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Abstract 

Soil erosion remains a complex environmental phenomenon with broad implications for ecosystem stability and land management. 

The topographic wetness index (TWI), a commonly employed indicator in hydrological and geomorphological modeling, plays a 

crucial role in understanding how moisture distribution influences erosion potential. Despite its widespread use, TWI's theoretical 

grounding in multi-scale erosion assessment remains underexplored. Existing literature tends to focus on empirical applications at 

isolated spatial scales, often overlooking scale-sensitive behaviors and theoretical consistency. This study develops a conceptual 

framework for understanding the scale dependency of TWI in soil erosion modeling. It explores the assumptions underpinning TWI, 

its mathematical structure, and its interaction with scale-related processes by interacting with theoretical perspectives from 

geomorphology, hydrology, and spatial analysis. The study proposes a theoretical model for evaluating TWI's suitability across 

scales, identifying key factors that influence its performance. This framework aims to inform more robust and theoretically grounded 

applications of TWI in soil erosion assessment, paving the way for improved model transferability and sustainable land management 

practices. 

Keywords: Soil erosion; Topographic wetness index; Theoretical framework; Spatial scale theory; Erosion modeling; Geospatial 

indicators. 

1. Introduction

Soil erosion keeps drawing attention from researchers and 

policymakers because it removes fertile material, lowers 

agricultural production, and brings sediment to rivers and 

reservoirs (Owens, 2020; Rashmi et al., 2022). Global reports 

indicate that almost half of arable land now shows some degree 

of surface degradation, and the tendency is especially strong on 

steep slopes with intense rainfall (Prăvălie et al., 2021; 

Gomiero, 2016). Management plans often rely on models that 

estimate where erosion is most severe, and many of these 

models include terrain-based indicators for water concentration 

(Fenta et al., 2016; Diwediga et al., 2018). Among such 

indicators, the topographic wetness index (TWI) appears 

frequently. The index, first proposed inside hydrological flow 

accumulation studies, combines upslope contributing area and 

local slope to estimate potential water content in each cell of a 

digital elevation model. Larger TWI values point to wetter 

zones, while lower values mark drier ridges. Erosion studies 

adopt TWI because soil detachment and transport are sensitive 

to moisture, and moisture itself follows terrain form. However, 

the theory behind TWI comes from assumptions valid at one 

mapping scale, and researchers seldom test whether the same 

relation holds when resolution or extent changes. Scale in 

spatial analysis refers to resolution, extent, and zoning. 

Resolution describes the size of the grid cell or polygon, extent 

indicates the total area studied, and zoning notes how 

boundaries are drawn. Previous studies have warned that 

changing any of these three elements can modify statistical 

relations. When TWI is calculated on fine grids, upslope area, 

and slope reflect microtopography. When it is calculated on 

coarse grids, these terms smooth small ridges and gullies, so the 

index can hide fine erosion processes. Fu et al. (2006) designed 

a multi-scale soil loss evaluation index and concluded that 

indicator response differed across nested catchments. Lesschen 

et al. (2009) made similar remarks in a semi-arid basin while 

combining connectivity rules with a multi-scale approach. 

These findings indicate that scale effects influence TWI as well, 

yet a formal theory remains missing. 

Several studies already applied TWI or related topographic 

variables at various scales. Xiong et al. (2021) tested the 

relationship between vegetation index and terrain attributes, 

including TWI, in a small watershed with a 5-m resolution. 

Deng et al. (2007) and Yu et al. (2015) also compared terrain 

complexity measures across scales. León (2005) already called 

for scale-aware erosion assessment in the Andes, but the 

concept did not grow into a formal model. Doumit (2024) later 

surveyed multi-scale approaches in terrain analysis, confirming 

that scale theory often stays detached from indicator design. 

However, currently, no accepted framework explains how TWI 

should behave when resolution, extent, or zoning changes. The 

absence limits model transferability across regions and hampers 

the comparison of results produced with different data sources. 

Without a clear conceptual base, practitioners can misread 

wetness patterns and thus misplace conservation efforts. This 

study aims to build a theoretical framework that clarifies the 

relation between TWI and spatial scale in soil erosion 

assessment. It brings together existing theories from 

geomorphology, hydrology, spatial science, and GIScience, then 

outlines a model that explains the scale dependency of TWI and 

gives guidance for future empirical work. 

2. Method

2.1 Theoretical Background 

The topographic wetness index (TWI) is typically defined as a 

natural logarithm that tempers extreme values, so the index 

follows a semi-normal distribution in many landscapes. The 

formula for TWI arises from the steady-state topographic model 

of Beven and Kirkby, which assumes uniform precipitation, 

homogeneous soil, and equilibrium between inflow and outflow 

at each point. 
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where A is the upslope contributing area per unit contour 

length; β is the local slope. 

When water inputs exceed soil storage, saturation occurs, and 

overland flow begins. Even though these assumptions seldom 

hold perfectly, TWI still captures the first-order control of 

terrain on moisture. Scale theory enters through both A and β. 

Contributing area depends on the delineation of flow paths, 

which in raster models is guided by cell size and flow-routing 

rule. The slope angle also changes with resolution because finer 

grids reveal short, steep facets that disappear after resampling. 

The MAUP explains that statistical aggregates vary when the 

unit size or boundary shifts, and TWI is an aggregate of slope 

and flow length over the upslope domain. Resolution effects 

often dominate at a local scale, while extent effects become 

more visible at regional mapping. Zoning is less discussed in 

erosion research, but catchment boundary choice can affect the 

value of A near watershed divides. Landscape hydrology 

provides further concepts. Connectivity theory states that water 

moves through a series of links and sinks, and the efficiency of 

those links depends on terrain roughness. A change in grid size 

alters link density, so the same physical surface yields different 

flow networks. Spatial science adds the idea of scale variance, 

meaning that a variable shows distinct behavior at different 

observational windows. High-variance clusters in TWI can fade 

into mean values when resolution decreases, making moist 

hollows appear less pronounced. GIScience also contributes. 

Digital elevation models come from multiple sources such as 

LiDAR, photogrammetry, and radar, each with its error 

structure. When researchers resample these models, they 

propagate error in nonlinear ways that feed into TWI. 

Metternicht et al. (2022) warned that free global DEMs vary in 

quality, which affects derived terrain attributes. Model 

sensitivity studies such as Vergopolan et al. (2022) revealed 

that soil moisture patterns display complex variability across 

scales. Finally, environmental modeling theory indicates that 

predictive performance hinges on scale match between process 

and data. If erosion occurs at the plot scale, then a 

coarse-resolution TWI cannot capture the triggering condition. 

When the objective is continental mapping, a fine-resolution 

model can consume significant computing power without 

improving accuracy. Therefore, the theoretical background calls 

for a framework that ties TWI to the appropriate scale of 

analysis. 

 

2.2 Multi-scale Approaches in Environmental Modeling 

The scale at which environmental data is analyzed plays a 

critical role in the accuracy of model predictions. In soil erosion 

assessments, scale-dependent factors such as topography, land 

cover, and soil properties can influence the results (Miller et al., 

2015). Multi-scale analysis allows researchers to compare data 

at various spatial resolutions to understand how scale impacts 

model performance (Leempoel et al., 2015). In the context of 

soil erosion, multi-scale approaches are essential for addressing 

the varying dynamics of erosion processes at different spatial 

scales. For example, large-scale models can capture regional 

erosion trends but overlook fine-scale details such as micro- 

topography and vegetation cover, which are critical for accurate 

predictions at the plot level (Yu et al., 2015). In contrast, small- 

scale models may overemphasize local variations, leading to 

inaccurate regional predictions (Nelson et al., 2007). Recent 

studies have emphasized the importance of integrating multi- 

scale approaches in soil erosion modeling. For example, Deng 

et al. (2007) demonstrated that multi-scale linkages between 

topographic attributes and environmental variables can improve 

model accuracy. De Rosnay et al. (2009) conducted a multi- 

scale analysis of soil moisture measurements and found that 

integrating data from various scales can enhance the predictive 

power of hydrological models. Table 1 compares multi-scale 

approaches used in various environmental modeling studies. 

 
Study Scale(s) Analyzed Key Findings 

Yu et al. (2015) Plot to Regional Fine-scale data improves local accuracy 
but not regional. 

Deng et al. (2007) Multiple Scales Multi-scale linkages between 

topography and vegetation enhance 

model accuracy. 

Nelson et al. (2007) Hillside Catchment Multi-scale correlations reveal 

important topography-vegetation 
interactions. 

Leempoel et al. (2015) High Resolution Very high-resolution DEMs are 
ecologically relevant. 

 

Table 1. Comparison of Multi-scale Approaches Used in Environmental Modeling Studies. 
 

 

3. Results 

The framework begins with terrain input data. Digital elevation 

models enter the system together with metadata on resolution, 

vertical accuracy, and acquisition method. Error distribution is 

recorded because it affects downstream calculations. Thereafter, 

scale dependency analysis is conducted. The DEM is processed 

at a set of nested resolutions, for example, 5, 10, 30 m, and 

others. At each resolution, TWI is computed, and summary 

statistics such as mean, variance and semivariogram range are 

extracted. The comparison shows how TWI distribution shifts 

when cell size changes. The same step can be repeated for 

different extents to check the extent of the effect. The third 

component handles resolution harmonization. When additional 

variables such as rainfall or soil texture are used, they must be 

resampled to the same grid as TWI. The framework proposes an 

error-weighted resampling rule that gives more weight to high- 

quality data sources, reducing mismatch across layers. 

 

Element Framework Component Description 
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1 Terrain Input Characterization 
Involves selecting the DEM with metadata on resolution, accuracy, and 
acquisition method. Accounts for error distribution in elevation data. 

 

2 

 

Scale Dependency Analysis 

Computes TWI at multiple nested resolutions (5, 10, and 30 m). Compares 

summary statistics (mean, variance, semivariogram range) to reveal how TWI 
changes with scale. 

3 Resolution Harmonization 
Aligns other spatial datasets (rainfall and soil) with the DEM resolution using 
error-weighted resampling. Gives higher weight to data from accurate sources. 

 

4 
Moisture Dynamics 

Integration 

Introduces a storage–release curve that links TWI classes to potential 

saturation time, using field or remote sensing soil moisture data where 
possible. 

5 Scale Response Function 
Establishes a piecewise linear function connecting TWI variance with erosion 
response. Shows how TWI effectiveness varies from fine to coarse scales. 

 

6 

 

Model Generalizability 

Applies a similarity metric (terrain texture and rainfall seasonality) to transfer 

model coefficients across regions. Recalibrates if dissimilarity exceeds a 
threshold. 

 

Table 2. Components of the proposed multi-scale TWI theoretical framework 
 

The fourth element addresses moisture dynamics. Instead of 

assuming static conditions, the framework inserts a conceptual 

storage-release curve that links TWI classes to potential 

saturation time. The curve is parameterized from field or remote 

sensing soil moisture where available. This addition brings a 

temporal sense to the index without turning the model into a full 

hydrological simulation. A scale response function then joins 

TWI variance and erosion response. The function follows a 

piecewise linear form. For very fine resolution, erosion shows 

high spatial heterogeneity and TWI variance explains only part 

of the pattern because micro-roughness and vegetation cover 

also dominate. As resolution becomes moderate, TWI variance 

aligns better with measured soil loss, reaching a plateau. At a 

very coarse resolution, the relation weakens again because the 

upslope area smooths too much. The function is calibrated from 

empirical data where possible, but the concept itself is 

theoretical and guides expectation. Model generalizability forms 

the final block. The framework stores coefficients from the scale 

response function and uses them when transferring the model to 

another region. A similarity metric based on terrain texture and 

rainfall seasonality helps decide whether coefficients can be 

reused or need recalibration. Figure 1 illustrates these 

components and their links. 

 

 

 

Figure 1. Conceptual diagram of the multi-scale TWI framework 

 

The proposed framework stands on existing theory but adds a 

systematic way to study scale effects in TWI. It embeds scale in 

the workflow from the start, making it possible to anticipate 

how TWI values will shift and how erosion prediction can 

respond. The framework also answers the call for models that 

bridge microtopographic patterns and catchment responses. 

Through resolution analysis, the user can decide at which grid 

size the moisture pattern stabilizes relative to erosion data. In 

practice, the framework will run as follows. A researcher selects 

a DEM, records its properties, and sets a range of resolutions. 

TWI is calculated at each level, variance is plotted, and the 

scale response function is estimated. If the study aims at local 

conservation planning, the resolution where the function shows 

the strongest relation is chosen. If the goal is regional policy, a 

coarser resolution can be more efficient while still capturing the 

main trends. The conceptual storage-release curve extends the 

classic steady-state assumption. For instance, cells with TWI 

above one standard deviation from the mean can saturate within 

one rainfall event, while cells within half a deviation can need a 

week of cumulative rainfall. Such classification can guide early 

warning of runoff events. Resolution harmonization deals with 

the common situation where rainfall data come at 1-km grids, 

soil maps at 250-m polygons, and DEM at 30-m raster. The 

framework suggests resampling rainfall down to 30 m only after 

applying a correction based on orographic factors, thus avoiding 

artificial patterns. Generalizability uses a similarity index. If 

texture differs by less than a threshold, the same scale response 

coefficients can be applied; otherwise, a local adjustment is 
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required. The proposed framework, while theoretical, creates a 

pathway for a systematic study of TWI across scales and should 

stimulate empirical validation. Figure 2 depicts a workflow for 

conducting TWI-based soil erosion modeling. 

 

Figure 2: Workflow for performing a TWI-based soil erosion modeling. 

 

 

 

4. Discussion 

The framework provides several consequences for erosion 

modeling accuracy and practical decision-making. First, 

including scale dependency during the early stage helps avoid 

misinterpretation of wetness maps. When a user works with 

high-resolution LiDAR but intends to compare results with 

national studies based on 30-m grids, the framework signals the 

degree of comparability before field validation begins. Second, 

the storage-release curve tied to TWI classes adds temporal 

depth to what was often a static index. Land managers can now 

rank areas by wetness potential and by expected saturation time. 

Conservation measures such as buffer strips or contour 

hedgerows can then be timed to the rainfall season that 

produces the largest runoff. Third, resolution harmonization 

supports the integration of multi-source data. In regions where 

high-resolution rainfall is missing, the correction rule permits 

downscaling without creating spurious patterns. This feature is 

important for countries where data access remains limited. 

Fourth, the scale response function aids cost-effective modeling. 

Fine grids demand large computing resources. The function 

indicates the grid size where prediction skill no longer 

improves, so analysts can stop refining resolution beyond that 

point. Wang et al. (2024) showed that some landscape metrics 

peak in performance around 120 m, and the framework can 

detect similar plateaus for TWI. For land management policy, 

the framework encourages flexible mapping units. Conservation 

zones can be drawn at a coarse scale for budgeting yet refined 

locally where erosion risk concentrates. The similarity index 

guiding model transfer further reduces duplication of calibration 

work. Agencies can apply coefficients from one pilot basin to 

several nearby basins once similarity is confirmed. Finally, the 

framework raises transparent reporting. When studies document 

TWI variance at multiple scales, meta-analysis becomes 

feasible, and findings from Guo et al. (2021) and Fu et al. 

(2006) can be compared more directly. This transparency 

supports adaptive management, where models evolve with new 

data. 

5. Conclusion 

This study presents a theoretical framework that links the 

topographic wetness index to spatial scale in soil erosion 

assessment. A review of the literature exposes the lack of formal 

guidance on how TWI behaves when resolution, extent, or 

zoning change. The framework answers this gap by introducing 

terrain input characterization, scale dependency analysis, 

resolution harmonization, moisture dynamics, a scale response 

function, and model generalizability. Each component rests on 

concepts from geomorphology, hydrology, and spatial science. 

The inclusion of spatial scale theory strengthens TWI-based 

erosion modeling and permits more consistent comparison 

across studies. The framework can support empirical validation, 

guide data resolution choice, and inform land management 

planning at multiple levels. Future studies can test the storage- 

release curve against field moisture records and refine the 

similarity index for model transfer across contrasting 

environments. 

 

References 

De Rosnay, P., Gruhier, C., Timouk, F., Baup, F., Mougin, E., 

Hiernaux, P., ... & LeDantec, V. (2009). Multi-scale soil 

moisture measurements at the Gourma meso-scale site 

in Mali. Journal of Hydrology, 375(1-2), 241-252. 

 

Deng, Y., Chen, X., Chuvieco, E., Warner, T., & Wilson, J. P. 

(2007). Multi-scale linkages between topographic 

attributes and vegetation indices in a mountainous 

landscape. Remote Sensing of Environment, 111(1), 

122-134. 

 

Diwediga, B., Le, Q. B., Agodzo, S. K., Tamene, L. D., & 

Wala, K. (2018). Modelling soil erosion response to 

sustainable landscape management scenarios in the Mo 

River Basin (Togo, West Africa). Science of the Total 

Environment, 625, 1309-1320. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025 
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-221-2026 | © Author(s) 2026. CC BY 4.0 License.

 
224



Doumit, J. (2024). Multi-scale Insights in Landscape Dynamics, 

Approaches to Erosion, Terrain Analysis, and UAV 

Technologies. 

 

Fenta, A. A., Yasuda, H., Shimizu, K., Haregeweyn, N., & 

Negussie, A. (2016). Dynamics of soil erosion as 

influenced by watershed management practices: a case 

study of the Agula watershed in the semi-arid highlands 

of northern Ethiopia. Environmental management, 58, 

889-905. 

 

Fu, B., Zhao, W., Chen, L., Lü, Y., & Wang, D. (2006). A 

multi-scale soil loss evaluation index. Chinese Science 

Bulletin, 51, 448-456. 

 

Gomiero, T. (2016). Soil degradation, land scarcity and food 

security: Reviewing a complex 

challenge. Sustainability, 8(3), 281. 

 

Guo, L., Liu, R., Men, C., Wang, Q., Miao, Y., Shoaib, M., ... 

& Zhang, Y. (2021). Multi-scale spatiotemporal 

characteristics of landscape patterns, hotspots, and 

influencing factors for soil erosion. Science of the Total 

Environment, 779, 146474. 

 

Leempoel, K., Parisod, C., Geiser, C., Daprà, L., Vittoz, P., & 

Joost, S. (2015). Very high‐ resolution digital elevation 

models: are multi‐ scale derived variables ecologically 

relevant?. Methods in Ecology and Evolution, 6(12), 

1373-1383. 

 

León, C. C. R. (2005). A multi-scale approach for erosion 

assessment in the Andes. Wageningen University and 

Research. 

 

Lesschen, J. P., Schoorl, J. M., & Cammeraat, L. H. (2009). 

Modelling runoff and erosion for a semi-arid catchment 

using a multi-scale approach based on hydrological 

connectivity. Geomorphology, 109(3-4), 174-183. 

 

Liu, F., Lu, H., Wu, L., Li, R., Wang, X., & Cao, L. (2024). 

Automatic Extraction for Land Parcels Based on Multi- 

Scale Segmentation. Land, 13(2), 158. 

 

Metternicht, G., del Valle, H., Tentor, F., Sione, W., Zamboni, 

P., & Aceñolaza, P. (2022, May). Quality assessment of 

open access Digital Terrain Models to estimate 

topographic attributes relevant to soil vertic properties 

prediction. A case study of Entre Rios province 

(Argentina). In EGU General Assembly Conference 

Abstracts (pp. EGU22-3323). 

 

Miller, B. A., Koszinski, S., Wehrhan, M., & Sommer, M. 

(2015). Impact of multi-scale predictor selection for 

modeling soil properties. Geoderma, 239, 97-106. 

 

Nelson, A., Oberthür, T., & Cook, S. (2007). Multi‐ scale 

correlations between topography and vegetation in a 

hillside catchment of Honduras. International Journal of 

Geographical Information Science, 21(2), 145-174. 

 

Owens, P. N. (2020). Soil erosion and sediment dynamics in the 

Anthropocene: a review of human impacts during a 

period of rapid global environmental change. Journal of 

Soils and Sediments, 20, 4115-4143. 

Prăvălie, R., Patriche, C., Borrelli, P., Panagos, P., Roșca, B., 

Dumitraşcu, M., ... & Bandoc, G. (2021). Arable lands 

under the pressure of multiple land degradation 

processes. A global perspective. Environmental 

Research, 194, 110697. 

 

Rashmi, I., Karthika, K. S., Roy, T., Shinoji, K. C., Kumawat, 

A., Kala, S., & Pal, R. (2022). Soil Erosion and 

sediments: a source of contamination and impact on 

agriculture productivity. In Agrochemicals in Soil and 

Environment: Impacts and Remediation (pp. 313-345). 

Singapore: Springer Nature Singapore. 

 

Vergopolan, N., Sheffield, J., Chaney, N. W., Pan, M., Beck, H. 

E., Ferguson, C. R., ... & Wood, E. F. (2022). 

High‐ resolution soil moisture data reveal complex 

multi‐ scale spatial variability across the United 

States. Geophysical Research Letters, 49(15), 

e2022GL098586. 

 

Wang, J., Chen, Y., Wu, Z., Wei, Y., Zhang, Z., Wang, X., ... & 

Shi, Z. (2024). On the effectiveness of multi-scale 

landscape metrics in soil organic carbon 

mapping. Geoderma, 449, 117026. 

 

Xiong, Y., Li, Y., Xiong, S., Wu, G., & Deng, O. (2021). Multi- 

scale spatial correlation between vegetation index and 

terrain attributes in a small watershed of the upper 

Minjiang River. Ecological Indicators, 126, 107610. 

 

Yu, F., Wang, T., Groen, T. A., Skidmore, A. K., Yang, X., 

Geng, Y., & Ma, K. (2015). Multi-scale comparison of 

topographic complexity indices in relation to plant 

species richness. Ecological Complexity, 22, 93-101. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W17-2025 
GeoAdvances 2025 – 10th International Conference on GeoInformation Advances, 29–30 May 2025, Marrakech, Morocco

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W17-2025-221-2026 | © Author(s) 2026. CC BY 4.0 License.

 
225




