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Abstract

LiDAR and photogrammetry technologies generate point clouds that serve as a vital source of high-resolution spatial data for
accurately reconstructing 3D building models. Along with these advancements, challenges such as occlusions and inconsistencies
within individual datasets often lead to incomplete models, resulting in missing structural elements of the building, such as roof
sections. The integration methods of multiple point cloud, known as data fusion, enhances data accuracy and completeness by
complementing each dataset and addressing these issues. Among these techniques, Iterative Closest Point (ICP) is widely employed
for point cloud registration, yet it does not fully eliminate gaps and redundancies. To overcome these limitations, the Laplacian
method has been introduced, to refine alignment between point clouds, significantly enhancing overall accuracy and completeness.
Despite advancements in point cloud fusion, evaluating the accuracy and completeness of the resulting models remains crucial to
ensure their reliability and applicability. Research has shown that higher accuracy and greater point cloud density lead to improved
reconstruction quality. This study focuses on evaluating the accuracy and completeness of 3D building models generated through
point cloud fusion. Evaluation of the quality of 3D building models involves both qualitative methods, such as visual inspection, and
guantitative metrics to measure geometric accuracy and structural integrity. The findings provide valuable insights into the reliability
of current modelling techniques, contributing to quality control improvements and advancements in 3D reconstruction

methodologies.
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1. Introduction

Point clouds, acquired through technologies such as LiDAR and
photogrammetry, provide high-resolution spatial information
for reconstructing complex structures of building object.
However, limitations and occlusions of each technology make it
difficult to obtain an accurate and complete 3D building model
(Abdelazeem et al, 2021). Thus, a 3D building model generated
from a single point cloud may be exhibiting holes or voids, such
as a missing roof section (Mutiarasari et al., 2023). To address
the issue, data fusion techniques integrate multiple point cloud
sources, enhancing the overall quality (accuracy and
completeness) of the 3D building models.

According to Adamopoulos & Rinaudo (2021), there are four
types of fusion approaches for multi-source point cloud
registration by using photogrammetric and ranging techniques:
1) manual annotation of common features, 2) iterative closest
point — ICP, 3) feature-based, and 4) georeferencing-based. ICP
is one of the most widely used approaches for data registration
due to its simplicity, ease of use, and ability to deliver highly
accurate results. However, following ICP registration, the fused
3D models are not yet accurate and complete as reported by Li
et al. (2018) and Li et al. (2021). They identified that the fused
3D models exhibit stratified redundancies and gaps within
interconnected regions. To address the issue, the Laplacian
method was introduced by the latter work, outperforming other
approaches such as curvature-based and volumetric fusion
methods in enhancing the quality of fused 3D models. This
method detects holes or voids in the 3D model and extracts
source data to fill these holes in the target model, effectively
eliminating  stratified redundancies. Additionally, point
migration is applied to minimize the gaps between the two point

clouds. As a result, the Laplacian method enhances both the
accuracy and completeness of the fused 3D models.

Higher-quality fused 3D models enable the generation of more
accurate and complete 3D models, including those used for
building reconstruction. Koshelham et al. (2021) confirmed that
reconstruction quality improves when higher accuracy and more
complete point cloud data are utilised. They evaluated 11
submitted models from different research teams, comparing
each against manually generated reference models to assess
geometric accuracy. Despite advancements in point cloud
fusion, assessing the accuracy and completeness of the resulting
models remains crucial to ensure their reliability and
applicability.

Quality evaluation of 3D model from data integration has been
demonstrated by researchers such as Murtiyoso et al. (2018) and
Maset et al. (2022). They assessed the quality of 3D models
based on geometric accuracy and completeness using a
combination of qualitative and quantitative methods. The
qualitative approach focusses on visual inspection and structural
assessment, while the quantitative approach relies on numerical
metrics. Qualitative evaluation complements quantitative
analysis to ensure the 3D model is both geometrically accurate
and visually realistic. For 3D building models, accuracy
evaluation verifies alignment with real-world structures, while
completeness assessment ensures that all essential features are
captured.

Recent work on point cloud data fusion by Mutiarasari and
Abdul Rahman (2025) applied Laplacian method to enhance the
3D building model. However, it has not presented a quality
evaluation of their point cloud model. This paper focuses on
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evaluating the accuracy and completeness of the 3D building
model from that point cloud data fusion. By systematically
assessing this model, the study aims to provide insights into the
reliability and limitations of current point cloud-based 3D
modelling  practices, contributing to quality control
advancements and the improvements for future applications. In
the end, this study utilises point cloud data fusion to generate
3D building model, demonstrating the potential of the enhanced
3D model as input for modelling purposes. The methodology of
this study is detailed in Section 2, followed by the results and
discussions in Section 3. Lastly, Section 4 presents the
conclusion.

2. Methodology
2.1 Experimental Framework

This study conducts experiments to evaluate the fused 3D
building model, with the framework illustrated in Figure 1. The
evaluation examines two key aspects: accuracy, which measures
its alignment with reference data, and completeness, which
assesses whether the model captures all expected structures. The
results are then analysed to assess the overall quality and
reliability of the 3D building model. Finally, this study
demonstrates how the fused 3D building model contributes to
generating a 3D building model.

Fused 3D Building Model
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Accuracy Completeness

L1

Analysis

1l
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Figure 1. Framework of the experiments.

2.2 Data Fusion Enhancement: The Laplacian Method

The Laplacian method, introduced by Li et al. (2021), enhances
3D building models from integrated two sets of point clouds,
achieving an average completeness of 82%. It consists of two
stages: multi-view based 3D holes extraction and Laplacian data
fusion. At the first stage, the target model (first point cloud) is
observed from 37 viewpoints to identify the holes. The holes are
identified when the number of points in the target falls below a
specified threshold within the search window. Then, points
from the source data (second point cloud) that overlap with the
holes are extracted and reprojected into 3D. At the second stage,
these points, used as substitute data, are computed for their
differential coordinates and employed to guide the migration,
effectively filling the holes.

Mutiarasari and Abdul Rahman (2025) reimplemented this
approach, by generating an enhanced 3D building model of
three sets of point clouds from terrestrial laser scanning (TLS),
aerial laser scanning (ALS), and image-based photogrammetry,
as shown in Figure 2. They used TLS-based model as reference
data and applied ICP registration to align the ALS points and

image-based points more closely with the reference. The study
utilised Python programming to identify holes in the TLS model
from a single viewpoint and extract the ALS points and image-
based points to fill the holes. However, the quality of this model
has not yet been assessed. Therefore, this study evaluates its
accuracy and completeness to ensure its reliability. Specifically,
the evaluation focuses on the accuracy of integrating the TLS
model (target) with image-based points (source), as the image-
based points provide a higher point density and exhibit more
significant point migration.
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Figure 2. The fused 3D building model consists of TLS points
in orange, UAV points and image-based points in white.

2.3 Accuracy

In this study, accuracy assessment is based on the performance
of the Laplacian method and the enhanced 3D model. The
Laplacian method focuses on point migration to minimize the
gaps between point clouds, enhancing overall data integration.
To evaluate its effectiveness, the mean distance between two
point clouds before and after enhancement is used as a
performance metric of this method.

N
1
dinean = E Z d; , Q)
1

i

dmean = Mean distance
N = total number of points in the reference
di = Euclidean distance

where

The mean distance is calculated by summing all individual
Euclidean distance values (di) from i = 1 to N, where is N is the
total number of distance values. Euclidean distance is a measure
of the straight-line distance between two points, representing
the length of the shortest path connecting them. The sum of di is
then dividing the total by N, giving the average distance,
denoted as dmean.

Accuracy of the 3D models depend on various factors including
the source data, complexity of the shapes, etc (Ostrowski et al.,
2018). Usually, accuracy of the 3D model is calculated by
comparing the model with reference model such as performed
by Jarzagbek-Rychard and Karpina (2016). For this 3D model,
the evaluation of accuracy is conducted on parts of the target
model that are filled by the source data, comparing them to the
check points. In this case, check points are the references to
evaluate the source data on the 3D model. This assessment
measures how precisely the source data fills the holes in the
target model. Check points are independently measured using
high-accuracy methods, such as total stations, to verify the
accuracy of survey or dataset. Some check points identified on a
real building object are used to analyse the model’s deviation.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-215-2026 | © Author(s) 2026. CC BY 4.0 License. 216



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 — 10th International Conference on Geolnformation Advances, 29-30 May 2025, Marrakech, Morocco

The differences between the coordinates of the check points and
the corresponding locations in the fused 3D building model are
quantified using the Root Mean Square Error (RMSE), as
shown in Equation 2.

RMSE = [ 5X,((0K)? + (AV)? + (4Z,)7)
@

where N = total number of check point

X, Y, Z = 3D model and check point coordinates

RMSE is calculated by first computing the squared differences
in the X, Y, and Z coordinates for each point. These squared
differences are then summed for all points. The total is divided
by N to obtain the mean squared error, and finally, the square
root of this value is taken to obtain the RMSE.

In this study, building surfaces with large voids were chosen to
be evaluated, specifically, 5 out of 10 building walls. The roof
was excluded due to limitations in measuring check point
coordinates. The number of points on each wall varied
depending on the size of the voids, with 1 to 3 points selected
for each void. Their locations were sketched to facilitate
recognition during analysis.

2.4 Completeness

Completeness is used to evaluate whether the missing data on
the 3D models is filled by the source data. In this study, the
fused 3D building model is assessed based on qualitative and
quantitative approaches. The qualitative approach involves
visually examining the fused 3D building model to identify
essential features of the object. This assessment focuses on
determining whether key structural elements, such as walls,
roofs, doors, and windows, are accurately represented in the
model. This qualitative evaluation serves as a preliminary step
before conducting quantitative completeness assessment.

For quantitative approach, completeness of the fused 3D
building model is calculated as the percentage of holes resolved
by source data as demonstrated by Li et al. (2021). A hole in the
3D model is considered resolved when it is fully or partially
filled with points, while it is deemed unresolved if no points fill
the void.

Filled holes (H)
Completeness (%) =

— T Y v 100% o
Unfilled holes (i)~ -0°%

3. Results and Discussions

3.1 Accuracy: The Laplacian Method and the Fused 3D
Building Model

In this study, the accuracy of the Laplacian method for
enhancing the integrated point cloud is evaluated by calculating
the mean distance, which reflects the gap between the two point
clouds. Initially, the mean distance between the two point
clouds was 56.5 cm, indicating a noticeable discrepancy. After
applying the enhancement process, the mean distance decreased
to 41.55 cm, demonstrating improved alignment and integration
of the point clouds. A smaller mean distance signifies that the
source points from image-based data are closer to the target
TLS points, used as reference. This reduction suggests that the

Laplacian method effectively minimizes gaps and enhances the
overall spatial consistency of the fused 3D building model.

To further analyse the improvement in alignment, an
investigation was conducted on 15 individual parts of the
building, comprising five roof sections and ten wall sections.
The mean distance for each part was calculated separately to
assess the local accuracy of the enhancement process. The
results are visually represented in a graph (Figure 3),
highlighting the enhanced alignment achieved in different
regions of the building model.

The bar graph compares the mean distance between different
parts of a building before and after applying the Laplacian-
based point migration. Overall, the green bars (after
enhancement) are consistently lower than the orange bars
(before enhancement), indicating that the enhancement process
effectively reduced the mean distance and improved geometric
accuracy across all building parts.

Mean Distance Before and After Enhancement

Mean Distance (cm)

2°I|I|‘II||II|III
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Parts of the Building
Before ent t W After enl

Figure 3. Comparison of mean distance between point clouds
before and after enhancement.

The accuracy of the fused 3D building model is assessed by
comparing check points with selected points in the model. The
check points, derived from the actual building used in this
study, correspond to specific areas in the target model that have
been supplemented with source data. A total of 23 check points
were accurately measured using a total station and used to
calculate the coordinate differences (X and Y) relative to the
corresponding points in the fused 3D building model. Both the
3D building model and the check points are represented in the
same Cartesian coordinate system, ensuring consistency in the
accuracy assessment. The results of the coordinate differences
are presented in Table 1.

Points Check Point Difference
X (meter) Y (meter) AX AY
111 431013.458 | 9140523.236 0.687 | 0.430
115 431017.896 | 9140520.726 0.603 | 0.024
116 431018.879 | 9140520.326 0.550 | 0.114
117 431021.522 | 9140519.250 0.062 | 0.131
118 431022.512 | 9140518.843 0.142 | 0.198
119 431023.418 | 9140518.483 0.038 | 0.198
122 431018.171 | 9140534.589 0.009 | 0.537
123 431017.647 | 9140533.332 0.103 | 0.644
124 431017.954 | 9140534.067 0.383 | 0.759
140 431011.024 | 9140559.440 0.062 | 0.291
141 431012.409 | 9140558.874 0.387 | 0.015
143 431012.724 | 9140558.803 0.692 | 0.044
144 431011.301 | 9140559.399 0.150 | 0.250

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-215-2026 | © Author(s) 2026. CC BY 4.0 License. 217



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025
GeoAdvances 2025 — 10th International Conference on Geolnformation Advances, 29-30 May 2025, Marrakech, Morocco

146 431017.097 | 9140556.946 0.514 | 0.287
147 431016.190 | 9140557.319 0.581 | 0.400
148 431015.576 | 9140557.573 0.515 | 0.424
151 431019.460 | 9140555.973 0.278 | 0.144
154 431019.256 | 9140556.065 0.304 | 0.066
158 431027.601 | 9140557.526 0.006 | 0.338
161 431028.153 | 9140558.894 0.075 | 0.200
171 431038.134 | 9140567.250 0.753 | 0.192
172 431038.138 | 9140567.243 0.687 | 0.040
173 431037.309 | 9140567.576 0.858 | 0.136

Table 1. Check points and their differences with the selected
points in the fused 3D building model

This study evaluated the planimetric accuracy (X and Y
coordinates) of the 3D building model. The differences in X and
Y coordinates from Table 1 were used as input for Equation 2
to calculate the RMSE. Based on 23 check points, the RMSE
was found to be 55.8 cm, indicating relatively low accuracy of
the selected points in the building model. This inaccuracy may
be attributed to the migrated points, which filled the target
model with limited precision. Furthermore, the comparison
stage between check points and selected model points could
contribute to the error. The limited number of points in the
model may lead to inaccurate position estimation, meaning that
the selected points might not be precisely represented by the
check points.

Both the accuracy of the Laplacian method and the fused 3D
building model demonstrate limited performance. This level of
accuracy is insufficient for the reliable representation of
building objects. Further improvement is needed, particularly
through enhanced processing technique, such as optimizing the
parameters used in the Laplacian method, to achieve more
accurate and realistic results.

3.2 Completeness:
Approaches

Qualitative and Quantitative

Visually, the enhanced 3D building model displays more
complete structural elements. The original TLS model lacked
certain rooftop details due to sensor’s line of sight and exhibited
holes in the walls due to shadows cast by vegetation. An
example of this completion is illustrated in Figure 4.

@ (b)

©)

Figure 4. Building parts before integration (a and c) and after
integration (b and d).

The original TLS model, shown in orange, is complemented by
image-based points, represented in white. In Figure 4, missing
rooftop details (a) and a hole in building wall (c) are filled in by
the source data, as shown in (b) and (d).

Quantitatively, the completeness of the fused 3D building
model is evaluated by comparing the number of filled and
unfilled holes. Using Python, 200 filled holes and 31 unfilled
holes were identified, resulting in a completeness percentage of
86.58%. Compared to the previous work by Li et al. (2021), the
completeness is 4% higher as shown in Figure 5. This increase
may be influenced by factors such as more complete input data
and the values of parameters set in the programming code.
Since this is ongoing research, the completeness may be further
improved by modifying the Laplacian method.

Completeness Level of 3D Building Model after
Applying Laplacian Method

90%
85%
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Completeness Level
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e=—Experiment by Li et al. (2021) e QU eXperiment (2025)

Figure 5. Comparison of the fused 3D building model
completeness with Li et al. (2021).

3.3 Generated 3D Building Model

The 3D building model generated from fused point cloud is
processed to generate a simplified 3D building model using a
RANSAC-based approach. RANSAC algorithm is applied to
extract planar surfaces from the point cloud, enabling the
reconstruction of key building elements such as roofs and walls.
This study focuses on simple 3D building model; therefore, it
excludes non-planar shapes like spheres, torus structures, and
other complex geometries. The detected planar surfaces are then
used to construct a surface mesh, forming a simplified
representation of the building. This 3D model generation is
processed using Python and includes two main stages: plane
detection and mesh reconstruction. Algorithm of the plane
detection and reconstruction planes to mesh are presented in
Figure 6 and Figure 7.

Algorithm: Plane Detection

1: procedure DETECT_PLANES(points, threshold, min_ratio, min_fixed, voxel_size,
merge_th, norm_radius)

2:  pcd « convert_to_pointcloud(points),estimate_normals(pcd, norm_radius)

3: downsampled_points, downsampled_normals « voxel downsample(pcd, voxel_size)

4:  min_points « max(min_ratio x size(downsampled_points), min_fixed)

5:  planes, remaining_points, remaining_normals « [], downsampled_points,

downsampled_normals

6: while size(remaining_points) > min_points do

7 best_eq, inliers « RANSAC(remaining_points, threshold)

8 if size(inliers) < min_points then break

9: normal « normalize(mean(remaining_normals[inliers], axis=0))

10: if not merge_plane(planes, best_eq, normal, remaining_points[inliers], merge_th)

then

11: append(planes, (best_eq, remaining_points[inliers]))

12: remove_inliers(remaining_points, remaining_normals, inliers)

13: return planes

14: end procedure

Figure 6. Algorithm for planar surface detection.

Algorithm: Reconstruct Planes to Mesh
1: procedure RECONSTRUCT_PLANES_TO_MESH(planes)
meshes « []
for each (plane_eq, inlier_points) in planes do
if size(inlier_points) < 3 then continue
pcd « convert_to_pointcloud(inlier_points)
hull « compute_convex_hull(pcd), orient_triangles(hull)
append(meshes, hull)
return meshes
end procedure

VENDV B WN
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Figure 7. Algorithm for planes to mesh reconstruction.

The plane detection algorithm operates by iteratively extracting
planar regions from a 3D point cloud using a RANSAC-based
approach. Initially, the input point cloud is converted into a
structured format, and surface normals are estimated using a
specified neighborhood radius. To enhance computational
efficiency and reduce noise, the point cloud is down sampled
using a voxel grid, producing a sparser set of points and their
corresponding normals. A minimum inlier threshold is then
calculated based on a fixed value and a user-defined ratio of the
down sampled points. The algorithm proceeds by repeatedly
applying RANSAC to the remaining points to detect the most
dominant plane in the scene. If the number of inliers found by
RANSAC falls below the threshold, the process terminates.
Otherwise, the average normal of the inlier set is computed, and
the detected plane is compared against previously found planes
to check for redundancy using a merge threshold. If it is
considered a new plane, it is stored along with its inliers, and
those inliers are removed from the remaining point set. This
process continues until no significant planes can be identified,
at which point the algorithm returns the set of detected planes.
This method ensures efficient and robust extraction of multiple
planar surfaces from noisy 3D data.

The mesh reconstruction algorithm transforms a set of detected
planar segments into a collection of 3D mesh surfaces. It
operates by iterating through each plane, represented by its
equation and associated inlier points. For each set of inliers, the
algorithm first verifies that there are at least three points, as this
is the minimum requirement for forming a valid polygon. The
inlier points are then converted into a point cloud structure.
Using this representation, a convex hull is computed to
approximate the boundary of the planar region. The resulting
polygon is further processed to ensure consistent triangle
orientation, which is important for proper rendering and mesh
integrity. Each generated mesh is stored in a list, which is
returned upon completion of the process. This approach
provides a simple yet effective means of converting planar point
sets into closed mesh representations, suitable for visualization
or further geometric analysis. The execution of these algorithms
produces a mesh model of the 3D building object, as shown in
Figure 8.

Figure 8. Mesh model of the building object.

The mesh model represents major building elements such as
roofs and walls but lacks windows, doors, and other detailed
architectural features. The surfaces of the mesh are relatively
rough, resulting in a simplified and non-realistic building shape.
Additionally, some parts of the model, such as wall corners, are
not properly connected. This is due to the separate mesh
reconstruction process applied to each building part.

4. Conclusion

Application of the Laplacian method significantly improved the
alignment and spatial consistency of 3D building model
generated from data fusion. The reduction of the gaps indicates
the enhanced integration and accuracy. Furthermore, the
enhancement was consistently effective across different sections
of the model. However, it is noted that the accuracy is still
limited. Further refinements using parameters adjustment, such
as density threshold and boundary threshold, could potentially
optimize the model even further, ensuring greater precision and
completeness in the future applications.

Additionally, the enhanced data fusion has the potential to
generate a mesh-based 3D building model. However, the
resulting model remains simplified, capturing only major
components such as roofs and walls, while lacking finer details
like doors and windows. Generating 3D models from point
clouds presents its own challenges, primarily due to the high
level of noise inherent in the data. To achieve a more accurate
representation, further processing is strongly recommended,
such as converting the model into a solid model that can reflect
the Level of Detail (LoD) of the building. Consequently, the
final 3D building model output, such as CityGML, will be
explored further.
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