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Abstract 

LiDAR and photogrammetry technologies generate point clouds that serve as a vital source of high-resolution spatial data for 

accurately reconstructing 3D building models. Along with these advancements, challenges such as occlusions and inconsistencies 

within individual datasets often lead to incomplete models, resulting in missing structural elements of the building, such as roof 

sections. The integration methods of multiple point cloud, known as data fusion, enhances data accuracy and completeness by 

complementing each dataset and addressing these issues. Among these techniques, Iterative Closest Point (ICP) is widely employed 

for point cloud registration, yet it does not fully eliminate gaps and redundancies. To overcome these limitations, the Laplacian 

method has been introduced, to refine alignment between point clouds, significantly enhancing overall accuracy and completeness. 

Despite advancements in point cloud fusion, evaluating the accuracy and completeness of the resulting models remains crucial to 

ensure their reliability and applicability. Research has shown that higher accuracy and greater point cloud density lead to improved 

reconstruction quality. This study focuses on evaluating the accuracy and completeness of 3D building models generated through 

point cloud fusion. Evaluation of the quality of 3D building models involves both qualitative methods, such as visual inspection, and 

quantitative metrics to measure geometric accuracy and structural integrity. The findings provide valuable insights into the reliability 

of current modelling techniques, contributing to quality control improvements and advancements in 3D reconstruction 

methodologies. 
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1. Introduction

Point clouds, acquired through technologies such as LiDAR and 

photogrammetry, provide high-resolution spatial information 

for reconstructing complex structures of building object. 

However, limitations and occlusions of each technology make it 

difficult to obtain an accurate and complete 3D building model 

(Abdelazeem et al, 2021). Thus, a 3D building model generated 

from a single point cloud may be exhibiting holes or voids, such 

as a missing roof section (Mutiarasari et al., 2023). To address 

the issue, data fusion techniques integrate multiple point cloud 

sources, enhancing the overall quality (accuracy and 

completeness) of the 3D building models. 

According to Adamopoulos & Rinaudo (2021), there are four 

types of fusion approaches for multi-source point cloud 

registration by using photogrammetric and ranging techniques: 

1) manual annotation of common features, 2) iterative closest

point – ICP, 3) feature-based, and 4) georeferencing-based. ICP

is one of the most widely used approaches for data registration

due to its simplicity, ease of use, and ability to deliver highly

accurate results. However, following ICP registration, the fused

3D models are not yet accurate and complete as reported by Li

et al. (2018) and Li et al. (2021). They identified that the fused

3D models exhibit stratified redundancies and gaps within

interconnected regions. To address the issue, the Laplacian

method was introduced by the latter work, outperforming other

approaches such as curvature-based and volumetric fusion

methods in enhancing the quality of fused 3D models. This

method detects holes or voids in the 3D model and extracts

source data to fill these holes in the target model, effectively

eliminating stratified redundancies. Additionally, point

migration is applied to minimize the gaps between the two point

clouds. As a result, the Laplacian method enhances both the 

accuracy and completeness of the fused 3D models. 

Higher-quality fused 3D models enable the generation of more 

accurate and complete 3D models, including those used for 

building reconstruction. Koshelham et al. (2021) confirmed that 

reconstruction quality improves when higher accuracy and more 

complete point cloud data are utilised. They evaluated 11 

submitted models from different research teams, comparing 

each against manually generated reference models to assess 

geometric accuracy. Despite advancements in point cloud 

fusion, assessing the accuracy and completeness of the resulting 

models remains crucial to ensure their reliability and 

applicability. 

Quality evaluation of 3D model from data integration has been 

demonstrated by researchers such as Murtiyoso et al. (2018) and 

Maset et al. (2022). They assessed the quality of 3D models 

based on geometric accuracy and completeness using a 

combination of qualitative and quantitative methods. The 

qualitative approach focusses on visual inspection and structural 

assessment, while the quantitative approach relies on numerical 

metrics. Qualitative evaluation complements quantitative 

analysis to ensure the 3D model is both geometrically accurate 

and visually realistic. For 3D building models, accuracy 

evaluation verifies alignment with real-world structures, while 

completeness assessment ensures that all essential features are 

captured. 

Recent work on point cloud data fusion by Mutiarasari and 

Abdul Rahman (2025) applied Laplacian method to enhance the 

3D building model. However, it has not presented a quality 

evaluation of their point cloud model. This paper focuses on 
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Fused 3D Building Model 

evaluating the accuracy and completeness of the 3D building 

model from that point cloud data fusion. By systematically 

assessing this model, the study aims to provide insights into the 

reliability and limitations of current point cloud-based 3D 

modelling practices, contributing to quality control 

advancements and the improvements for future applications. In 

the end, this study utilises point cloud data fusion to generate 

3D building model, demonstrating the potential of the enhanced 

3D model as input for modelling purposes. The methodology of 

this study is detailed in Section 2, followed by the results and 

discussions in Section 3. Lastly, Section 4 presents the 

conclusion. 

 

2. Methodology 

2.1 Experimental Framework 

This study conducts experiments to evaluate the fused 3D 

building model, with the framework illustrated in Figure 1. The 

evaluation examines two key aspects: accuracy, which measures 

its alignment with reference data, and completeness, which 

assesses whether the model captures all expected structures. The 

results are then analysed to assess the overall quality and 

reliability of the 3D building model. Finally, this study 

demonstrates how the fused 3D building model contributes to 

generating a 3D building model. 

 

 

 
 

 

image-based points more closely with the reference. The study 

utilised Python programming to identify holes in the TLS model 

from a single viewpoint and extract the ALS points and image- 

based points to fill the holes. However, the quality of this model 

has not yet been assessed. Therefore, this study evaluates its 

accuracy and completeness to ensure its reliability. Specifically, 

the evaluation focuses on the accuracy of integrating the TLS 

model (target) with image-based points (source), as the image- 

based points provide a higher point density and exhibit more 

significant point migration. 

 

 

Figure 2. The fused 3D building model consists of TLS points 

in orange, UAV points and image-based points in white. 

 

2.3 Accuracy 

In this study, accuracy assessment is based on the performance 

of the Laplacian method and the enhanced 3D model. The 

Laplacian method focuses on point migration to minimize the 

gaps between point clouds, enhancing overall data integration. 

To evaluate its effectiveness, the mean distance between two 

point clouds before and after enhancement is used as a 

performance metric of this method. 

 , (1) 

 

where dmean = mean distance 

Figure 1. Framework of the experiments. 

 

2.2 Data Fusion Enhancement: The Laplacian Method 

The Laplacian method, introduced by Li et al. (2021), enhances 

3D building models from integrated two sets of point clouds, 

achieving an average completeness of 82%. It consists of two 

stages: multi-view based 3D holes extraction and Laplacian data 

fusion. At the first stage, the target model (first point cloud) is 

observed from 37 viewpoints to identify the holes. The holes are 

identified when the number of points in the target falls below a 

specified threshold within the search window. Then, points 

from the source data (second point cloud) that overlap with the 

holes are extracted and reprojected into 3D. At the second stage, 

these points, used as substitute data, are computed for their 

differential coordinates and employed to guide the migration, 

effectively filling the holes. 

 

Mutiarasari and Abdul Rahman (2025) reimplemented this 

approach, by generating an enhanced 3D building model of 

three sets of point clouds from terrestrial laser scanning (TLS), 

aerial laser scanning (ALS), and image-based photogrammetry, 

as shown in Figure 2. They used TLS-based model as reference 

data and applied ICP registration to align the ALS points and 

N = total number of points in the reference 

di = Euclidean distance 

 

The mean distance is calculated by summing all individual 

Euclidean distance values (di) from i = 1 to N, where is N is the 

total number of distance values. Euclidean distance is a measure 

of the straight-line distance between two points, representing 

the length of the shortest path connecting them. The sum of di is 

then dividing the total by N, giving the average distance, 

denoted as dmean. 

 

Accuracy of the 3D models depend on various factors including 

the source data, complexity of the shapes, etc (Ostrowski et al., 

2018). Usually, accuracy of the 3D model is calculated by 

comparing the model with reference model such as performed 

by Jarząbek-Rychard and Karpina (2016). For this 3D model, 

the evaluation of accuracy is conducted on parts of the target 

model that are filled by the source data, comparing them to the 

check points. In this case, check points are the references to 

evaluate the source data on the 3D model. This assessment 

measures how precisely the source data fills the holes in the 

target model. Check points are independently measured using 

high-accuracy methods, such as total stations, to verify the 

accuracy of survey or dataset. Some check points identified on a 

real building object are used to analyse the model’s deviation. 

Evaluation 

Completeness Accuracy 

3D Building Model Generation 

Analysis 
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The differences between the coordinates of the check points and 

the corresponding locations in the fused 3D building model are 

quantified using the Root Mean Square Error (RMSE), as 

shown in Equation 2. 

 

 

, 

(2) 

 

 

where N = total number of check point 

X, Y, Z = 3D model and check point coordinates 

 

RMSE is calculated by first computing the squared differences 

in the X, Y, and Z coordinates for each point. These squared 

differences are then summed for all points. The total is divided 

by 𝑁 to obtain the mean squared error, and finally, the square 

root of this value is taken to obtain the RMSE. 

 

In this study, building surfaces with large voids were chosen to 

be evaluated, specifically, 5 out of 10 building walls. The roof 

was excluded due to limitations in measuring check point 

coordinates. The number of points on each wall varied 

depending on the size of the voids, with 1 to 3 points selected 

for each void. Their locations were sketched to facilitate 

recognition during analysis. 

 

2.4 Completeness 

Completeness is used to evaluate whether the missing data on 

the 3D models is filled by the source data. In this study, the 

fused 3D building model is assessed based on qualitative and 

quantitative approaches. The qualitative approach involves 

visually examining the fused 3D building model to identify 

essential features of the object. This assessment focuses on 

determining whether key structural elements, such as walls, 

roofs, doors, and windows, are accurately represented in the 

model. This qualitative evaluation serves as a preliminary step 

before conducting quantitative completeness assessment. 

 

For quantitative approach, completeness of the fused 3D 

building model is calculated as the percentage of holes resolved 

by source data as demonstrated by Li et al. (2021). A hole in the 

3D model is considered resolved when it is fully or partially 

filled with points, while it is deemed unresolved if no points fill 

the void. 

 

, 

(3) 

 

 

3. Results and Discussions 

3.1 Accuracy: The Laplacian Method and the Fused 3D 

Building Model 

In this study, the accuracy of the Laplacian method for 

enhancing the integrated point cloud is evaluated by calculating 

the mean distance, which reflects the gap between the two point 

clouds. Initially, the mean distance between the two point 

clouds was 56.5 cm, indicating a noticeable discrepancy. After 

applying the enhancement process, the mean distance decreased 

to 41.55 cm, demonstrating improved alignment and integration 

of the point clouds. A smaller mean distance signifies that the 

source points from image-based data are closer to the target 

TLS points, used as reference. This reduction suggests that the 

Laplacian method effectively minimizes gaps and enhances the 

overall spatial consistency of the fused 3D building model. 

 

To further analyse the improvement in alignment, an 

investigation was conducted on 15 individual parts of the 

building, comprising five roof sections and ten wall sections. 

The mean distance for each part was calculated separately to 

assess the local accuracy of the enhancement process. The 

results are visually represented in a graph (Figure 3), 

highlighting the enhanced alignment achieved in different 

regions of the building model. 

 

The bar graph compares the mean distance between different 

parts of a building before and after applying the Laplacian- 

based point migration. Overall, the green bars (after 

enhancement) are consistently lower than the orange bars 

(before enhancement), indicating that the enhancement process 

effectively reduced the mean distance and improved geometric 

accuracy across all building parts. 
 

 

Figure 3. Comparison of mean distance between point clouds 

before and after enhancement. 

 

The accuracy of the fused 3D building model is assessed by 

comparing check points with selected points in the model. The 

check points, derived from the actual building used in this 

study, correspond to specific areas in the target model that have 

been supplemented with source data. A total of 23 check points 

were accurately measured using a total station and used to 

calculate the coordinate differences (X and Y) relative to the 

corresponding points in the fused 3D building model. Both the 

3D building model and the check points are represented in the 

same Cartesian coordinate system, ensuring consistency in the 

accuracy assessment. The results of the coordinate differences 

are presented in Table 1. 

 

Points Check Point Difference 

X (meter) Y (meter) ∆X ∆Y 

111 431013.458 9140523.236 0.687 0.430 

115 431017.896 9140520.726 0.603 0.024 

116 431018.879 9140520.326 0.550 0.114 

117 431021.522 9140519.250 0.062 0.131 

118 431022.512 9140518.843 0.142 0.198 

119 431023.418 9140518.483 0.038 0.198 

122 431018.171 9140534.589 0.009 0.537 

123 431017.647 9140533.332 0.103 0.644 

124 431017.954 9140534.067 0.383 0.759 

140 431011.024 9140559.440 0.062 0.291 

141 431012.409 9140558.874 0.387 0.015 

143 431012.724 9140558.803 0.692 0.044 

144 431011.301 9140559.399 0.150 0.250 
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146 431017.097 9140556.946 0.514 0.287 

147 431016.190 9140557.319 0.581 0.400 

148 431015.576 9140557.573 0.515 0.424 

151 431019.460 9140555.973 0.278 0.144 

154 431019.256 9140556.065 0.304 0.066 

158 431027.601 9140557.526 0.006 0.338 

161 431028.153 9140558.894 0.075 0.200 

171 431038.134 9140567.250 0.753 0.192 

172 431038.138 9140567.243 0.687 0.040 

173 431037.309 9140567.576 0.858 0.136 

 

Table 1. Check points and their differences with the selected 

points in the fused 3D building model 

 

This study evaluated the planimetric accuracy (X and Y 

coordinates) of the 3D building model. The differences in X and 

Y coordinates from Table 1 were used as input for Equation 2 

to calculate the RMSE. Based on 23 check points, the RMSE 

was found to be 55.8 cm, indicating relatively low accuracy of 

the selected points in the building model. This inaccuracy may 

be attributed to the migrated points, which filled the target 

model with limited precision. Furthermore, the comparison 

stage between check points and selected model points could 

contribute to the error. The limited number of points in the 

model may lead to inaccurate position estimation, meaning that 

the selected points might not be precisely represented by the 

check points. 

 

Both the accuracy of the Laplacian method and the fused 3D 

building model demonstrate limited performance. This level of 

accuracy is insufficient for the reliable representation of 

building objects. Further improvement is needed, particularly 

through enhanced processing technique, such as optimizing the 

parameters used in the Laplacian method, to achieve more 

accurate and realistic results. 

 

3.2 Completeness: Qualitative and Quantitative 

Approaches 

Visually, the enhanced 3D building model displays more 

complete structural elements. The original TLS model lacked 

certain rooftop details due to sensor’s line of sight and exhibited 

holes in the walls due to shadows cast by vegetation. An 

example of this completion is illustrated in Figure 4. 
 

(a) (b) 
 

(c) (d) 

 

Figure 4. Building parts before integration (a and c) and after 

integration (b and d). 

The original TLS model, shown in orange, is complemented by 

image-based points, represented in white. In Figure 4, missing 

rooftop details (a) and a hole in building wall (c) are filled in by 

the source data, as shown in (b) and (d). 

 

Quantitatively, the completeness of the fused 3D building 

model is evaluated by comparing the number of filled and 

unfilled holes. Using Python, 200 filled holes and 31 unfilled 

holes were identified, resulting in a completeness percentage of 

86.58%. Compared to the previous work by Li et al. (2021), the 

completeness is 4% higher as shown in Figure 5. This increase 

may be influenced by factors such as more complete input data 

and the values of parameters set in the programming code. 

Since this is ongoing research, the completeness may be further 

improved by modifying the Laplacian method. 
 

 

Figure 5. Comparison of the fused 3D building model 

completeness with Li et al. (2021). 

 

3.3 Generated 3D Building Model 

The 3D building model generated from fused point cloud is 

processed to generate a simplified 3D building model using a 

RANSAC-based approach. RANSAC algorithm is applied to 

extract planar surfaces from the point cloud, enabling the 

reconstruction of key building elements such as roofs and walls. 

This study focuses on simple 3D building model; therefore, it 

excludes non-planar shapes like spheres, torus structures, and 

other complex geometries. The detected planar surfaces are then 

used to construct a surface mesh, forming a simplified 

representation of the building. This 3D model generation is 

processed using Python and includes two main stages: plane 

detection and mesh reconstruction. Algorithm of the plane 

detection and reconstruction planes to mesh are presented in 

Figure 6 and Figure 7. 
 

Figure 6. Algorithm for planar surface detection. 
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Figure 7. Algorithm for planes to mesh reconstruction. 

 

The plane detection algorithm operates by iteratively extracting 

planar regions from a 3D point cloud using a RANSAC-based 

approach. Initially, the input point cloud is converted into a 

structured format, and surface normals are estimated using a 

specified neighborhood radius. To enhance computational 

efficiency and reduce noise, the point cloud is down sampled 

using a voxel grid, producing a sparser set of points and their 

corresponding normals. A minimum inlier threshold is then 

calculated based on a fixed value and a user-defined ratio of the 

down sampled points. The algorithm proceeds by repeatedly 

applying RANSAC to the remaining points to detect the most 

dominant plane in the scene. If the number of inliers found by 

RANSAC falls below the threshold, the process terminates. 

Otherwise, the average normal of the inlier set is computed, and 

the detected plane is compared against previously found planes 

to check for redundancy using a merge threshold. If it is 

considered a new plane, it is stored along with its inliers, and 

those inliers are removed from the remaining point set. This 

process continues until no significant planes can be identified, 

at which point the algorithm returns the set of detected planes. 

This method ensures efficient and robust extraction of multiple 

planar surfaces from noisy 3D data. 

 

The mesh reconstruction algorithm transforms a set of detected 

planar segments into a collection of 3D mesh surfaces. It 

operates by iterating through each plane, represented by its 

equation and associated inlier points. For each set of inliers, the 

algorithm first verifies that there are at least three points, as this 

is the minimum requirement for forming a valid polygon. The 

inlier points are then converted into a point cloud structure. 

Using this representation, a convex hull is computed to 

approximate the boundary of the planar region. The resulting 

polygon is further processed to ensure consistent triangle 

orientation, which is important for proper rendering and mesh 

integrity. Each generated mesh is stored in a list, which is 

returned upon completion of the process. This approach 

provides a simple yet effective means of converting planar point 

sets into closed mesh representations, suitable for visualization 

or further geometric analysis. The execution of these algorithms 

produces a mesh model of the 3D building object, as shown in 

Figure 8. 
 

Figure 8. Mesh model of the building object. 

 

The mesh model represents major building elements such as 

roofs and walls but lacks windows, doors, and other detailed 

architectural features. The surfaces of the mesh are relatively 

rough, resulting in a simplified and non-realistic building shape. 

Additionally, some parts of the model, such as wall corners, are 

not properly connected. This is due to the separate mesh 

reconstruction process applied to each building part. 

4. Conclusion 

Application of the Laplacian method significantly improved the 

alignment and spatial consistency of 3D building model 

generated from data fusion. The reduction of the gaps indicates 

the enhanced integration and accuracy. Furthermore, the 

enhancement was consistently effective across different sections 

of the model. However, it is noted that the accuracy is still 

limited. Further refinements using parameters adjustment, such 

as density threshold and boundary threshold, could potentially 

optimize the model even further, ensuring greater precision and 

completeness in the future applications. 

Additionally, the enhanced data fusion has the potential to 

generate a mesh-based 3D building model. However, the 

resulting model remains simplified, capturing only major 

components such as roofs and walls, while lacking finer details 

like doors and windows. Generating 3D models from point 

clouds presents its own challenges, primarily due to the high 

level of noise inherent in the data. To achieve a more accurate 

representation, further processing is strongly recommended, 

such as converting the model into a solid model that can reflect 

the Level of Detail (LoD) of the building. Consequently, the 

final 3D building model output, such as CityGML, will be 

explored further. 
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