techniques enhanced model robustness, and
performance was evaluated using mean average precision
(mAP). Our results demonstrate the potential of YOLOv11 as a
scalable, efficient tool for coral gardens monitoring. By
integrating Al into marine biodiversity assessments, this
approach supports standardized conservation efforts for
vulnerable benthic ecosystems.

2. Evolution of YOLO architecture for marine monitoring

The YOLO (You Only Look Once) family of algorithms has
undergone significant evolution since its inception, with each
iteration introducing innovations that expand its applicability in
ecological monitoring. Recent adaptations have specifically
addressed the challenges of underwater environments, where
light attenuation, turbidity, and limited training data complicate
object detection. Zhang et al. (2023) enhanced YOLOv7 with
double domain augmentation and self-attention mechanisms,
achieving 83.6% mAP on marine organism detection despite
variable water conditions - a critical advancement for our work
in Morocco's dynamic coastal waters.

Building on these foundations, researchers have developed
specialized solutions for benthic ecosystems. Ranolo et al.
(2023) combined GAN-generated synthetic data with CLAHE
contrast enhancement to boost YOLOv7's coral detection
accuracy by 8-10%, while Lu et al. (2024) achieved 81.9%
mAP on delicate soft corals using their SCoralDet model. These
studies demonstrate YOLO's adaptability to diverse marine
environments and organism morphologies, validating its
suitability for coral garden detection tasks similar to our study
of Moroccan gorgonian communities.

The challenge of limited annotated data has been creatively
addressed through transfer learning and augmentation strategies.
Ouassine et al. (2024) expanded a 400-image coral dataset to
580 samples through transformations, validating our approach
of augmenting limited training data. Similarly, Levy et al.
(2018) pioneered techniques for adapting pretrained models to
marine environments with scarce labels, achieving robust
tracking despite low visibility conditions.

Beyond detection, YOLO variants now enable advanced
ecological analyses. Sella Veluswami et al. (2024) integrated
YOLOV8 with regression models for fish biomass estimation in
turbid waters (0.899 mAP), showcasing the architecture's
potential for multidimensional monitoring. While our focus
remains on detection, their success with preprocessing
techniques informs our handling of Morocco's variable water
clarity.

These innovations collectively demonstrate YOLO's growing
capability to overcome three key challenges in our study:
-Variable illumination in shallow waters

-Complex morphology of gorgonian colonies

-Processing requirements for ROV video streams

Our work synthesizes these advances while introducing specific
optimizations for Moroccan coral gardens, including data
augmentation and depth-aware detection heads tailored to ROV
survey conditions.

3. Materials and methods
3.1 Dataset description

Our study utilized two distinct datasets for model training and
detection. The training dataset comprises 658 annotated coral
images collected from Google Images and the DORIS database,
with resolutions ranging from 720x576 to 1920x1072 pixels.

This dataset includes six coral species that are common in the
coral forests off Atlantic Morocco (Figure 1):

-Eunicella verrucosa: Branching gorgonians forming dense
colonies, typically found in hard substrates. Their fan-like
structures provide habitat for diverse marine organisms (Loulidi
et al. 2025).

-Ellisella paraplexauroides: Slender, whip-like gorgonians that
often grow in current-swept areas. They are characterized by
their flexible stems and small polyps (Loulidi et al. 2025).
-Leptogorgia viminalis: Bushy gorgonians with delicate
branching patterns, commonly inhabiting shallow waters. Their
vibrant colors range from yellow to deep purple (Loulidi et al.
2025).

-Veretillum cynomorium: A sea pen with feather-like
appendages, typically buried in soft sediments. They exhibit
bioluminescence when disturbed (Loulidi et al. 2025).
-Pennatula rubra: Classic "sea pen" species with a central stem
and lateral branches, resembling antique quill pens. They often
occur in groups on sandy or muddy bottoms (Loulidi et al.
2025).

-Dendrophyllia ramea: Stony corals with robust, tree-like
skeletons and large polyps. Unlike most corals, they thrive in
low-light environments (Loulidi et al. 2025).

For the detection phase, we utilized ROV video footage
collected during the 2020 habitat mapping survey where the
Research Vessel (RV) Dr. Fridtjof Nansen surveyed 37 shallow-
water localities along the Moroccan Atlantic coast. From these,
we selected four representative transects (Al1-21, Al-1, A2-2,
A2-3) that contained the target gorgonian gardens and sea pen
habitats, as documented in Loulidi et al. (2025). Rather than
using entire video sequences, we extracted short clips showing
all six target coral species and merged them into a single 4-
minute 57-second composite video (1920x1080 resolution, 30
fps). This curated dataset maintained original survey quality
while providing an efficient way to test our model across key
habitats (Figure 2). This detection dataset provides a realistic
evaluation scenario, reflecting actual monitoring conditions
along the Moroccan Atlantic coast.

Figure 1. The six benthic species in shallow-water coral
gardens: gorgonians ((a) Eunicella verrucosa, (b) Ellisella
paraplexauroides, (c) Leptogorgia viminalis), sea pens ((d)
Veretillum cynomorium, (e) Pennatula rubra), and a hard coral
((f) Dendrophyllia ramea) (Photos from: “Coral habitat fauna
of Northwest Africa: A photographic guide to taxa
identification”, Buhl-Mortensen et al., 2025)
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Figure 2. The position of four representative selected ROV
stations together with all ROV shallow water stations off
Morocco where video survey was conducted in 2020 as part of
the FAO-NANSEN program.

3.2 Data pre-processing

The dataset was annotated using Roboflow (Roboflow Inc.,
2023), beginning with 658 original coral images resized to a
standardized 640x640-pixel resolution. To enhance model
robustness while maintaining biological accuracy, we
implemented an augmentation technique on the training set
(80% of data), which included: horizontal and vertical flipping,
random rotations (+15°), grayscale conversion (15% of images),
brightness adjustments (-5% to +25%), and limited cropping (0-
20% zoom). The remaining data was preserved as unaugmented
validation (10%) and test (10%) sets, ensuring unbiased
evaluation of model performance. This approach helps the
model recognize corals in different conditions while letting us
test its performance on images.

3.3 Architecture of YOLOv11

YOLOv11 (Jocher et al. 2024) follows the standard YOLO
framework comprising three key components: backbone, neck,
and head (Figure 3). The architecture processes input images
through sequential feature extraction and fusion stages
optimized for real-time object detection.

Backbone: Built upon RepVGG blocks, the backbone utilizes
REP (Re-parameterization) operations and Spatial Pyramid
Pooling Fast (SPPF) for efficient multi-scale feature extraction.
The SPPF module employs max-pooling operations at varying
kernel sizes to capture contextual information across different
scales while maintaining computational efficiency. All
convolutional layers incorporate Batch Normalization (BN2d)
and SiLU activation functions.

Neck: The feature pyramid network combines Cross-stage
Partial (CSP) blocks with upsampling and concatenation
operations. Key components include:

- CBR (Convolution-BatchNorm-ReLU) modules for
feature refinement

- REP blocks for parameter optimization

- Bidirectional feature fusion through
upsampling and concatenation

Head: The detection head utilizes CBS (Convolution-
BatchNorm-SiLU) modules and final concatenation layers to
generate predictions. It produces multi-scale outputs (Detect
module) at three resolution levels (P3-P5) to handle objects of

sequential

varying sizes. The architecture maintains YOLO's characteristic
efficiency through:

- Optimized 3x3 kernel convolutions

- Strategic skip connections

- Bottleneck-designed CSP blocks

This streamlined architecture preserves YOLOv11's capabilities
for real-time detection while enhancing feature representation
through its improved backbone and neck designs. The
combination of RepVGG blocks and SPPF modules provides
robust multi-scale processing, particularly beneficial for
detecting coral formations of varying sizes and orientations
underwater imagery.
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Figure 3. YOLOv11 model structure (Jocher et al.
backbone, neck, and head components.

2024):
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3.4 Methodology
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Figure 4. Methodology flowchart of training YOLOv11 model
to detect the six coral taxa.

This study trained a YOLOv11 model to detect six coral taxa
through three phases: Preparation, Training, and Detection
(Figure 4). The preparation phase established the foundation for
model development by collecting a dataset of 658 annotated
images featuring six target coral taxa. Each image was
standardized to 640x640 pixel resolution to ensure consistency
across the dataset. To optimize model performance and
evaluation, the dataset was partitioned into three subsets: the
training set (80% of images) served as the primary learning
material for the model, The validation set (10% of the data)
served as an independent evaluation during training, enabling
model optimization without directly influencing parameter
updates, thus preventing overfitting to the training data, and the
test set (10%) offered a completely unseen evaluation of final
model performance. Data augmentation techniques were applied
to enhance the model's ability to generalize across the
challenging and variable conditions typical of underwater
imagery.

During the training phase, we conducted an evaluation of five
distinct YOLOV11 architectural variants to identify the optimal
balance between detection accuracy and computational
efficiency for our specific application. The variants ranged from
the extremely lightweight Nano (n) version, designed for
deployment on resource-constrained edge devices, through to
the comprehensive Extra-Large (x) version capable of maximum
detection precision. Intermediate versions - Small (s), Medium
(m), and Large (l) - provided graduated levels of complexity
and capability. All five variants were trained using identical
hyperparameters (No. of epochs, learning rate, optimizer, and

batch size) to ensure a fair comparison of their architectural
capabilities. Each YOLOv11 variant was assessed using four
complementary performance metrics to ensure both ecological
relevance and operational practicality. Precision (True Positives
| [True Positives + False Positives]) quantified the model's
ability to minimize false coral detections, with higher values
indicating greater reliability in positive identifications. Recall
(True Positives / [True Positives + False Negatives]) measured
detection sensitivity, reflecting how effectively the model
located all coral instances present in the imagery. The F1-score
(2 x [PrecisionxRecall] / [Precision+Recall]) provided a
balanced assessment of these competing priorities. For
comprehensive performance evaluation, we employed Mean
Average Precision (mAP) at two thresholds: mAP@0.5, which
evaluates basic classification accuracy at a standard 50%
overlap threshold, and mAP@0.5:0.95, the more stringent
metric averaging precision across multiple Intersection-over-
Union thresholds (0.5 to 0.95) to assess both precise
localization and classification capability.

The detection phase employed the optimized YOLOv11 model
to process ROV footage through systematic frame-by-frame
analysis. Our Python implementation (utilizing OpenCV and
Ultralytics libraries) processed each video frame by executing
model inference to detect coral specimens, filtering results using
a confidence threshold (>0.5) to eliminate unreliable detections,
and generating per-frame species counts through bounding box
aggregation. The algorithm maintained a dynamic count
dictionary that recorded all detections meeting the confidence
threshold, with visual output including both bounding boxes
and cumulative counts overlaid on each frame.

4. Experiments

All experiments were conducted on Google Colab using a Tesla
T4 GPU runtime, which provides:

-GPU: NVIDIA Tesla T4 with 2,560 CUDA cores and 12.7 GB
GDDR6 memory

-System RAM: 25.5 GB (shared CPU-GPU memory)

-Disk Space: 112.6 GB NV Me storage (temporary)

We evaluated all five YOLOv11 variants (hano [n], small [s],
medium [m], large [I], and extra-large [x]) on our coral dataset.
Key training parameters included:

-Epochs: 200 (with early stopping at 20 epochs of no
improvement)

-Optimizer: AdamwW

-Learning Rate: 0.001

-Batch Size: 16

-Input Resolution: 640x640 pixels

During training, system metrics were monitored, revealing
consistent GPU utilization rates of 85-95% for the larger
architectures (m/l/x), with VRAM demands scaling predictably
with model size. Notably, YOLOv11x approached the memory
limits of our Colab environment, peaking at 10.2 GB VRAM
usage, this necessitated reducing its batch size to 8 (versus the
standard 16 used for other variants) to prevent out-of-memory
errors while maintaining stable gradient computation. The
smaller variants (n/s) operated comfortably within resource
constraints, demonstrating the practical advantages of their
streamlined  architectures  for  constrained  hardware
environments.
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5. Results
5.1 Comparaison of the five models (YOLOvV11 (n,s,m,l,x))

The evaluation of five YOLOv11 variants (Table 1) revealed
distinct trade-offs between accuracy, efficiency, and
computational demand. YOLOvlln emerged as the most
balanced performer, achieving the highest recall (0.854) and
second-best mAP@0.5 (0.88) while maintaining the lowest
parameter count (2.58M) and fastest training time (0.675h).
Though YOLOv11ls showed superior precision (0.893), its
recall (0.656) was 23% lower than YOLOv1l1n, indicating
poorer detection sensitivity for coral taxa, a critical drawback
for ecological monitoring. The larger variants (m/l/x)
demonstrated inconsistent performance; while YOLOv11l
achieved high recall (0.861), its precision (0.684) was the
lowest among all models, risking excessive false positives.
Notably, all models showed comparable mAP@0.5-0.9 scores
(0.71-0.719), suggesting diminishing returns from increased
model complexity.

YOLOv11n is optimal for our coral detection task due to:
-Ecological practicality: its high recall ensures minimal missed
detections of vulnerable species.

-Operational  efficiency: low parameter
deployment on edge devices for field use.
-Training sustainability: 60% faster training than YOLOv11x
reduces computational costs.

While larger models marginally improved mAP@0.5 (up to
0.881 for YOLOv11s), the 0.001 gain over YOLOv1ln does
not justify their 3-22x greater parameter counts and 1.5-4x
longer training times. The nano variant’s balanced F1-score
(0.816) further confirms its suitability for real-world coral
monitoring applications where both precision and recall are
operationally relevant.

count enables

F1- mAP
YOLOv11 Scor mAP (0.5- Parameters | Training
model Precision | Recall | e (0.5) 0.9) (m) time (h)
YOLOvl1ln 0.782 0.854 | 0.816 0.88 0.71 2.58 0Oh 41min
YOLOv11s 0.893 0.656 | 0.756 | 0.881 | 0.717 9.41 0Oh 56min
YOLOv1lm 0.746 0.778 | 0.761 0.86 | 0.714 20.03 1h 15min
YOLOv11l 0.684 0.861 | 0.762 | 0.864 | 0.719 25.28 1h 38min
YOLOvV11x 0.82 0.78 | 0.799 | 0.863 0.71 56.83 2h 56min

Table 1. Comparative performance metrics of YOLOv1l

variants (n/s/m/1/x) for coral detection.

5.2 The best model for coral’s detection (Yolovl1n)

The training and validation performance of the YOLOvlln
model on a coral dataset, showing various losses and metrics
across epochs (Figure 5). Training losses (box, cls, dfl) decrease
steadily, indicating effective learning, while validation losses
exhibit more variability but stabilize over time, suggesting
reasonable generalization. Precision and recall improve
consistently, with slight fluctuations in validation metrics,
reflecting accurate detection and localization of coral taxa. The
mAP50 and mAP50-95 metrics on the validation set increase
steadily, peaking around epoch 150-200, confirming robust
detection performance. The YOLOv11n model achieves stable
convergence and reliable performance for coral taxon detection.

The confusion matrix provides a detailed breakdown of the
YOLOv11n model's classification performance across six coral
taxa: Dendrophyllia ramea, Ellisella paraplexauroides,
Eunicella verrucosa, Leptogorgia viminalis, Pennatula rubra,
Veretillum cynomorium, and the background class (Figure 6).

The results demonstrate that the model performs well for most
taxa, with E. verrucosa, L. viminalis, P. rubra, and V.
cynomorium achieving perfect classification accuracy (1.00). D.
ramea achieves an accuracy of 0.86, indicating that 86% of its
instances are correctly classified, while E. paraplexauroides
shows slightly lower accuracy at 0.73, with some
misclassifications primarily involving the background class or
confusion with L. viminalis. However, the background class
poses the greatest challenge, as 50% of its instances are
misclassified, often being labeled as other coral taxa such as D.
ramea, E. paraplexauroides, or V. cynomorium. This highlights
the difficulty in distinguishing between background regions and
specific coral taxa. Additionally, minor confusion is observed
between E. paraplexauroides and L. viminalis, suggesting that
these two taxa may share similar visual features that make them
harder to differentiate.

The Precision-Recall curve illustrates the YOLOvIIn model’s
performance in detecting six coral taxa (Figure 6), with an
overall mean Average Precision (MAP@0.5) of 0.880,
indicating strong performance across most classes. Taxa like E.
verrucosa, P. rubra, and V. cynomorium achieve near-perfect
mAP scores of 0.995, showing excellent precision and recall.
Dendrophyllia ramea performs well with an mAP of 0.889,
while E. paraplexauroides (mAP = 0.789) and L. viminalis
(mAP = 0.617) exhibit lower performance, with L. viminalis
showing the steepest drop in precision as recall increases. These
results highlight the model's robustness for most taxa but
suggest challenges in detecting L. viminalis, likely due to visual
similarity or data limitations.

The optimized YOLOv11n model demonstrated efficient coral
detection capabilities when applied to ROV footage, processing
frames at an average speed of 20.0ms per image (3.6ms pre-
processing, 13.9ms inference, 2.5ms post-processing) for input
dimensions of 384x640 pixels. Across the analyzed video
segments, the system successfully identified and classified
1,082 coral specimens comprising all six target taxa, as
visualized in Figure 8's detection scenarios. This output
showcases the model's ability to handle size variations from
large E. paraplexauroides colonies to smaller P. rubra
individuals, also overlapping specimens in dense aggregations.
The balanced computational performance confirms the model's
suitability for real-time marine monitoring applications while
maintaining ecological accuracy.
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Figure 5. Different losses on training and validation dataset
during model training YOLOv11n model with training dataset.
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Figure 6. Normalized confusion matrix of YOLOv11ln model
showing true vs. predicted coral taxa classification (values 0-1
represent proportion of correct and misclassified instances).
Together with Precision-recall curve: performance evaluation of
coral taxa detection.
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Figure 7. Coral detection and counting results across all six
target taxa: (a) 15 Eunicella verrucosa and 1 Veretillum
cynomorium; (b) 11 Leptogorgia viminalis; (c) 2 Ellisella
paraplexauroides and 4 Eunicella verrucosa; (d) 8 Veretillum
cynomorium and 6 Eunicella verrucosa; (e) 7 Pennatula rubra;
and (f) 2 Dendrophyllia ramnea.

6. Discussion

This study demonstrates the potential of YOLOv1l for
automated coral detection in ROV footage, while highlighting
key methodological challenges and opportunities for
improvement in marine monitoring. Data collection proved
particularly difficult for certain taxa, such as L. viminalis and E.
paraplexauroides, resulting in limited training samples that
impacted model performance. This limitation reflects broader
challenges in marine research, where uneven species
distributions and logistical constraints hinder dataset creation
(Beijbom et al., 2012). Additionally, biases in the dataset, such
as overrepresentation of certain taxa or underrepresentation of
complex scenes, may limit the model's generalizability to
diverse ecosystems.

The precision-recall curves revealed robust detection for most
taxa (MAP@0.5: 0.995 for E. verrucosa), but lower for L.
viminalis (MAP@0.5: 0.617), likely due to insufficient training
examples, which is a common issue in automatic detection
studies (Christin et al., 2019). Comparing YOLOV11 with other
architectures, such as Faster R-CNN and RetinaNet, highlights
its advantage in real-time processing (28.6 FPS) while

maintaining competitive accuracy (Ren et al., 2015; Redmon et

~-dk:,2016; Lin et al., 2018).

The confusion matrix provided important insights, showing

0.895

—whaekground misclassifications (12% false positives) in complex

scenes and confusion between E. paraplexauroides and L.
viminalis (18% of cases). Such errors are well-documented in
benthic environments, where texture similarities and occlusions
degrade performance (Gonzélez-Rivero et al. 2014). Targeted
strategies, such as adding diverse background examples or
attention mechanisms (Mahendran Narayanan, 2023), could
enhance the model's ability to handle varying environmental
conditions, such as turbidity or low-light scenarios.

Despite these challenges, YOLOv1l achieved strong
performance, processing ROV footage at 28.6 FPS with 89.3%
agreement to manual counts, comparable to state-of-the-art
methods (Chen et al., 2024). However, frame-by-frame counting
may double-count individuals; future work should integrate
tracking (e.g., DeepSORT; Wojke et al., 2017) to assign unique
IDs per colony, improving abundance estimates (Gaur et al.,
2023). This integration would enable more accurate species
densities, which is important to understand habitats complexity
and diversity (Buhl-Mortensen et al., 2010). Moreover,
deploying YOLOV11 in hybrid systems, where humans review
ambiguous detections flagged by the model, could further
enhance reliability while reducing manual effort.

Future efforts should prioritize expanding datasets for
underrepresented species and complex scenes, refining model
architecture with tracking, and ecological validation via in situ
comparisons. These advances could extend this framework to
other vulnerable ecosystems, enhancing scalable marine
conservation.  Additionally, collaborations with marine
biologists will be essential for validating the model’s ecological
relevance and ensuring its adoption in real-world workflows.

7. Conclusion

This study demonstrates the effectiveness of YOLOv11l for
automated coral detection in ROV footage, achieving high
accuracy (MAP@0.5: 0.880) and real-time processing speeds
(28.6 FPS). While strong performance was observed for most
taxa, challenges remain for underrepresented species like L.
viminalis, highlighting the need for expanded datasets and
advanced techniques such as tracking. These findings show the
potential of Al-driven tools to improve marine monitoring and
conservation efforts, while highlighting the importance of
addressing current limitations to ensure broader applicability.
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