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Abstract

Soil erosion remains a complex environmental phenomenon with broad implications for ecosystem stability and land management.
The topographic wetness index (TWI), a commonly employed indicator in hydrological and geomorphological modeling, plays a
crucial role in understanding how moisture distribution influences erosion potential. Despite its widespread use, TWI's theoretical
grounding in multi-scale erosion assessment remains underexplored. Existing literature tends to focus on empirical applications at
isolated spatial scales, often overlooking scale-sensitive behaviors and theoretical consistency. This study develops a conceptual
framework for understanding the scale dependency of TWI in soil erosion modeling. It explores the assumptions underpinning TWI,
its mathematical structure, and its interaction with scale-related processes by interacting with theoretical perspectives from
geomorphology, hydrology, and spatial analysis. The study proposes a theoretical model for evaluating TWI's suitability across
scales, identifying key factors that influence its performance. This framework aims to inform more robust and theoretically grounded
applications of TWI in soil erosion assessment, paving the way for improved model transferability and sustainable land management
practices.
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1. Introduction

Soil erosion keeps drawing attention from researchers and
policymakers because it removes fertile material, lowers
agricultural production, and brings sediment to rivers and
reservoirs (Owens, 2020; Rashmi et al., 2022). Global reports
indicate that almost half of arable land now shows some degree
of surface degradation, and the tendency is especially strong on
steep slopes with intense rainfall (Pravilie et al., 2021;
Gomiero, 2016). Management plans often rely on models that
estimate where erosion is most severe, and many of these
models include terrain-based indicators for water concentration
(Fenta et al., 2016; Diwediga et al., 2018). Among such
indicators, the topographic wetness index (TWI) appears
frequently. The index, first proposed inside hydrological flow
accumulation studies, combines upslope contributing area and
local slope to estimate potential water content in each cell of a
digital elevation model. Larger TWI values point to wetter
zones, while lower values mark drier ridges. Erosion studies
adopt TWI because soil detachment and transport are sensitive
to moisture, and moisture itself follows terrain form. However,
the theory behind TWI comes from assumptions valid at one
mapping scale, and researchers seldom test whether the same
relation holds when resolution or extent changes. Scale in
spatial analysis refers to resolution, extent, and zoning.
Resolution describes the size of the grid cell or polygon, extent
indicates the total area studied, and zoning notes how
boundaries are drawn. Previous studies have warned that
changing any of these three elements can modify statistical
relations. When TWI is calculated on fine grids, upslope area,
and slope reflect microtopography. When it is calculated on
coarse grids, these terms smooth small ridges and gullies, so the
index can hide fine erosion processes. Fu et al. (2006) designed
a multi-scale soil loss evaluation index and concluded that
indicator response differed across nested catchments. Lesschen
et al. (2009) made similar remarks in a semi-arid basin while
combining connectivity rules with a multi-scale approach.

These findings indicate that scale effects influence TWI as well,
yet a formal theory remains missing.

Several studies already applied TWI or related topographic
variables at various scales. Xiong et al. (2021) tested the
relationship between vegetation index and terrain attributes,
including TWI, in a small watershed with a 5-m resolution.
Deng et al. (2007) and Yu et al. (2015) also compared terrain
complexity measures across scales. Ledn (2005) already called
for scale-aware erosion assessment in the Andes, but the
concept did not grow into a formal model. Doumit (2024) later
surveyed multi-scale approaches in terrain analysis, confirming
that scale theory often stays detached from indicator design.
However, currently, no accepted framework explains how TWI
should behave when resolution, extent, or zoning changes. The
absence limits model transferability across regions and hampers
the comparison of results produced with different data sources.
Without a clear conceptual base, practitioners can misread
wetness patterns and thus misplace conservation efforts. This
study aims to build a theoretical framework that clarifies the
relation between TWI and spatial scale in soil erosion
assessment. It brings together existing theories from
geomorphology, hydrology, spatial science, and GlScience, then
outlines a model that explains the scale dependency of TWI and
gives guidance for future empirical work.

2. Method
2.1 Theoretical Background

The topographic wetness index (TWI) is typically defined as a
natural logarithm that tempers extreme values, so the index
follows a semi-normal distribution in many landscapes. The
formula for TWI arises from the steady-state topographic model
of Beven and Kirkby, which assumes uniform precipitation,
homogeneous soil, and equilibrium between inflow and outflow
at each point.
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TWI =In ( A )
\tan B/ (D)

where A is the upslope contributing area per unit contour
length; B is the local slope.

When water inputs exceed soil storage, saturation occurs, and
overland flow begins. Even though these assumptions seldom
hold perfectly, TWI still captures the first-order control of
terrain on moisture. Scale theory enters through both A and f.
Contributing area depends on the delineation of flow paths,
which in raster models is guided by cell size and flow-routing
rule. The slope angle also changes with resolution because finer
grids reveal short, steep facets that disappear after resampling.
The MAUP explains that statistical aggregates vary when the
unit size or boundary shifts, and TWI is an aggregate of slope
and flow length over the upslope domain. Resolution effects
often dominate at a local scale, while extent effects become
more visible at regional mapping. Zoning is less discussed in
erosion research, but catchment boundary choice can affect the
value of A near watershed divides. Landscape hydrology
provides further concepts. Connectivity theory states that water
moves through a series of links and sinks, and the efficiency of
those links depends on terrain roughness. A change in grid size
alters link density, so the same physical surface yields different
flow networks. Spatial science adds the idea of scale variance,
meaning that a variable shows distinct behavior at different
observational windows. High-variance clusters in TWI can fade
into mean values when resolution decreases, making moist
hollows appear less pronounced. GlScience also contributes.
Digital elevation models come from multiple sources such as
LiDAR, photogrammetry, and radar, each with its error
structure. When researchers resample these models, they
propagate error in nonlinear ways that feed into TWI.
Metternicht et al. (2022) warned that free global DEMs vary in
quality, which affects derived terrain attributes. Model
sensitivity studies such as Vergopolan et al. (2022) revealed
that soil moisture patterns display complex variability across

scales. Finally, environmental modeling theory indicates that
predictive performance hinges on scale match between process
and data. If erosion occurs at the plot scale, then a
coarse-resolution TWI cannot capture the triggering condition.
When the objective is continental mapping, a fine-resolution
model can consume significant computing power without
improving accuracy. Therefore, the theoretical background calls
for a framework that ties TWI to the appropriate scale of
analysis.

2.2 Multi-scale Approaches in Environmental Modeling

The scale at which environmental data is analyzed plays a
critical role in the accuracy of model predictions. In soil erosion
assessments, scale-dependent factors such as topography, land
cover, and soil properties can influence the results (Miller et al.,
2015). Multi-scale analysis allows researchers to compare data
at various spatial resolutions to understand how scale impacts
model performance (Leempoel et al., 2015). In the context of
soil erosion, multi-scale approaches are essential for addressing
the varying dynamics of erosion processes at different spatial
scales. For example, large-scale models can capture regional
erosion trends but overlook fine-scale details such as micro-
topography and vegetation cover, which are critical for accurate
predictions at the plot level (Yu et al., 2015). In contrast, small-
scale models may overemphasize local variations, leading to
inaccurate regional predictions (Nelson et al., 2007). Recent
studies have emphasized the importance of integrating multi-
scale approaches in soil erosion modeling. For example, Deng
et al. (2007) demonstrated that multi-scale linkages between
topographic attributes and environmental variables can improve
model accuracy. De Rosnay et al. (2009) conducted a multi-
scale analysis of soil moisture measurements and found that
integrating data from various scales can enhance the predictive
power of hydrological models. Table 1 compares multi-scale
approaches used in various environmental modeling studies.

Study Scale(s) Analyzed

Key Findings

Yu et al. (2015) Plot to Regional

Fine-scale data improves local accuracy
but not regional.

Deng et al. (2007) Multiple Scales

Multi-scale linkages between
topography and vegetation enhance
model accuracy.

Nelson et al. (2007) Hillside Catchment

Multi-scale correlations reveal
important topography-vegetation
interactions.

Leempoel et al. (2015) High Resolution

Very high-resolution DEMs are
ecologically relevant.

Table 1. Comparison of Multi-scale Approaches Used in Environmental Modeling Studies.

3. Results

The framework begins with terrain input data. Digital elevation
models enter the system together with metadata on resolution,
vertical accuracy, and acquisition method. Error distribution is
recorded because it affects downstream calculations. Thereafter,
scale dependency analysis is conducted. The DEM is processed
at a set of nested resolutions, for example, 5, 10, 30 m, and
others. At each resolution, TWI is computed, and summary

statistics such as mean, variance and semivariogram range are
extracted. The comparison shows how TWI distribution shifts
when cell size changes. The same step can be repeated for
different extents to check the extent of the effect. The third
component handles resolution harmonization. When additional
variables such as rainfall or soil texture are used, they must be
resampled to the same grid as TWI. The framework proposes an
error-weighted resampling rule that gives more weight to high-
quality data sources, reducing mismatch across layers.

Element Framework Component Description
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Involves selecting the DEM with metadata on resolution, accuracy, and

1 Terrain Input Characterization acquisition method. Accounts for error distribution in elevation data.
Computes TWI at multiple nested resolutions (5, 10, and 30 m). Compares

2 Scale Dependency Analysis summary statistics (mean, variance, semivariogram range) to reveal how TWI
changes with scale.

3 Resolution Harmonization Aligns other spatial datasets (rainfall and soil) with the DEM resolution using

error-weighted resampling. Gives higher weight to data from accurate sources.

Moisture Dynamics

Introduces a storage—release curve that links TWI classes to potential

threshold.

4 - saturation time, using field or remote sensing soil moisture data where
Integration :
possible.
5 Scale Response Eunction Establishes a piecewise linear function connecting TWI variance with erosion
P response. Shows how TWI effectiveness varies from fine to coarse scales.
Applies a similarity metric (terrain texture and rainfall seasonality) to transfer
6 Model Generalizability model coefficients across regions. Recalibrates if dissimilarity exceeds a

Table 2. Components of the proposed multi-scale TWI theoretical framework

The fourth element addresses moisture dynamics. Instead of
assuming static conditions, the framework inserts a conceptual
storage-release curve that links TWI classes to potential
saturation time. The curve is parameterized from field or remote
sensing soil moisture where available. This addition brings a
temporal sense to the index without turning the model into a full
hydrological simulation. A scale response function then joins
TWI variance and erosion response. The function follows a
piecewise linear form. For very fine resolution, erosion shows
high spatial heterogeneity and TWI variance explains only part
of the pattern because micro-roughness and vegetation cover
also dominate. As resolution becomes moderate, TWI variance

Terrain input

aligns better with measured soil loss, reaching a plateau. At a
very coarse resolution, the relation weakens again because the
upslope area smooths too much. The function is calibrated from
empirical data where possible, but the concept itself is
theoretical and guides expectation. Model generalizability forms
the final block. The framework stores coefficients from the scale
response function and uses them when transferring the model to
another region. A similarity metric based on terrain texture and
rainfall seasonality helps decide whether coefficients can be
reused or need recalibration. Figure 1 illustrates these
components and their links.

Moisture dynamics

characterization integration
Y ®
Resolution Scale response
harmonization function
A 2 L 4
J Model
‘ generalizability

Figure 1. Conceptual diagram of the multi-scale TWI framework

The proposed framework stands on existing theory but adds a
systematic way to study scale effects in TWI. It embeds scale in
the workflow from the start, making it possible to anticipate
how TWI values will shift and how erosion prediction can
respond. The framework also answers the call for models that
bridge microtopographic patterns and catchment responses.
Through resolution analysis, the user can decide at which grid
size the moisture pattern stabilizes relative to erosion data. In
practice, the framework will run as follows. A researcher selects
a DEM, records its properties, and sets a range of resolutions.
TWI is calculated at each level, variance is plotted, and the
scale response function is estimated. If the study aims at local
conservation planning, the resolution where the function shows
the strongest relation is chosen. If the goal is regional policy, a

coarser resolution can be more efficient while still capturing the
main trends. The conceptual storage-release curve extends the
classic steady-state assumption. For instance, cells with TWI
above one standard deviation from the mean can saturate within
one rainfall event, while cells within half a deviation can need a
week of cumulative rainfall. Such classification can guide early
warning of runoff events. Resolution harmonization deals with
the common situation where rainfall data come at 1-km grids,
soil maps at 250-m polygons, and DEM at 30-m raster. The
framework suggests resampling rainfall down to 30 m only after
applying a correction based on orographic factors, thus avoiding
artificial patterns. Generalizability uses a similarity index. If
texture differs by less than a threshold, the same scale response
coefficients can be applied; otherwise, a local adjustment is
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required. The proposed framework, while theoretical, creates a
pathway for a systematic study of TWI across scales and should

\
0 Study area

‘ The study area must be a I
representative region Data collection and
characterized by significant o preprocessing
topographical variation, i
diverse land-use patterns, The required data are obtained
and considerable soil erosion from various sources, including
activity. topographic maps, digital
| elevation models (DEMs),
satellite images, and
meteorological data. DEM data
are sourced from high-resolution
remote sensing platforms such as
the Shuttle Radar Topography
Mission (SRTM).

local slope.

TWI is determined for the study
area using DEM data at different
spatial resolutions to assess its
sensitivity to scale. The formula
used to calculate TWI is based on
the relationship between the
upslope contributing area and

stimulate empirical validation. Figure 2 depicts a workflow for
conducting TWI-based soil erosion modeling.

Calculation of TWI at
multiple scales

f
|

Soil erosion modeling

Soil erosion modeling ‘
simulates processes that Validation and sensitivity
cause soil loss, helping e analysis

predict risk, guide
conservation, and inform
sustainable land
management.

Validation and sensitivity analysis
ensured model reliability by
comparing predictions with
observed data and testing TWI
resolution effects on performance
metrics.

Figure 2: Workflow for performing a TWI-based soil erosion modeling.

4. Discussion

The framework provides several consequences for erosion
modeling accuracy and practical decision-making. First,
including scale dependency during the early stage helps avoid
misinterpretation of wetness maps. When a user works with
high-resolution LiDAR but intends to compare results with
national studies based on 30-m grids, the framework signals the
degree of comparability before field validation begins. Second,
the storage-release curve tied to TWI classes adds temporal
depth to what was often a static index. Land managers can now
rank areas by wetness potential and by expected saturation time.
Conservation measures such as buffer strips or contour
hedgerows can then be timed to the rainfall season that
produces the largest runoff. Third, resolution harmonization
supports the integration of multi-source data. In regions where
high-resolution rainfall is missing, the correction rule permits
downscaling without creating spurious patterns. This feature is
important for countries where data access remains limited.
Fourth, the scale response function aids cost-effective modeling.
Fine grids demand large computing resources. The function
indicates the grid size where prediction skill no longer
improves, so analysts can stop refining resolution beyond that
point. Wang et al. (2024) showed that some landscape metrics
peak in performance around 120 m, and the framework can
detect similar plateaus for TWI. For land management policy,
the framework encourages flexible mapping units. Conservation
zones can be drawn at a coarse scale for budgeting yet refined
locally where erosion risk concentrates. The similarity index
guiding model transfer further reduces duplication of calibration
work. Agencies can apply coefficients from one pilot basin to
several nearby basins once similarity is confirmed. Finally, the
framework raises transparent reporting. When studies document
TWI variance at multiple scales, meta-analysis becomes
feasible, and findings from Guo et al. (2021) and Fu et al.
(2006) can be compared more directly. This transparency
supports adaptive management, where models evolve with new
data.

5. Conclusion

This study presents a theoretical framework that links the
topographic wetness index to spatial scale in soil erosion
assessment. A review of the literature exposes the lack of formal
guidance on how TWI behaves when resolution, extent, or
zoning change. The framework answers this gap by introducing
terrain input characterization, scale dependency analysis,
resolution harmonization, moisture dynamics, a scale response
function, and model generalizability. Each component rests on
concepts from geomorphology, hydrology, and spatial science.
The inclusion of spatial scale theory strengthens TWI-based
erosion modeling and permits more consistent comparison
across studies. The framework can support empirical validation,
guide data resolution choice, and inform land management
planning at multiple levels. Future studies can test the storage-
release curve against field moisture records and refine the
similarity index for model transfer across contrasting
environments.
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